Knowledge

Slice knot

Source 📝

20: 762: 3467: 2074: 3479: 360: 2369:(also called ′slice genus′) of a knot is therefore defined as the smallest genus of an embedded surface in 4-space of which the knot is the boundary. As before, we distinguish the topological and smooth 4-genus. Knots with 4-genus 0 are slice knots because a disk, the simplest surface, has genus 0. The 4-genus is always smaller or equal to the knot's 2348:
This is useful because the critical points with respect to the radial function r carry geometrical meaning. At saddle points, trivial components are added or destroyed (band moves, also called fusion and fission). For slice knots any number of these band moves are possible, whereas for ribbon knots
2340:
This can be illustrated also with the first figure at the top of this article: If a small disk at the local minimum on the bottom left is cut out then the boundary of the surface at this place is a trivial knot and the surface is a cylinder. At the other end of the cylinder we have a slice knot. If
2077:
Top: The composition of two knot concordances shows the transitivity in a geometric way. Bottom: A concordance of genus 1 between two knots. If the knot on the left is trivial then the knot on the right has a smooth 4-genus of 0 or 1 — it is the boundary of an embedded surface of genus 1 but could
765:
Using the trefoil knot we illustrate the reflexivity of the concordance relation: every knot is concordant to itself. In the definition of concordance two reversions of orientations occur: The knot orientation is reversed (green and red arrow) and also the orientation of 3-space. The effect of the
2376:
Examples for knots with different values for their topological and smooth 4-genus are listed in the following table. The Conway knot 11n34 is, as already mentioned, the first example in the knot tables for a topologically but not smoothly slice knot. Judging from the values in the table we could
374:
Note, that the disk in the illustration on the right does not have self-intersections in 4-space. These only occur in the projection to three-dimensional space. Therefore, the disk is ′correctly′ embedded at every point but not at the singularity (it is not locally-flat there).
770:
Every ribbon knot is a smoothly slice knot because—with the exception of the ribbon singularities—the knot already bounds an embedded disk (in 3-space). The ribbon singularities may be deformed in a small neighbourhood into 4-space so that the disk is embedded.
2000:. Since the determinant of the figure-eight knot is 5, which is not a square number, this knot is not slice and it follows that its order in the concordance group is 2. Of course, knots with a finite order in the concordance group always have signature 0. 2377:
conclude that the smooth and the topological 4-genus always differ by 1, when they are not equal. This is not the case, however, and the difference can be arbitrarily large. It is not known, though, (as of 2017), whether there are
343:
Every smoothly slice knot is topologically slice because a smoothly embedded disk is locally flat. Usually, smoothly slice knots are also just called slice. Both types of slice knots are important in 3- and 4-dimensional topology.
341: 251: 2065:) are always topologically slice, but not necessarily smoothly slice (the Conway knot is an example for that). Rasmussen's s-invariant vanishes for smoothly slice, but in general not for topologically slice knots. 2352:
In the illustration on the right the geometrical description of the concordance is rotated by 90° and the parameter r is renamed to t. This name fits well to a time interpretation of a surface ′movie′.
2308:
and therefore two mirrored trefoils are shown as boundary of the cylinder. Connecting the two knots by cutting out a strip from the cylinder yields a disk, showing that for all knots the connected sum
1998: 1550: 371:
over the knot which is a disk in the 4-ball with the required property with the exception that it is not locally-flat or smooth at the singularity (it works for the trivial knot, though).
1708: 168: 1630: 1590: 471: 2185: 78: 2275: 2230: 2063: 1923: 1766: 1465: 814: 1383:. Up to this crossing number there are no topologically slice knots which are not smoothly slice. Starting with crossing number 11 there is such an example, however: The 421: 2335: 1494: 561: 2525: 2497: 2469: 2441: 2413: 1381: 1354: 1327: 1300: 1273: 1246: 753:
which is called the (topological or smooth) knot concordance group. The neutral element in this group is the set of slice knots (topological or smooth, respectively).
1219: 1192: 1165: 1138: 1111: 1084: 1057: 1839: 1030: 1003: 976: 949: 922: 501: 2552: 2302: 2134: 2107: 2025: 1872: 1427: 895: 868: 841: 743: 716: 689: 662: 635: 608: 532: 117: 1813: 1731: 581: 263: 2232:). The orientations of the two knots have to be consistent to the cylinder's orientation, which is illustrated in the third figure. The boundary of 176: 2082:
As an alternative to the above definition of concordance using slice knots there is also a second equivalent definition. Two oriented knots
2030:
On the other hand, invariants with different properties for the two concordance variants exist: Knots with trivial Alexander polynomial (
351:
and it is an open question whether there are any smoothly slice knots which are not ribbon knots (′Slice-ribbon conjecture′).
2844: 1928: 3412: 3331: 1775:
is an invariant of concordance classes and the signature of slice knots is zero. Furthermore, the signature map is a
1499: 2878: 2373:
because this invariant is defined using Seifert surfaces which are embedded already in three-dimensional space.
3505: 2711: 1391:) is a topologically but not smoothly slice knot. On the other hand, the Kinoshita-Terasaka knot, a so-called ′ 1647: 3326: 3321: 3197: 2718:, in: A. Marin, L. Guillou: A la recherche de la topologie perdue, Progress in Mathematics, Birkhäuser 1986. 3483: 2898: 1400: 367:
The conditions locally-flat or smooth are essential in the definition: For every knot we can construct the
130: 2960: 1595: 1555: 433: 27:, showing minima, saddles and a maximum, and as an illustration a movie for the Kinoshita–Terasaka knot 3030: 3025: 2966: 2837: 2305: 2139: 428: 50: 2812: 2337:
is slice. In both definitions a knot is slice if and only if it is concordant to the trivial knot.
2235: 2190: 2033: 1885: 1736: 1432: 781: 534:
where in addition the orientation is reversed. The relationship ′concordant′ is reflexive because
3158: 2370: 386: 2311: 1470: 537: 473:
is slice. In the same way as before, we distinguish topologically and smoothly concordant. With
3372: 3341: 1392: 2643: 2503: 2475: 2447: 2419: 2391: 1359: 1332: 1305: 1278: 1251: 1224: 3202: 1197: 1170: 1143: 1116: 1089: 1062: 1035: 749:. The equivalence classes together with the connected sum of knots as operation then form an 1818: 1008: 981: 954: 927: 900: 476: 3471: 3242: 2830: 2787: 2531: 2280: 2112: 2085: 2007: 1850: 1788: 1641: 1405: 873: 846: 819: 746: 721: 694: 667: 640: 613: 586: 510: 95: 2740:
The mirror variants of the knots have to be chosen in a way that the total signature is 0.
2004:
For both variants of the concordance group it is unknown whether elements of finite order
1733:
with integer coefficients (Fox-Milnor condition). It follows that the knot's determinant (
8: 3279: 3262: 2362: 1772: 1467:
are known. Composite slice knots up to crossing number 12 are, besides those of the form
254: 1783:: The signature of the sum of two concordance classes is the sum of the two signatures. 3300: 3247: 2861: 2857: 2341:
the disk (or cylinder) is smoothly embedded it can be slightly deformed to a so-called
1798: 1716: 1711: 1388: 566: 258: 36: 3397: 3346: 3296: 3252: 3212: 3207: 3125: 1845: 3432: 3257: 3153: 2888: 2655: 1640:
The following properties are valid for topologically and smoothly slice knots: The
19: 3392: 3356: 3291: 3237: 3192: 3185: 3075: 2987: 2870: 2691: 1879: 368: 2822: 2682:
for the notation and list of slice knots (genus-4D = 0 and genus-4D (Top.) = 0).
2658: â€“ Link equivalence relation weaker than isotopy but stronger than homotopy 336:{\displaystyle B^{4}=\{\mathbf {x} \in \mathbb {R} ^{4}:|\mathbf {x} |\leq 1\}.} 3452: 3351: 3313: 3232: 3145: 3020: 3012: 2972: 2639: 2361:
An analogous definition as for slice knots may be done with surfaces of larger
2136:
are concordant if they are the boundary of a (locally flat or smooth) cylinder
761: 120: 3499: 3387: 3175: 3168: 3163: 2707: 1429:, not slice. All topologically and smoothly slice knots with crossing number 750: 39:
in 3-dimensional space that bounds an embedded disk in 4-dimensional space.
3402: 3382: 3286: 3269: 3065: 3002: 2342: 1792: 1776: 246:{\displaystyle S^{3}=\{\mathbf {x} \in \mathbb {R} ^{4}:|\mathbf {x} |=1\}} 24: 3417: 3180: 3085: 2954: 2934: 2924: 2916: 2908: 2853: 2753: 2366: 1875: 1795:
is Âą2 and the signature of the concordance class of the connected sum of
1384: 504: 348: 3437: 3377: 3274: 3227: 3222: 3217: 3047: 2944: 1396: 775: 124: 2068: 3442: 3110: 2749: 2679: 89: 2800:
On 2-bridge knots with differing smooth and topological slice genera
2073: 1787:
It follows that the concordance group contains elements of infinite
3427: 3037: 347:
Smoothly slice knots are often illustrated using knots diagrams of
171: 1780: 2817:, Banff International Research Station, 2017, Problem 25, p. 12. 3447: 3095: 3055: 359: 3336: 2758:
Singularities of 2-Spheres in 4-Space and Cobordism of Knots.
1844:
The concordance group also contains elements of order 2: The
378: 3407: 2629:, Chapter 7 in „Handbook of Knot Theory“, Elsevier, 2005 583:. It is also possible to show that it is transitive: if 2782:
For the orientation of a product see Tammo tom Dieck:
1993:{\displaystyle 4_{1}\sharp 4_{1}=4_{1}\sharp -4_{1}=0} 2534: 2506: 2478: 2450: 2422: 2394: 2349:
only fusions may occur and fissions are not allowed.
2314: 2283: 2238: 2193: 2142: 2115: 2088: 2036: 2010: 1931: 1888: 1853: 1821: 1801: 1739: 1719: 1650: 1598: 1558: 1502: 1473: 1435: 1408: 1362: 1335: 1308: 1281: 1254: 1227: 1200: 1173: 1146: 1119: 1092: 1065: 1038: 1011: 984: 957: 930: 903: 876: 849: 822: 784: 724: 697: 670: 643: 616: 589: 569: 540: 513: 479: 436: 389: 266: 179: 133: 98: 53: 2727:Ribbon diagrams for them can be found in: C. Lamm, 2069:
Geometrical description of the concordance relation
2546: 2519: 2491: 2463: 2435: 2407: 2329: 2296: 2269: 2224: 2179: 2128: 2101: 2057: 2019: 1992: 1917: 1866: 1833: 1807: 1760: 1725: 1702: 1624: 1584: 1544: 1488: 1459: 1421: 1375: 1348: 1321: 1294: 1267: 1240: 1213: 1186: 1159: 1132: 1105: 1078: 1051: 1024: 997: 970: 943: 916: 889: 862: 835: 808: 737: 710: 683: 656: 629: 602: 575: 555: 526: 495: 465: 415: 335: 245: 162: 111: 72: 2852: 2802:, Proc. Amer. Math. Soc. 144, p. 5435–5442, 2016. 745:. Since the relation is also symmetric, it is an 3497: 1545:{\displaystyle 6_{1}\sharp 3_{1}\sharp -3_{1}} 2838: 2786:, EMS Textbooks in Mathematics, 2008 (online 2644:Slice knots: knot theory in the 4th dimension 2814:Thirty Years of Floer Theory for 3-manifolds 327: 280: 240: 193: 16:Knot that bounds an embedded disk in 4-space 2698:Ann. of Math. 191, No. 2, p. 581–591, 2020. 2845: 2831: 379:Slice knots and the knot concordance group 1399:are, except for the trivial knot and the 1395:′ of the Conway knot, is smoothly slice. 293: 206: 2729:The Search for Nonsymmetric Ribbon Knots 2072: 1703:{\displaystyle \Delta (t)=f(t)f(t^{-1})} 760: 358: 18: 3498: 2771:Khovanov homology and the slice genus. 2627:A Survey of Classical Knot Concordance 2615:, Publish or Perish, 1976, Chapter 8.E 2826: 2622:, Carus Mathematical Monographs, 1993 3478: 354: 163:{\displaystyle S^{3}=\partial B^{4}} 2760:Osaka J. Math. 3, p. 257–267, 1966. 2674:See C. Livingston and A. H. Moore: 1925:. In the concordance group we find 13: 2731:, Exp. Math. 30, p. 349–363, 2021. 2680:https://knotinfo.math.indiana.edu/ 2676:KnotInfo: Table of Knot Invariants 2318: 2037: 1968: 1942: 1743: 1651: 1644:of a slice knot can be written as 1625:{\displaystyle 3_{1}\sharp 8_{11}} 1609: 1585:{\displaystyle 3_{1}\sharp 8_{10}} 1569: 1526: 1513: 1477: 544: 466:{\displaystyle K_{1}\sharp -K_{2}} 447: 147: 14: 3517: 2773:Inv. Math. 182, p. 419–447, 2010. 2633: 1552:, the two more interesting knots 3477: 3466: 3465: 2381:knots with a difference > 1. 312: 284: 225: 197: 2805: 2605: 774:There are 21 non-trivial slice 766:latter is the knot's mirroring. 3332:Dowker–Thistlethwaite notation 2792: 2776: 2763: 2743: 2734: 2721: 2701: 2685: 2668: 2264: 2252: 2219: 2207: 2180:{\displaystyle C=S^{1}\times } 2174: 2162: 2046: 2040: 1779:from concordance group to the 1755: 1746: 1697: 1681: 1675: 1669: 1660: 1654: 1448: 1442: 797: 791: 317: 307: 230: 220: 88:, if it is the boundary of an 73:{\displaystyle K\subset S^{3}} 1: 2696:The Conway knot is not slice. 2662: 1635: 42: 2716:Cobordism of Classical Knots 2270:{\displaystyle S^{3}\times } 2225:{\displaystyle S^{3}\times } 2187:(in the 4-dimensional space 2058:{\displaystyle \Delta (t)=1} 1918:{\displaystyle 4_{1}=-4_{1}} 1761:{\displaystyle =\Delta (-1)} 1460:{\displaystyle cr(K)\leq 12} 809:{\displaystyle cr(K)\leq 10} 127:, respectively. Here we use 7: 2649: 756: 416:{\displaystyle K_{1},K_{2}} 10: 3522: 2811:See the conference report 2356: 2330:{\displaystyle K\sharp -K} 1489:{\displaystyle K\sharp -K} 556:{\displaystyle K\sharp -K} 363:Cone over the trefoil knot 3461: 3365: 3322:Alexander–Briggs notation 3309: 3144: 3046: 3011: 2869: 2520:{\displaystyle 10_{161}} 2492:{\displaystyle 10_{154}} 2464:{\displaystyle 10_{152}} 2436:{\displaystyle 10_{145}} 2408:{\displaystyle 10_{139}} 1882:, and therefore we have 1376:{\displaystyle 10_{155}} 1349:{\displaystyle 10_{153}} 1322:{\displaystyle 10_{140}} 1295:{\displaystyle 10_{137}} 1268:{\displaystyle 10_{129}} 1241:{\displaystyle 10_{123}} 563:is slice for every knot 257:of the four-dimensional 82:topologically slice knot 3413:List of knots and links 2961:Kinoshita–Terasaka knot 1214:{\displaystyle 10_{99}} 1187:{\displaystyle 10_{87}} 1160:{\displaystyle 10_{75}} 1133:{\displaystyle 10_{48}} 1106:{\displaystyle 10_{42}} 1079:{\displaystyle 10_{35}} 1052:{\displaystyle 10_{22}} 23:A smooth slice disk in 2548: 2521: 2493: 2465: 2437: 2409: 2331: 2298: 2271: 2226: 2181: 2130: 2103: 2079: 2059: 2021: 1994: 1919: 1868: 1835: 1834:{\displaystyle \pm 2n} 1809: 1768:) is a square number. 1762: 1727: 1704: 1626: 1586: 1546: 1490: 1461: 1423: 1377: 1350: 1323: 1296: 1269: 1242: 1215: 1188: 1161: 1134: 1107: 1080: 1053: 1026: 1025:{\displaystyle 10_{3}} 999: 998:{\displaystyle 9_{46}} 972: 971:{\displaystyle 9_{41}} 945: 944:{\displaystyle 9_{27}} 918: 917:{\displaystyle 8_{20}} 891: 864: 837: 810: 767: 739: 712: 685: 658: 631: 604: 577: 557: 528: 497: 496:{\displaystyle -K_{2}} 467: 417: 364: 337: 247: 164: 113: 74: 28: 3506:Slice knots and links 3203:Finite type invariant 2798:P. Feller, D. McCoy: 2549: 2547:{\displaystyle 11n34} 2522: 2494: 2466: 2438: 2410: 2332: 2299: 2297:{\displaystyle S^{3}} 2272: 2227: 2182: 2131: 2129:{\displaystyle K_{2}} 2104: 2102:{\displaystyle K_{1}} 2076: 2060: 2022: 2020:{\displaystyle >2} 1995: 1920: 1869: 1867:{\displaystyle 4_{1}} 1836: 1810: 1791:: The signature of a 1763: 1728: 1705: 1627: 1587: 1547: 1491: 1462: 1424: 1422:{\displaystyle 6_{1}} 1378: 1351: 1324: 1297: 1270: 1243: 1216: 1189: 1162: 1135: 1108: 1081: 1054: 1027: 1000: 973: 946: 919: 892: 890:{\displaystyle 8_{9}} 865: 863:{\displaystyle 8_{8}} 838: 836:{\displaystyle 6_{1}} 811: 778:with crossing number 764: 740: 738:{\displaystyle K_{3}} 713: 711:{\displaystyle K_{1}} 686: 684:{\displaystyle K_{3}} 659: 657:{\displaystyle K_{2}} 632: 630:{\displaystyle K_{2}} 605: 603:{\displaystyle K_{1}} 578: 558: 529: 527:{\displaystyle K_{2}} 498: 468: 418: 362: 338: 248: 165: 114: 112:{\displaystyle B^{4}} 75: 22: 2625:Charles Livingston: 2618:Charles Livingston: 2532: 2504: 2476: 2448: 2420: 2392: 2312: 2281: 2236: 2191: 2140: 2113: 2086: 2034: 2008: 1929: 1886: 1851: 1841:and therefore not 0. 1819: 1799: 1737: 1717: 1648: 1642:Alexander polynomial 1596: 1556: 1500: 1471: 1433: 1406: 1360: 1333: 1306: 1279: 1252: 1225: 1198: 1171: 1144: 1117: 1090: 1063: 1036: 1009: 982: 955: 928: 901: 874: 847: 820: 782: 747:equivalence relation 722: 695: 668: 641: 614: 587: 567: 538: 511: 477: 434: 387: 264: 177: 131: 96: 51: 3373:Alexander's theorem 383:Two oriented knots 92:disk in the 4-ball 86:smoothly slice knot 2784:Algebraic Topology 2544: 2517: 2489: 2461: 2433: 2405: 2327: 2294: 2267: 2222: 2177: 2126: 2099: 2080: 2078:also bound a disk. 2055: 2017: 1990: 1915: 1864: 1831: 1805: 1758: 1723: 1712:Laurent polynomial 1700: 1622: 1582: 1542: 1486: 1457: 1419: 1389:John Horton Conway 1373: 1346: 1319: 1292: 1265: 1238: 1211: 1184: 1157: 1130: 1103: 1076: 1049: 1022: 995: 968: 941: 914: 887: 860: 833: 806: 768: 735: 708: 681: 654: 627: 600: 573: 553: 524: 493: 463: 413: 365: 333: 243: 160: 109: 70: 29: 3493: 3492: 3347:Reidemeister move 3213:Khovanov homology 3208:Hyperbolic volume 2769:Jacob Rasmussen: 2603: 2602: 1846:figure-eight knot 1808:{\displaystyle n} 1726:{\displaystyle f} 718:is concordant to 664:is concordant to 610:is concordant to 576:{\displaystyle K} 355:Cone construction 37:mathematical knot 3513: 3481: 3480: 3469: 3468: 3433:Tait conjectures 3136: 3135: 3121: 3120: 3106: 3105: 2998: 2997: 2983: 2982: 2967:(−2,3,7) pretzel 2847: 2840: 2833: 2824: 2823: 2818: 2809: 2803: 2796: 2790: 2780: 2774: 2767: 2761: 2747: 2741: 2738: 2732: 2725: 2719: 2705: 2699: 2689: 2683: 2672: 2656:Link concordance 2558:4-genus (smooth) 2553: 2551: 2550: 2545: 2526: 2524: 2523: 2518: 2516: 2515: 2498: 2496: 2495: 2490: 2488: 2487: 2470: 2468: 2467: 2462: 2460: 2459: 2442: 2440: 2439: 2434: 2432: 2431: 2414: 2412: 2411: 2406: 2404: 2403: 2384: 2383: 2336: 2334: 2333: 2328: 2303: 2301: 2300: 2295: 2293: 2292: 2276: 2274: 2273: 2268: 2248: 2247: 2231: 2229: 2228: 2223: 2203: 2202: 2186: 2184: 2183: 2178: 2158: 2157: 2135: 2133: 2132: 2127: 2125: 2124: 2108: 2106: 2105: 2100: 2098: 2097: 2064: 2062: 2061: 2056: 2026: 2024: 2023: 2018: 1999: 1997: 1996: 1991: 1983: 1982: 1967: 1966: 1954: 1953: 1941: 1940: 1924: 1922: 1921: 1916: 1914: 1913: 1898: 1897: 1873: 1871: 1870: 1865: 1863: 1862: 1840: 1838: 1837: 1832: 1814: 1812: 1811: 1806: 1767: 1765: 1764: 1759: 1732: 1730: 1729: 1724: 1709: 1707: 1706: 1701: 1696: 1695: 1631: 1629: 1628: 1623: 1621: 1620: 1608: 1607: 1591: 1589: 1588: 1583: 1581: 1580: 1568: 1567: 1551: 1549: 1548: 1543: 1541: 1540: 1525: 1524: 1512: 1511: 1495: 1493: 1492: 1487: 1466: 1464: 1463: 1458: 1428: 1426: 1425: 1420: 1418: 1417: 1382: 1380: 1379: 1374: 1372: 1371: 1355: 1353: 1352: 1347: 1345: 1344: 1328: 1326: 1325: 1320: 1318: 1317: 1301: 1299: 1298: 1293: 1291: 1290: 1274: 1272: 1271: 1266: 1264: 1263: 1247: 1245: 1244: 1239: 1237: 1236: 1220: 1218: 1217: 1212: 1210: 1209: 1193: 1191: 1190: 1185: 1183: 1182: 1166: 1164: 1163: 1158: 1156: 1155: 1139: 1137: 1136: 1131: 1129: 1128: 1112: 1110: 1109: 1104: 1102: 1101: 1085: 1083: 1082: 1077: 1075: 1074: 1058: 1056: 1055: 1050: 1048: 1047: 1031: 1029: 1028: 1023: 1021: 1020: 1004: 1002: 1001: 996: 994: 993: 977: 975: 974: 969: 967: 966: 950: 948: 947: 942: 940: 939: 923: 921: 920: 915: 913: 912: 896: 894: 893: 888: 886: 885: 869: 867: 866: 861: 859: 858: 842: 840: 839: 834: 832: 831: 815: 813: 812: 807: 744: 742: 741: 736: 734: 733: 717: 715: 714: 709: 707: 706: 690: 688: 687: 682: 680: 679: 663: 661: 660: 655: 653: 652: 636: 634: 633: 628: 626: 625: 609: 607: 606: 601: 599: 598: 582: 580: 579: 574: 562: 560: 559: 554: 533: 531: 530: 525: 523: 522: 502: 500: 499: 494: 492: 491: 472: 470: 469: 464: 462: 461: 446: 445: 422: 420: 419: 414: 412: 411: 399: 398: 342: 340: 339: 334: 320: 315: 310: 302: 301: 296: 287: 276: 275: 252: 250: 249: 244: 233: 228: 223: 215: 214: 209: 200: 189: 188: 169: 167: 166: 161: 159: 158: 143: 142: 118: 116: 115: 110: 108: 107: 80:is said to be a 79: 77: 76: 71: 69: 68: 3521: 3520: 3516: 3515: 3514: 3512: 3511: 3510: 3496: 3495: 3494: 3489: 3457: 3361: 3327:Conway notation 3311: 3305: 3292:Tricolorability 3140: 3134: 3131: 3130: 3129: 3119: 3116: 3115: 3114: 3104: 3101: 3100: 3099: 3091: 3081: 3071: 3061: 3042: 3021:Composite knots 3007: 2996: 2993: 2992: 2991: 2988:Borromean rings 2981: 2978: 2977: 2976: 2950: 2940: 2930: 2920: 2912: 2904: 2894: 2884: 2865: 2851: 2821: 2810: 2806: 2797: 2793: 2781: 2777: 2768: 2764: 2748: 2744: 2739: 2735: 2726: 2722: 2706: 2702: 2692:Lisa Piccirillo 2690: 2686: 2673: 2669: 2665: 2652: 2636: 2613:Knots and Links 2608: 2533: 2530: 2529: 2511: 2507: 2505: 2502: 2501: 2483: 2479: 2477: 2474: 2473: 2455: 2451: 2449: 2446: 2445: 2427: 2423: 2421: 2418: 2417: 2399: 2395: 2393: 2390: 2389: 2359: 2313: 2310: 2309: 2304:with different 2288: 2284: 2282: 2279: 2278: 2243: 2239: 2237: 2234: 2233: 2198: 2194: 2192: 2189: 2188: 2153: 2149: 2141: 2138: 2137: 2120: 2116: 2114: 2111: 2110: 2093: 2089: 2087: 2084: 2083: 2071: 2035: 2032: 2031: 2009: 2006: 2005: 1978: 1974: 1962: 1958: 1949: 1945: 1936: 1932: 1930: 1927: 1926: 1909: 1905: 1893: 1889: 1887: 1884: 1883: 1858: 1854: 1852: 1849: 1848: 1820: 1817: 1816: 1800: 1797: 1796: 1738: 1735: 1734: 1718: 1715: 1714: 1688: 1684: 1649: 1646: 1645: 1638: 1616: 1612: 1603: 1599: 1597: 1594: 1593: 1576: 1572: 1563: 1559: 1557: 1554: 1553: 1536: 1532: 1520: 1516: 1507: 1503: 1501: 1498: 1497: 1472: 1469: 1468: 1434: 1431: 1430: 1413: 1409: 1407: 1404: 1403: 1367: 1363: 1361: 1358: 1357: 1340: 1336: 1334: 1331: 1330: 1313: 1309: 1307: 1304: 1303: 1286: 1282: 1280: 1277: 1276: 1259: 1255: 1253: 1250: 1249: 1232: 1228: 1226: 1223: 1222: 1205: 1201: 1199: 1196: 1195: 1178: 1174: 1172: 1169: 1168: 1151: 1147: 1145: 1142: 1141: 1124: 1120: 1118: 1115: 1114: 1097: 1093: 1091: 1088: 1087: 1070: 1066: 1064: 1061: 1060: 1043: 1039: 1037: 1034: 1033: 1016: 1012: 1010: 1007: 1006: 989: 985: 983: 980: 979: 962: 958: 956: 953: 952: 935: 931: 929: 926: 925: 908: 904: 902: 899: 898: 881: 877: 875: 872: 871: 854: 850: 848: 845: 844: 827: 823: 821: 818: 817: 783: 780: 779: 759: 729: 725: 723: 720: 719: 702: 698: 696: 693: 692: 675: 671: 669: 666: 665: 648: 644: 642: 639: 638: 621: 617: 615: 612: 611: 594: 590: 588: 585: 584: 568: 565: 564: 539: 536: 535: 518: 514: 512: 509: 508: 487: 483: 478: 475: 474: 457: 453: 441: 437: 435: 432: 431: 423:are said to be 407: 403: 394: 390: 388: 385: 384: 381: 357: 316: 311: 306: 297: 292: 291: 283: 271: 267: 265: 262: 261: 229: 224: 219: 210: 205: 204: 196: 184: 180: 178: 175: 174: 154: 150: 138: 134: 132: 129: 128: 103: 99: 97: 94: 93: 64: 60: 52: 49: 48: 45: 17: 12: 11: 5: 3519: 3509: 3508: 3491: 3490: 3488: 3487: 3475: 3462: 3459: 3458: 3456: 3455: 3453:Surgery theory 3450: 3445: 3440: 3435: 3430: 3425: 3420: 3415: 3410: 3405: 3400: 3395: 3390: 3385: 3380: 3375: 3369: 3367: 3363: 3362: 3360: 3359: 3354: 3352:Skein relation 3349: 3344: 3339: 3334: 3329: 3324: 3318: 3316: 3307: 3306: 3304: 3303: 3297:Unknotting no. 3294: 3289: 3284: 3283: 3282: 3272: 3267: 3266: 3265: 3260: 3255: 3250: 3245: 3235: 3230: 3225: 3220: 3215: 3210: 3205: 3200: 3195: 3190: 3189: 3188: 3178: 3173: 3172: 3171: 3161: 3156: 3150: 3148: 3142: 3141: 3139: 3138: 3132: 3123: 3117: 3108: 3102: 3093: 3089: 3083: 3079: 3073: 3069: 3063: 3059: 3052: 3050: 3044: 3043: 3041: 3040: 3035: 3034: 3033: 3028: 3017: 3015: 3009: 3008: 3006: 3005: 3000: 2994: 2985: 2979: 2970: 2964: 2958: 2952: 2948: 2942: 2938: 2932: 2928: 2922: 2918: 2914: 2910: 2906: 2902: 2896: 2892: 2886: 2882: 2875: 2873: 2867: 2866: 2850: 2849: 2842: 2835: 2827: 2820: 2819: 2804: 2791: 2775: 2762: 2742: 2733: 2720: 2712:Cameron Gordon 2700: 2684: 2666: 2664: 2661: 2660: 2659: 2651: 2648: 2647: 2646: 2640:Peter Teichner 2635: 2634:External links 2632: 2631: 2630: 2623: 2616: 2611:Dale Rolfsen: 2607: 2604: 2601: 2600: 2597: 2594: 2591: 2588: 2585: 2582: 2581:4-genus (top.) 2578: 2577: 2574: 2571: 2568: 2565: 2562: 2559: 2555: 2554: 2543: 2540: 2537: 2527: 2514: 2510: 2499: 2486: 2482: 2471: 2458: 2454: 2443: 2430: 2426: 2415: 2402: 2398: 2387: 2358: 2355: 2343:Morse position 2326: 2323: 2320: 2317: 2291: 2287: 2266: 2263: 2260: 2257: 2254: 2251: 2246: 2242: 2221: 2218: 2215: 2212: 2209: 2206: 2201: 2197: 2176: 2173: 2170: 2167: 2164: 2161: 2156: 2152: 2148: 2145: 2123: 2119: 2096: 2092: 2070: 2067: 2054: 2051: 2048: 2045: 2042: 2039: 2016: 2013: 2002: 2001: 1989: 1986: 1981: 1977: 1973: 1970: 1965: 1961: 1957: 1952: 1948: 1944: 1939: 1935: 1912: 1908: 1904: 1901: 1896: 1892: 1861: 1857: 1842: 1830: 1827: 1824: 1804: 1757: 1754: 1751: 1748: 1745: 1742: 1722: 1699: 1694: 1691: 1687: 1683: 1680: 1677: 1674: 1671: 1668: 1665: 1662: 1659: 1656: 1653: 1637: 1634: 1619: 1615: 1611: 1606: 1602: 1579: 1575: 1571: 1566: 1562: 1539: 1535: 1531: 1528: 1523: 1519: 1515: 1510: 1506: 1485: 1482: 1479: 1476: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1416: 1412: 1401:Stevedore knot 1370: 1366: 1343: 1339: 1316: 1312: 1289: 1285: 1262: 1258: 1235: 1231: 1208: 1204: 1181: 1177: 1154: 1150: 1127: 1123: 1100: 1096: 1073: 1069: 1046: 1042: 1019: 1015: 992: 988: 965: 961: 938: 934: 911: 907: 884: 880: 857: 853: 830: 826: 805: 802: 799: 796: 793: 790: 787: 758: 755: 732: 728: 705: 701: 678: 674: 651: 647: 624: 620: 597: 593: 572: 552: 549: 546: 543: 521: 517: 503:we denote the 490: 486: 482: 460: 456: 452: 449: 444: 440: 410: 406: 402: 397: 393: 380: 377: 356: 353: 332: 329: 326: 323: 319: 314: 309: 305: 300: 295: 290: 286: 282: 279: 274: 270: 242: 239: 236: 232: 227: 222: 218: 213: 208: 203: 199: 195: 192: 187: 183: 157: 153: 149: 146: 141: 137: 106: 102: 67: 63: 59: 56: 44: 41: 25:Morse position 15: 9: 6: 4: 3: 2: 3518: 3507: 3504: 3503: 3501: 3486: 3485: 3476: 3474: 3473: 3464: 3463: 3460: 3454: 3451: 3449: 3446: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3424: 3421: 3419: 3416: 3414: 3411: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3391: 3389: 3388:Conway sphere 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3370: 3368: 3364: 3358: 3355: 3353: 3350: 3348: 3345: 3343: 3340: 3338: 3335: 3333: 3330: 3328: 3325: 3323: 3320: 3319: 3317: 3315: 3308: 3302: 3298: 3295: 3293: 3290: 3288: 3285: 3281: 3278: 3277: 3276: 3273: 3271: 3268: 3264: 3261: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3240: 3239: 3236: 3234: 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3211: 3209: 3206: 3204: 3201: 3199: 3196: 3194: 3191: 3187: 3184: 3183: 3182: 3179: 3177: 3174: 3170: 3167: 3166: 3165: 3162: 3160: 3159:Arf invariant 3157: 3155: 3152: 3151: 3149: 3147: 3143: 3127: 3124: 3112: 3109: 3097: 3094: 3087: 3084: 3077: 3074: 3067: 3064: 3057: 3054: 3053: 3051: 3049: 3045: 3039: 3036: 3032: 3029: 3027: 3024: 3023: 3022: 3019: 3018: 3016: 3014: 3010: 3004: 3001: 2989: 2986: 2974: 2971: 2968: 2965: 2962: 2959: 2956: 2953: 2946: 2943: 2936: 2933: 2926: 2923: 2921: 2915: 2913: 2907: 2900: 2897: 2890: 2887: 2880: 2877: 2876: 2874: 2872: 2868: 2863: 2859: 2855: 2848: 2843: 2841: 2836: 2834: 2829: 2828: 2825: 2816: 2815: 2808: 2801: 2795: 2788: 2785: 2779: 2772: 2766: 2759: 2755: 2751: 2746: 2737: 2730: 2724: 2717: 2713: 2709: 2708:Andrew Casson 2704: 2697: 2693: 2688: 2681: 2677: 2671: 2667: 2657: 2654: 2653: 2645: 2641: 2638: 2637: 2628: 2624: 2621: 2617: 2614: 2610: 2609: 2598: 2595: 2592: 2589: 2586: 2583: 2580: 2579: 2575: 2572: 2569: 2566: 2563: 2560: 2557: 2556: 2541: 2538: 2535: 2528: 2512: 2508: 2500: 2484: 2480: 2472: 2456: 2452: 2444: 2428: 2424: 2416: 2400: 2396: 2388: 2386: 2385: 2382: 2380: 2374: 2372: 2368: 2364: 2354: 2350: 2346: 2344: 2338: 2324: 2321: 2315: 2307: 2289: 2285: 2261: 2258: 2255: 2249: 2244: 2240: 2216: 2213: 2210: 2204: 2199: 2195: 2171: 2168: 2165: 2159: 2154: 2150: 2146: 2143: 2121: 2117: 2094: 2090: 2075: 2066: 2052: 2049: 2043: 2028: 2014: 2011: 1987: 1984: 1979: 1975: 1971: 1963: 1959: 1955: 1950: 1946: 1937: 1933: 1910: 1906: 1902: 1899: 1894: 1890: 1881: 1877: 1859: 1855: 1847: 1843: 1828: 1825: 1822: 1802: 1794: 1790: 1786: 1785: 1784: 1782: 1778: 1774: 1769: 1752: 1749: 1740: 1720: 1713: 1692: 1689: 1685: 1678: 1672: 1666: 1663: 1657: 1643: 1633: 1617: 1613: 1604: 1600: 1577: 1573: 1564: 1560: 1537: 1533: 1529: 1521: 1517: 1508: 1504: 1483: 1480: 1474: 1454: 1451: 1445: 1439: 1436: 1414: 1410: 1402: 1398: 1394: 1390: 1387:(named after 1386: 1368: 1364: 1341: 1337: 1314: 1310: 1287: 1283: 1260: 1256: 1233: 1229: 1206: 1202: 1179: 1175: 1152: 1148: 1125: 1121: 1098: 1094: 1071: 1067: 1044: 1040: 1017: 1013: 990: 986: 963: 959: 936: 932: 909: 905: 882: 878: 855: 851: 828: 824: 803: 800: 794: 788: 785: 777: 772: 763: 754: 752: 751:abelian group 748: 730: 726: 703: 699: 676: 672: 649: 645: 622: 618: 595: 591: 570: 550: 547: 541: 519: 515: 506: 488: 484: 480: 458: 454: 450: 442: 438: 430: 429:connected sum 426: 408: 404: 400: 395: 391: 376: 372: 370: 361: 352: 350: 345: 330: 324: 321: 303: 298: 288: 277: 272: 268: 260: 256: 237: 234: 216: 211: 201: 190: 185: 181: 173: 155: 151: 144: 139: 135: 126: 122: 104: 100: 91: 87: 83: 65: 61: 57: 54: 40: 38: 34: 26: 21: 3482: 3470: 3422: 3398:Double torus 3383:Braid theory 3198:Crossing no. 3193:Crosscap no. 2879:Figure-eight 2813: 2807: 2799: 2794: 2783: 2778: 2770: 2765: 2757: 2745: 2736: 2728: 2723: 2715: 2703: 2695: 2687: 2675: 2670: 2626: 2619: 2612: 2606:Bibliography 2378: 2375: 2360: 2351: 2347: 2339: 2306:orientations 2081: 2029: 2003: 1876:amphicheiral 1815:trefoils is 1793:trefoil knot 1777:homomorphism 1770: 1639: 816:. These are 773: 769: 505:mirror image 424: 382: 373: 366: 349:ribbon knots 346: 121:locally flat 85: 81: 46: 32: 30: 3233:Linking no. 3154:Alternating 2955:Conway knot 2935:Carrick mat 2889:Three-twist 2854:Knot theory 2754:John Milnor 2620:Knot theory 2379:alternating 1397:Twist knots 1385:Conway knot 776:prime knots 119:, which is 3393:Complement 3357:Tabulation 3314:operations 3238:Polynomial 3228:Link group 3223:Knot group 3186:Invertible 3164:Bridge no. 3146:Invariants 3076:Cinquefoil 2945:Perko pair 2871:Hyperbolic 2789:, p. 373). 2663:References 1880:invertible 1636:Invariants 425:concordant 43:Definition 33:slice knot 3287:Stick no. 3243:Alexander 3181:Chirality 3126:Solomon's 3086:Septafoil 3013:Satellite 2973:Whitehead 2899:Stevedore 2750:Ralph Fox 2322:− 2319:♯ 2250:× 2205:× 2160:× 2038:Δ 1972:− 1969:♯ 1943:♯ 1903:− 1823:± 1773:signature 1750:− 1744:Δ 1690:− 1652:Δ 1610:♯ 1570:♯ 1530:− 1527:♯ 1514:♯ 1481:− 1478:♯ 1452:≤ 801:≤ 548:− 545:♯ 481:− 451:− 448:♯ 427:, if the 322:≤ 289:∈ 202:∈ 148:∂ 58:⊂ 3500:Category 3472:Category 3342:Mutation 3310:Notation 3263:Kauffman 3176:Brunnian 3169:2-bridge 3038:Knot sum 2969:(12n242) 2650:See also 2277:are two 1781:integers 757:Examples 255:boundary 172:3-sphere 90:embedded 3484:Commons 3403:Fibered 3301:problem 3270:Pretzel 3248:Bracket 3066:Trefoil 3003:L10a140 2963:(11n42) 2957:(11n34) 2925:Endless 2367:4-genus 2357:4-genus 2027:exist. 1710:with a 253:is the 47:A knot 3448:Writhe 3418:Ribbon 3253:HOMFLY 3096:Unlink 3056:Unknot 3031:Square 3026:Granny 2365:. The 1393:mutant 170:: the 125:smooth 3438:Twist 3423:Slice 3378:Berge 3366:Other 3337:Flype 3275:Prime 3258:Jones 3218:Genus 3048:Torus 2862:links 2858:knots 2371:genus 2363:genus 1789:order 691:then 84:or a 35:is a 3443:Wild 3408:Knot 3312:and 3299:and 3280:list 3111:Hopf 2860:and 2109:and 2012:> 1878:and 1771:The 1592:and 1496:and 1356:and 637:and 369:cone 259:ball 3428:Sum 2949:161 2947:(10 2513:161 2485:154 2457:152 2429:145 2401:139 1874:is 1369:155 1342:153 1315:140 1288:137 1261:129 1234:123 507:of 123:or 3502:: 3128:(4 3113:(2 3098:(0 3088:(7 3078:(5 3068:(3 3058:(0 2990:(6 2975:(5 2939:18 2937:(8 2927:(7 2901:(6 2891:(5 2881:(4 2756:: 2752:, 2714:: 2710:, 2694:: 2678:, 2642:: 2599:0 2576:1 2542:34 2536:11 2509:10 2481:10 2453:10 2425:10 2397:10 2345:. 1632:. 1618:11 1578:10 1455:12 1365:10 1338:10 1329:, 1311:10 1302:, 1284:10 1275:, 1257:10 1248:, 1230:10 1221:, 1207:99 1203:10 1194:, 1180:87 1176:10 1167:, 1153:75 1149:10 1140:, 1126:48 1122:10 1113:, 1099:42 1095:10 1086:, 1072:35 1068:10 1059:, 1045:22 1041:10 1032:, 1014:10 1005:, 991:46 978:, 964:41 951:, 937:27 924:, 910:20 897:, 870:, 843:, 804:10 31:A 3137:) 3133:1 3122:) 3118:1 3107:) 3103:1 3092:) 3090:1 3082:) 3080:1 3072:) 3070:1 3062:) 3060:1 2999:) 2995:2 2984:) 2980:1 2951:) 2941:) 2931:) 2929:4 2919:3 2917:6 2911:2 2909:6 2905:) 2903:1 2895:) 2893:2 2885:) 2883:1 2864:) 2856:( 2846:e 2839:t 2832:v 2596:2 2593:2 2590:3 2587:1 2584:3 2573:3 2570:3 2567:4 2564:2 2561:4 2539:n 2325:K 2316:K 2290:3 2286:S 2265:] 2262:1 2259:, 2256:0 2253:[ 2245:3 2241:S 2220:] 2217:1 2214:, 2211:0 2208:[ 2200:3 2196:S 2175:] 2172:1 2169:, 2166:0 2163:[ 2155:1 2151:S 2147:= 2144:C 2122:2 2118:K 2095:1 2091:K 2053:1 2050:= 2047:) 2044:t 2041:( 2015:2 1988:0 1985:= 1980:1 1976:4 1964:1 1960:4 1956:= 1951:1 1947:4 1938:1 1934:4 1911:1 1907:4 1900:= 1895:1 1891:4 1860:1 1856:4 1829:n 1826:2 1803:n 1756:) 1753:1 1747:( 1741:= 1721:f 1698:) 1693:1 1686:t 1682:( 1679:f 1676:) 1673:t 1670:( 1667:f 1664:= 1661:) 1658:t 1655:( 1614:8 1605:1 1601:3 1574:8 1565:1 1561:3 1538:1 1534:3 1522:1 1518:3 1509:1 1505:6 1484:K 1475:K 1449:) 1446:K 1443:( 1440:r 1437:c 1415:1 1411:6 1018:3 987:9 960:9 933:9 906:8 883:9 879:8 856:8 852:8 829:1 825:6 798:) 795:K 792:( 789:r 786:c 731:3 727:K 704:1 700:K 677:3 673:K 650:2 646:K 623:2 619:K 596:1 592:K 571:K 551:K 542:K 520:2 516:K 489:2 485:K 459:2 455:K 443:1 439:K 409:2 405:K 401:, 396:1 392:K 331:. 328:} 325:1 318:| 313:x 308:| 304:: 299:4 294:R 285:x 281:{ 278:= 273:4 269:B 241:} 238:1 235:= 231:| 226:x 221:| 217:: 212:4 207:R 198:x 194:{ 191:= 186:3 182:S 156:4 152:B 145:= 140:3 136:S 105:4 101:B 66:3 62:S 55:K

Index


Morse position
mathematical knot
embedded
locally flat
smooth
3-sphere
boundary
ball
ribbon knots

cone
connected sum
mirror image
equivalence relation
abelian group

prime knots
Conway knot
John Horton Conway
mutant
Twist knots
Stevedore knot
Alexander polynomial
Laurent polynomial
signature
homomorphism
integers
order
trefoil knot

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑