Knowledge

Simple module

Source đź“ť

897:. In order to prove a statement inductively using composition series, the statement is first proved for simple modules, which form the base case of the induction, and then the statement is proved to remain true under an extension of a module by a simple module. For example, the 846: 977:
to view modules as formal sums of simple modules, but is also interested in how those simple modules are joined together within composition series. This is formalized by studying the
761: 507: 774:
is to show that the fact is true for the center term of a short exact sequence when it is true for the left and right terms, then to prove the fact for
796: 939:
ignores the order in a composition series and views every finite length module as a formal sum of simple modules. Over
989:(whose nodes are the simple modules and whose edges are composition series of non-semisimple modules of length 2) and 1267: 1215: 714: 970: 1144: 870:. One particularly useful condition is that the length of the sequence is finite and each quotient module 928: 990: 932: 790:
has a non-zero proper submodule, then this process can be repeated. This produces a chain of submodules
1167: 952: 913: 342: 1008: 1002: 1262: 1207: 1201: 921: 917: 851:
In order to prove the fact this way, one needs conditions on this sequence and on the modules
1112:
A consequence of the Jacobson density theorem is Wedderburn's theorem; namely that any right
948: 905: 538: 519: 986: 902: 706: 488: 131: 36: 8: 613: 484: 476: 416: 142: 936: 767: 692: 531: 76: 29: 1229: 1221: 1211: 1162: 1156: 944: 655: 974: 935:
describe the relationships amongst all composition series of a single module. The
664: 311: 174: 982: 940: 252: 213: 1098: 56: 1256: 1225: 1132: 1113: 898: 659: 545: 358: 228: 158: 112: 91: 60: 1233: 963: 639: 128: 124: 84: 80: 1120: 1116: 993:
where the associated graph has a vertex for every indecomposable module.
978: 496: 44: 21: 17: 909: 671:
The converse of Schur's lemma is not true in general. For example, the
500: 412: 1140: 654:
is either the zero homomorphism or an isomorphism. Consequently, the
593: 48: 679:
is not simple, but its endomorphism ring is isomorphic to the field
551:
Not every module has a simple submodule; consider for instance the
244: 120: 107: 75:. Simple modules form building blocks for the modules of finite 1159:
are modules that can be written as a sum of simple submodules
1007:
An important advance in the theory of simple modules was the
522:
is to understand the irreducible representations of groups.
841:{\displaystyle \cdots \subset M_{2}\subset M_{1}\subset M.} 612:
is either the zero homomorphism or surjective because the
119:-module is an abelian group which has no non-zero proper 90:
In this article, all modules will be assumed to be right
686: 570:
be (left or right) modules over the same ring, and let
799: 717: 525: 181:
is not minimal, then there is a non-zero right ideal
1101:
may be viewed as (that is, isomorphic to) a ring of
955:
provides better arithmetic control, and uses simple
650:
is simple, then the prior two statements imply that
436:. The kernel of this homomorphism is a right ideal 889:is simple. In this case the sequence is called a 840: 755: 701:is a module which has a non-zero proper submodule 1254: 530:The simple modules are precisely the modules of 996: 534:1; this is a reformulation of the definition. 373:is a simple module. Conversely, suppose that 284:is not maximal, then there is a right ideal 541:, but the converse is in general not true. 153:is simple as a right module if and only if 548:, that is it is generated by one element. 381:-module. Then, for any non-zero element 756:{\displaystyle 0\to N\to M\to M/N\to 0.} 456:. By the above paragraph, we find that 365:. By the above paragraph, any quotient 1203:Linear Representations of Finite Groups 1011:. The Jacobson density theorem states: 962:modules to understand the structure of 943:, this is no loss as every module is a 268:is a right ideal which is not equal to 1255: 1206:. New York: Springer-Verlag. pp.  901:shows that the endomorphism ring of a 460:is a maximal right ideal. Therefore, 1199: 687:Simple modules and composition series 559:in light of the first example above. 444:, and a standard theorem states that 1139:. This can also be established as a 169:, then it is also a right ideal, so 592:is either the zero homomorphism or 13: 526:Basic properties of simple modules 235:is a non-zero proper submodule of 165:is a non-zero proper submodule of 14: 1279: 1057:-linearly independent subset of 518:representations. A major aim of 280:is not maximal. Conversely, if 79:, and they are analogous to the 1061:. Then there exists an element 464:is isomorphic to a quotient of 1240: 1193: 1180: 920:of finite length modules is a 747: 733: 727: 721: 508:main page on this relationship 1: 1246:Isaacs, Theorem 13.14, p. 185 1173: 971:Modular representation theory 584:be a module homomorphism. If 997:The Jacobson density theorem 272:and which properly contains 47:and have no non-zero proper 7: 1200:Serre, Jean-Pierre (1977). 1188:Non-commutative Ring Theory 1150: 933:Schreier refinement theorem 514:-modules are also known as 101: 10: 1284: 1168:Irreducible representation 1105:-linear operators on some 1000: 985:in various ways including 690: 662:. This result is known as 658:of any simple module is a 468:by a maximal right ideal. 51:. Equivalently, a module 953:Ordinary character theory 223:is simple if and only if 161:non-zero right ideal: If 111:-modules are the same as 1145:Artin–Wedderburn theorem 1119:is isomorphic to a full 1009:Jacobson density theorem 1003:Jacobson density theorem 193:is a right submodule of 35:are the (left or right) 991:Auslander–Reiten theory 544:Every simple module is 537:Every simple module is 389:, the cyclic submodule 922:Krull-Schmidt category 842: 757: 596:because the kernel of 506:(for details, see the 401:. The statement that 314:which is not equal to 185:properly contained in 1268:Representation theory 929:Jordan–Hölder theorem 914:Krull–Schmidt theorem 912:, so that the strong 906:indecomposable module 843: 766:A common approach to 758: 520:representation theory 411:is equivalent to the 1045:-linear operator on 951:of simple modules. 797: 715: 707:short exact sequence 489:group representation 292:. The quotient map 288:properly containing 208:is a right ideal of 1097:In particular, any 981:and describing the 1157:Semisimple modules 1019:be a simple right 937:Grothendieck group 891:composition series 838: 753: 705:, then there is a 693:Composition series 620:is a submodule of 600:is a submodule of 20:, specifically in 1163:Irreducible ideal 975:Brauer characters 945:semisimple module 656:endomorphism ring 448:is isomorphic to 173:is not minimal. 123:. These are the 1275: 1247: 1244: 1238: 1237: 1197: 1191: 1184: 1131:matrices over a 1023:-module and let 941:semisimple rings 887: + 1 868: + 1 847: 845: 844: 839: 828: 827: 815: 814: 762: 760: 759: 754: 743: 633: 608:is simple, then 588:is simple, then 583: 427: 410: 333: 324:, and therefore 323: 309: 267: 231:right ideal: If 66: 61:cyclic submodule 1283: 1282: 1278: 1277: 1276: 1274: 1273: 1272: 1253: 1252: 1251: 1250: 1245: 1241: 1218: 1198: 1194: 1185: 1181: 1176: 1153: 1032: 1005: 999: 983:module category 888: 878: 869: 859: 823: 819: 810: 806: 798: 795: 794: 739: 716: 713: 712: 695: 689: 625: 571: 528: 419: 402: 397:. Fix such an 361:right ideal of 334:is not simple. 325: 315: 310:has a non-zero 293: 255: 214:quotient module 201:is not simple. 104: 64: 63:generated by a 12: 11: 5: 1281: 1271: 1270: 1265: 1249: 1248: 1239: 1216: 1192: 1178: 1177: 1175: 1172: 1171: 1170: 1165: 1160: 1152: 1149: 1099:primitive ring 1095: 1094: 1028: 1001:Main article: 998: 995: 916:holds and the 883: 874: 864: 855: 849: 848: 837: 834: 831: 826: 822: 818: 813: 809: 805: 802: 764: 763: 752: 749: 746: 742: 738: 735: 732: 729: 726: 723: 720: 691:Main article: 688: 685: 539:indecomposable 527: 524: 510:). The simple 345:to a quotient 276:. Therefore, 115:, so a simple 113:abelian groups 103: 100: 92:unital modules 57:if and only if 26:simple modules 9: 6: 4: 3: 2: 1280: 1269: 1266: 1264: 1263:Module theory 1261: 1260: 1258: 1243: 1235: 1231: 1227: 1223: 1219: 1213: 1209: 1205: 1204: 1196: 1190:, Lemma 1.1.3 1189: 1183: 1179: 1169: 1166: 1164: 1161: 1158: 1155: 1154: 1148: 1146: 1142: 1138: 1134: 1133:division ring 1130: 1126: 1122: 1118: 1115: 1110: 1108: 1104: 1100: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1031: 1026: 1022: 1018: 1014: 1013: 1012: 1010: 1004: 994: 992: 988: 984: 980: 976: 972: 968: 965: 964:finite groups 961: 958: 954: 950: 946: 942: 938: 934: 930: 925: 923: 919: 915: 911: 907: 904: 903:finite length 900: 899:Fitting lemma 896: 892: 886: 882: 877: 873: 867: 863: 858: 854: 835: 832: 829: 824: 820: 816: 811: 807: 803: 800: 793: 792: 791: 789: 785: 781: 777: 773: 770:a fact about 769: 750: 744: 740: 736: 730: 724: 718: 711: 710: 709: 708: 704: 700: 694: 684: 682: 678: 674: 669: 667: 666: 665:Schur's lemma 661: 660:division ring 657: 653: 649: 645: 641: 637: 632: 628: 623: 619: 615: 611: 607: 603: 599: 595: 591: 587: 582: 578: 574: 569: 565: 560: 558: 554: 549: 547: 542: 540: 535: 533: 523: 521: 517: 513: 509: 505: 502: 498: 494: 490: 486: 482: 478: 474: 469: 467: 463: 459: 455: 451: 447: 443: 439: 435: 431: 426: 422: 418: 414: 409: 405: 400: 396: 392: 388: 384: 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 337:Every simple 335: 332: 328: 322: 318: 313: 308: 304: 300: 296: 291: 287: 283: 279: 275: 271: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 215: 211: 207: 202: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 160: 156: 152: 148: 144: 140: 135: 133: 130: 126: 125:cyclic groups 122: 118: 114: 110: 109: 99: 97: 93: 88: 86: 82: 81:simple groups 78: 74: 70: 62: 58: 54: 50: 46: 42: 38: 34: 31: 27: 23: 19: 1242: 1202: 1195: 1187: 1182: 1136: 1128: 1124: 1111: 1106: 1102: 1096: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1053:be a finite 1050: 1046: 1042: 1038: 1034: 1029: 1024: 1020: 1016: 1006: 966: 959: 956: 926: 894: 890: 884: 880: 875: 871: 865: 861: 856: 852: 850: 787: 783: 779: 775: 771: 765: 702: 698: 696: 680: 676: 672: 670: 663: 651: 647: 643: 640:endomorphism 635: 630: 626: 621: 617: 609: 605: 601: 597: 589: 585: 580: 576: 572: 567: 563: 561: 556: 552: 550: 543: 536: 529: 515: 511: 503: 492: 480: 472: 470: 465: 461: 457: 453: 449: 445: 441: 437: 433: 429: 424: 420: 417:homomorphism 413:surjectivity 407: 403: 398: 394: 390: 386: 382: 378: 377:is a simple 374: 370: 366: 362: 354: 350: 346: 338: 336: 330: 326: 320: 316: 306: 302: 298: 294: 289: 285: 281: 277: 273: 269: 264: 260: 256: 253:quotient map 248: 240: 236: 232: 224: 220: 216: 209: 205: 203: 198: 194: 190: 186: 182: 178: 170: 166: 162: 154: 150: 146: 138: 136: 116: 106: 105: 95: 94:over a ring 89: 85:group theory 72: 68: 52: 40: 32: 25: 15: 1121:matrix ring 1117:simple ring 979:Ext functor 516:irreducible 497:left module 428:that sends 393:must equal 341:-module is 243:, then the 212:, then the 141:is a right 67:element of 22:ring theory 18:mathematics 1257:Categories 1217:0387901906 1186:Herstein, 1174:References 1069:such that 949:direct sum 910:local ring 501:group ring 343:isomorphic 251:under the 175:Conversely 55:is simple 49:submodules 1226:0072-5285 1141:corollary 1135:for some 947:and so a 830:⊂ 817:⊂ 804:⊂ 801:⋯ 748:→ 734:→ 728:→ 722:→ 646:, and if 594:injective 499:over the 487:, then a 121:subgroups 43:that are 1151:See also 1114:Artinian 1109:-space. 1085:for all 1049:and let 931:and the 918:category 879: / 860: / 675:-module 575: : 555:-module 423:→ 301:→ 259:→ 245:preimage 102:Examples 65:non-zero 45:non-zero 1234:2202385 1143:of the 1081:⋅ 1073:⋅ 1041:be any 1037:). Let 987:quivers 768:proving 634:, then 415:of the 359:maximal 229:maximal 159:minimal 149:, then 71:equals 37:modules 28:over a 1232:  1224:  1214:  786:. If 638:is an 546:cyclic 532:length 353:where 312:kernel 77:length 59:every 24:, the 1027:= End 973:uses 908:is a 624:. If 614:image 604:. If 495:is a 485:group 483:is a 477:field 475:is a 357:is a 227:is a 197:, so 177:, if 157:is a 143:ideal 132:order 129:prime 39:over 1230:OCLC 1222:ISSN 1212:ISBN 1127:-by- 1015:Let 927:The 893:for 778:and 566:and 562:Let 479:and 30:ring 1123:of 1089:in 1065:of 969:. 697:If 642:of 616:of 491:of 471:If 440:of 432:to 385:of 247:of 204:If 189:. 145:of 137:If 127:of 83:in 16:In 1259:: 1228:. 1220:. 1210:. 1208:47 1147:. 1077:= 924:. 751:0. 683:. 668:. 629:= 579:→ 434:xr 406:= 404:xR 391:xR 134:. 98:. 87:. 1236:. 1137:n 1129:n 1125:n 1107:D 1103:D 1093:. 1091:X 1087:x 1083:r 1079:x 1075:A 1071:x 1067:R 1063:r 1059:U 1055:D 1051:X 1047:U 1043:D 1039:A 1035:U 1033:( 1030:R 1025:D 1021:R 1017:U 967:G 960:G 957:C 895:M 885:i 881:M 876:i 872:M 866:i 862:M 857:i 853:M 836:. 833:M 825:1 821:M 812:2 808:M 788:N 784:N 782:/ 780:M 776:N 772:M 745:N 741:/ 737:M 731:M 725:N 719:0 703:N 699:M 681:Q 677:Q 673:Z 652:f 648:M 644:M 636:f 631:N 627:M 622:N 618:f 610:f 606:N 602:M 598:f 590:f 586:M 581:N 577:M 573:f 568:N 564:M 557:Z 553:Z 512:k 504:k 493:G 481:G 473:k 466:R 462:M 458:I 454:I 452:/ 450:R 446:M 442:R 438:I 430:r 425:M 421:R 408:M 399:x 395:M 387:M 383:x 379:R 375:M 371:m 369:/ 367:R 363:R 355:m 351:m 349:/ 347:R 339:R 331:I 329:/ 327:R 321:I 319:/ 317:R 307:J 305:/ 303:R 299:I 297:/ 295:R 290:I 286:J 282:I 278:I 274:I 270:R 265:I 263:/ 261:R 257:R 249:M 241:I 239:/ 237:R 233:M 225:I 221:I 219:/ 217:R 210:R 206:I 199:I 195:I 191:J 187:I 183:J 179:I 171:I 167:I 163:M 155:I 151:I 147:R 139:I 117:Z 108:Z 96:R 73:M 69:M 53:M 41:R 33:R

Index

mathematics
ring theory
ring
modules
non-zero
submodules
if and only if
cyclic submodule
length
simple groups
group theory
unital modules
Z
abelian groups
subgroups
cyclic groups
prime
order
ideal
minimal
Conversely
quotient module
maximal
preimage
quotient map
kernel
isomorphic
maximal
surjectivity
homomorphism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑