Knowledge

Spin states (d electrons)

Source đź“ť

127: 67: 176: 115:. Complexes such as this are called "low-spin" since filling an orbital matches electrons and reduces the total electron spin. If the separation between the orbitals is small enough then it is easier to put electrons into the higher energy orbitals than it is to put two into the same low-energy orbital, because of the repulsion resulting from matching two electrons in the same orbital. So, one electron is put into each of the five 163: 137:
The charge of the metal center plays a role in the ligand field and the Δ splitting. The higher the oxidation state of the metal, the stronger the ligand field that is created. In the event that there are two metals with the same d electron configuration, the one with the higher oxidation state is
246:
In the case of octahedral complexes, the question of high spin vs low spin first arises for d, since it has more than the 3 electrons to fill the non-bonding d orbitals according to ligand field theory or the stabilized d orbitals according to crystal field splitting.
138:
more likely to be low spin than the one with the lower oxidation state; for example, Fe and Co are both d; however, the higher charge of Co creates a stronger ligand field than Fe. All other things being equal, Fe is more likely to be high spin than Co.
88:
plays an important role in the electron spin state of a coordination complex. Three factors affect Δ: the period (row in periodic table) of the metal ion, the charge of the metal ion, and the field strength of the complex's ligands as described by the
34:
configurations. The ambiguity only applies to first row metals, because second- and third-row metals are invariably low-spin. These configurations can be understood through the two major models used to describe coordination complexes;
152:. Strong-field ligands, such as CN and CO, increase the Δ splitting and are more likely to be low-spin. Weak-field ligands, such as I and Br cause a smaller Δ splitting and are more likely to be high-spin. 468:
levels are anti-bonding with respect to the metal-ligand bonds. Famous "exchange inert" complexes are octahedral complexes of d and low-spin d metal ions, illustrated respectfully by Cr and Co.
96:
In order for low spin splitting to occur, the energy cost of placing an electron into an already singly occupied orbital must be less than the cost of placing the additional electron into an e
123:
resulting in what is known as a "high-spin" complex. Complexes such as this are called "high-spin" since populating the upper orbital avoids matches between electrons with opposite spin.
238:(CFT) give similar results. CFT is an older, simpler model that treats ligands as point charges. LFT is more chemical, emphasizes covalent bonding and accommodates pi-bonding explicitly. 464:
Generally, the rates of ligand dissociation from low spin complexes are lower than dissociation rates from high spin complexes. In the case of octahedral complexes, electrons in the e
191:
is smaller than that for an octahedral complex. Consequently, tetrahedral complexes are almost always high spin Examples of low spin tetrahedral complexes include Fe(2-norbornyl)
624:
Scarborough, Christopher C.; Sproules, Stephen; Doonan, Christian J.; Hagen, Karl S.; WeyhermĂĽller, Thomas; Wieghardt, Karl (2012). "Scrutinizing Low-Spin Cr(II) Complexes".
947: 218:
Many d complexes of the first row metals exist in tetrahedral or square planar geometry. In some cases these geometries exist in measurable equilibria. For example,
111:
If the separation between the orbitals is large, then the lower energy orbitals are completely filled before population of the higher orbitals according to the
102:
orbital at an energy cost of Δ. If the energy required to pair two electrons is greater than the energy cost of placing an electron in an e
737: 219: 780: 659:
Shannon R.D. (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides".
26:
refers to the potential spin configurations of the central metal's d electrons. For several oxidation states, metals can adopt
795: 887: 542: 703: 494: 922: 917: 882: 78: 1043: 932: 927: 912: 937: 815: 289: 730: 324: 988: 993: 533:
Zumdahl, Steven (2009). "19.6 Transition Metals and Coordination Chemistry: The Crystal Field Model".
360: 589:-Dichlorobis(triphenylphosphine)nickel(II) Bis(dichloromethane) Solvate: Redetermination at 120 K". 433:
Octahedral low spin: Includes Fe ionic radius 62 pm, Co ionic radius 54.5 pm, Ni ionic radius 48 pm.
1048: 877: 841: 746: 723: 263:, substitutionally labile. Includes Cr (many complexes assigned as Cr(II) are however Cr(III) with 200: 44: 558:
Bower, Barton K.; Tennent, Howard G. (1972). "Transition Metal Bicyclo[2.2.1]hept-1-yls".
688:
Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd Thoroughly Revised Edition
1022: 907: 489:(2nd ed.). Upper Saddle River, New Jersey: Pearson Education, Inc. Pearson Prentice Hall. 149: 90: 942: 897: 760: 370: 235: 36: 23: 8: 1017: 836: 810: 765: 231: 126: 40: 66: 831: 785: 606: 264: 519: 1012: 983: 973: 902: 699: 641: 538: 490: 610: 93:. Only octahedral complexes of first row transition metals adopt high-spin states. 978: 872: 775: 770: 691: 668: 633: 598: 567: 515: 196: 112: 56: 20: 851: 846: 968: 867: 790: 380: 156: 142: 120: 82: 672: 602: 1037: 963: 695: 430:
Octahedral high spin: Fe, the ionic radius is 78 pm, Co ionic radius 61 pm.
715: 645: 392: 366: 356: 344: 337: 313: 300: 296: 285: 271: 260: 892: 376: 320: 571: 222:
has been crystallized in both tetrahedral and square planar geometries.
187:
The Δ splitting energy for tetrahedral metal complexes (four ligands), Δ
166:
Light-induced spin-crossover of , which switches from high and low-spin.
637: 1004: 800: 441:
Octahedral high spin: Co ionic radius 74.5 pm, Ni ionic radius 60 pm.
403: 175: 159:, where the high and low spin states exist in dynamic equilibrium. 444:
Octahedral low spin: Co ionic radius 65 pm, Niionic radius 56 pm.
395:. For a given d-electron count, high-spin complexes are larger. 623: 510:
GĂĽtlich, P. (2001). "Photoswitchable Coordination Compounds".
225: 162: 250:
All complexes of second and third row metals are low-spin.
948:
Arene complexes of univalent gallium, indium, and thallium
316:, substitutionally labile. Includes Fe, Co. Examples: , . 323:, substitutionally inert. Includes Fe, Co, Ni. Example: 141:
Ligands also affect the magnitude of Δ splitting of the
484: 419:
Octahedral high spin: Fe, the ionic radius is 64.5 pm.
347:, substitutionally labile. Includes Co, Ni. Example: . 148:
according to their field strength as described by the
288:, substitutionally labile. Includes Fe, Mn. Example: 183:
is a rare example of a low-spin tetrahedral complex.
585:
Batsanov, Andrei S.; Howard, Judith A. K. (2001). "
422:
Octahedral low spin: Fe, the ionic radius is 55 pm.
119:orbitals before any pairing occurs in accord with 369:, substitutionally labile. Includes Ni. Example: 359:, substitutionally labile. Includes Ni. Example: 299:, substitutionally inert. Includes Fe. Example: 241: 1035: 391:The spin state of the complex affects an atom's 379:, substitutionally inert. Includes Ni. Example: 375:Square planar low-spin: no unpaired electrons, 584: 455:Square planar low-spin: Ni ionic radius 49 pm. 731: 685: 365:Tetrahedral high-spin: 2 unpaired electrons, 745: 658: 557: 452:Octahedral high spin: Ni ionic radius 69 pm. 355:Octahedral high-spin: 2 unpaired electrons, 336:Octahedral high-spin: 3 unpaired electrons, 319:Octahedral low-spin: no unpaired electrons, 312:Octahedral high-spin: 4 unpaired electrons, 284:Octahedral high-spin: 5 unpaired electrons, 259:Octahedral high-spin: 4 unpaired electrons, 340:, substitutionally labile. Includes Co, Ni. 270:Octahedral low-spin: 2 unpaired electrons, 226:Ligand field theory vs crystal field theory 832:Oxidative addition / reductive elimination 738: 724: 485:Miessler, Gary L.; Donald A. Tarr (1998). 295:Octahedral low-spin: 1 unpaired electron, 274:, substitutionally inert. Includes Cr, Mn. 213: 343:Octahedral low-spin:1 unpaired electron, 220:dichlorobis(triphenylphosphine)nickel(II) 50: 781:Polyhedral skeletal electron pair theory 560:Journal of the American Chemical Society 459: 174: 170: 161: 125: 65: 532: 509: 61: 1036: 719: 888:Transition metal fullerene complexes 13: 923:Transition metal carbyne complexes 918:Transition metal carbene complexes 883:Transition metal indenyl complexes 551: 155:Some octahedral complexes exhibit 43:(a more advanced version based on 14: 1060: 933:Transition metal alkyne complexes 928:Transition metal alkene complexes 230:In terms of d-orbital splitting, 108:, Δ, high spin splitting occurs. 938:Transition-metal allyl complexes 913:Transition metal acyl complexes 409:Octahedral low spin: Mn, 58 pm. 402:Octahedral high spin: Cr, 64.5 679: 652: 617: 578: 526: 512:Coordination Chemistry Reviews 503: 478: 386: 290:Tris(acetylacetonato)iron(III) 242:High-spin and low-spin systems 1: 520:10.1016/S0010-8545(01)00381-2 471: 7: 989:Shell higher olefin process 796:Dewar–Chatt–Duncanson model 10: 1065: 878:Cyclopentadienyl complexes 842:β-hydride elimination 816:Metal–ligand multiple bond 54: 1002: 956: 943:Transition metal carbides 860: 824: 753: 673:10.1107/S0567739476001551 603:10.1107/S1600536801008741 537:. Cengage Learning, Inc. 747:Organometallic chemistry 696:10.1002/bbpc.19920960429 45:molecular orbital theory 908:Half sandwich compounds 214:Square planar complexes 1044:Coordination chemistry 1023:Bioinorganic chemistry 686:R. G. Wilkins (1991). 661:Acta Crystallographica 184: 167: 150:spectrochemical series 134: 91:spectrochemical series 74: 51:High-spin vs. low-spin 24:coordination complexes 994:Ziegler–Natta process 898:Metal tetranorbornyls 460:Ligand exchange rates 178: 171:Tetrahedral complexes 165: 133:crystal field diagram 129: 73:crystal field diagram 69: 1003:Related branches of 761:Crystal field theory 514:. 219–221: 839–879. 236:crystal field theory 62:Octahedral complexes 37:crystal field theory 1018:Inorganic chemistry 837:Migratory insertion 811:Agostic interaction 766:Ligand field theory 626:Inorganic Chemistry 572:10.1021/ja00762a056 535:Chemical Principles 487:Inorganic Chemistry 232:ligand field theory 41:ligand field theory 903:Sandwich compounds 861:Types of compounds 786:Isolobal principle 591:Acta Crystallogr E 185: 168: 135: 75: 1031: 1030: 1013:Organic chemistry 984:Olefin metathesis 974:Grignard reaction 873:Grignard reagents 690:. Weinheim: VCH. 638:10.1021/ic300882r 632:(12): 6969–6982. 1056: 979:Monsanto process 776:d electron count 771:18-electron rule 740: 733: 726: 717: 716: 710: 709: 683: 677: 676: 656: 650: 649: 621: 615: 614: 582: 576: 575: 566:(7): 2512–2514. 555: 549: 548: 530: 524: 523: 507: 501: 500: 482: 197:nitrosyl complex 113:Aufbau principle 57:Magnetochemistry 21:transition metal 19:when describing 1064: 1063: 1059: 1058: 1057: 1055: 1054: 1053: 1049:Electron states 1034: 1033: 1032: 1027: 998: 952: 868:Gilman reagents 856: 852:Carbometalation 847:Transmetalation 820: 749: 744: 714: 713: 706: 684: 680: 657: 653: 622: 618: 583: 579: 556: 552: 545: 531: 527: 508: 504: 497: 483: 479: 474: 467: 462: 389: 265:reduced ligands 244: 228: 216: 208: 204: 194: 190: 182: 179:Fe(4-norbornyl) 173: 107: 101: 64: 59: 53: 12: 11: 5: 1062: 1052: 1051: 1046: 1029: 1028: 1026: 1025: 1020: 1015: 1009: 1007: 1000: 999: 997: 996: 991: 986: 981: 976: 971: 969:Cativa process 966: 960: 958: 954: 953: 951: 950: 945: 940: 935: 930: 925: 920: 915: 910: 905: 900: 895: 890: 885: 880: 875: 870: 864: 862: 858: 857: 855: 854: 849: 844: 839: 834: 828: 826: 822: 821: 819: 818: 813: 808: 803: 798: 793: 788: 783: 778: 773: 768: 763: 757: 755: 751: 750: 743: 742: 735: 728: 720: 712: 711: 704: 678: 667:(5): 751–767. 651: 616: 577: 550: 544:978-0538734561 543: 525: 502: 495: 476: 475: 473: 470: 465: 461: 458: 457: 456: 453: 450: 446: 445: 442: 439: 435: 434: 431: 428: 424: 423: 420: 417: 415: 411: 410: 407: 400: 388: 385: 384: 383: 373: 363: 353: 349: 348: 341: 334: 332: 328: 327: 317: 310: 308: 304: 303: 293: 282: 280: 276: 275: 268: 257: 255: 243: 240: 227: 224: 215: 212: 206: 202: 192: 188: 180: 172: 169: 157:spin crossover 103: 97: 63: 60: 55:Main article: 52: 49: 9: 6: 4: 3: 2: 1061: 1050: 1047: 1045: 1042: 1041: 1039: 1024: 1021: 1019: 1016: 1014: 1011: 1010: 1008: 1006: 1001: 995: 992: 990: 987: 985: 982: 980: 977: 975: 972: 970: 967: 965: 964:Carbonylation 962: 961: 959: 955: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 865: 863: 859: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 829: 827: 823: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 791:Ď€ backbonding 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 758: 756: 752: 748: 741: 736: 734: 729: 727: 722: 721: 718: 707: 705:3-527-28389-7 701: 697: 693: 689: 682: 674: 670: 666: 662: 655: 647: 643: 639: 635: 631: 627: 620: 612: 608: 604: 600: 596: 592: 588: 581: 573: 569: 565: 561: 554: 546: 540: 536: 529: 521: 517: 513: 506: 498: 496:0-13-841891-8 492: 488: 481: 477: 469: 454: 451: 448: 447: 443: 440: 437: 436: 432: 429: 426: 425: 421: 418: 416: 413: 412: 408: 405: 401: 398: 397: 396: 394: 381: 378: 374: 371: 368: 364: 361: 358: 354: 351: 350: 346: 342: 339: 335: 333: 330: 329: 325: 322: 318: 315: 311: 309: 306: 305: 301: 298: 294: 291: 287: 283: 281: 278: 277: 273: 269: 266: 262: 258: 256: 253: 252: 251: 248: 239: 237: 233: 223: 221: 211: 209: 198: 177: 164: 160: 158: 153: 151: 147: 145: 139: 132: 128: 124: 122: 118: 114: 109: 106: 100: 94: 92: 87: 85: 80: 72: 68: 58: 48: 46: 42: 38: 33: 29: 25: 22: 18: 957:Applications 893:Metallocenes 805: 687: 681: 664: 660: 654: 629: 625: 619: 594: 590: 586: 580: 563: 559: 553: 534: 528: 511: 505: 486: 480: 463: 393:ionic radius 390: 367:paramagnetic 357:paramagnetic 345:paramagnetic 338:paramagnetic 314:paramagnetic 297:paramagnetic 286:paramagnetic 272:paramagnetic 261:paramagnetic 249: 245: 229: 217: 195:, , and the 186: 154: 143: 140: 136: 130: 116: 110: 104: 98: 95: 83: 76: 70: 31: 27: 16: 15: 806:spin states 597:: 308–309. 387:Ionic radii 377:diamagnetic 321:diamagnetic 121:Hund's rule 79:Δ splitting 17:Spin states 1038:Categories 754:Principles 472:References 234:(LFT) and 1005:chemistry 825:Reactions 801:Hapticity 131:High-spin 28:high-spin 646:22676275 611:97381117 146:orbitals 86:orbitals 71:Low-spin 32:low-spin 201:(N(tms) 199:Cr(NO)( 81:of the 702:  644:  609:  541:  493:  267:), Mn. 607:S2CID 587:trans 700:ISBN 642:PMID 539:ISBN 491:ISBN 77:The 39:and 30:and 692:doi 669:doi 665:A32 634:doi 599:doi 568:doi 516:doi 189:tet 47:). 1040:: 698:. 663:. 640:. 630:51 628:. 605:. 595:57 593:. 564:94 562:. 404:pm 210:. 739:e 732:t 725:v 708:. 694:: 675:. 671:: 648:. 636:: 613:. 601:: 574:. 570:: 547:. 522:. 518:: 499:. 466:g 449:d 438:d 427:d 414:d 406:. 399:d 382:. 372:. 362:. 352:d 331:d 326:. 307:d 302:. 292:. 279:d 254:d 207:3 205:) 203:2 193:4 181:4 144:d 117:d 105:g 99:g 84:d

Index

transition metal
coordination complexes
crystal field theory
ligand field theory
molecular orbital theory
Magnetochemistry

Δ splitting
d orbitals
spectrochemical series
Aufbau principle
Hund's rule

d orbitals
spectrochemical series
spin crossover


nitrosyl complex
(N(tms)2)3
dichlorobis(triphenylphosphine)nickel(II)
ligand field theory
crystal field theory
paramagnetic
reduced ligands
paramagnetic
paramagnetic
Tris(acetylacetonato)iron(III)
paramagnetic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑