Knowledge

Sequence stratigraphy

Source đź“ť

103:, the stratigraphic interpretation of seismic reflection profiles to understand the layering and packaging of sedimentary rocks in the subsurface using acoustic imaging. The advent of seismic stratigraphy made it possible to identify sequences representing shorter period of time ranging in duration from tens of thousands to a few million years; and to compare the sequence stratigraphic history around the globe. This in turn led to sequence stratigraphy becoming systematized and understood to have widespread application to stratigraphic study of rock outcrops on the earth's surface as well. During the 1980s this ushered in a revolution in stratigraphy based on the delineation of regional physical surfaces that separate the sedimentary rock into packages representing discrete and sequential periods of time and predictable patterns of sediment depositional history. 159:. Parasequence boundaries may be distinguished by differences in physical and chemical properties across the surface such as; formation water salinity, hydrocarbon properties, porosity, compressional velocities and mineralogy. Parasequence boundaries may not form a barrier to hydrocarbon accumulation but may inhibit vertical reservoir communication. After production begins the parasequences act as separate drainage units with the flooding surfaces, which are overlain by shales or carbonate-cemented horizons, forming a barrier to vertical reservoir communications. Sequence stratigraphic principles have optimized production potential once reservoir scale architecture is identified and separate drainage units identified. 451:. These lateral shifts in deposition create alternating layers of good reservoir quality rock (porous and permeable sands) and poorer-quality mudstones (capable of providing a reservoir "seal" to prevent the leakage of any accumulated hydrocarbons that may have migrated into the sandstones). Hydrocarbon prospectors look for places in the world where porous and permeable sands are overlain by low permeability rocks, and where conditions are right for hydrocarbons to be generated and migrate into these "traps". 1266: 2154: 2175: 247: 99:
Peter Vail, Robert Mitchum, and John Sangree, who completed dissertations studying the Pennsylvanian sedimentary rocks of the North American craton and became aware that global changes in sea level could have been responsible for the numerous widespread unconformities in those rocks. During their subsequent careers as research scientists at Exxon's research division Vail, Mitchum and others pioneered the practice of
1255: 432:, if the water depth is decreasing, the shoreline migrates seaward (basinward) and the previous shoreline is eroded. A regression of the shoreline also occurs if more sediment is being supplied than the shoreline can erode, causing the shoreline to migrate seaward. The latter is called progradation. The cycle of strata deposited during repeated transgressions and regressions creates a depositional sequence. 2164: 815:, Flint, S. S. & Stollhofen, H. 1999. Incised valley fill sandstone bodies in Upper Carboniferous fluvio-deltaic strata: recognition and reservoir characterisation Southern North Sea analogues. In: Petroleum Geology of NW Europe: Proceedings of the 5th Conference. (Edited by Fleet, A.J. & Boldy, S.A.R.). The Geological Society, London. 771–788. 376:. The earth scientists who study the positions of coastal sediment deposits through time ("sequence stratigraphers") have noted dozens of similar basinward shifts of shorelines associated with a later recovery. The largest of these sedimentary cycles can in some cases be correlated around the world with great confidence. 98:
The origin of sequence stratigraphy can be traced back to the work of L.L. Sloss on interregional unconformities of the North American craton. Sloss recognized six craton-wide sequences representing hundreds of millions of years of earth history. In the late 1960s Sloss had several students, notably
125:
formed on the margins of incised valleys. The valley infills are not genetically related to underlying depositional systems as previous interpretations thought. There are four criteria distinguishing incised valley fills from other types of multi-story sandstone deposits: a widespread correlation
400:
sea level is measured with reference to the base level, above which erosion can occur and below which deposition can occur. Both eustatic sea level changes and subsidence rates tend to be longer cycles. Sediment supply is largely thought to be controlled by local climatic conditions and can vary
134:
associations reflect a basinward shift in facies when compared with underlying units; erosional base of the valley removes preceding systems tracts and marine bands producing a time gap, the removed units will be preserved beneath the interfluves; increasing channel fill and fine grained units
58:
of rock units rather than time significance. Unconformities are particularly important in understanding geologic history because they represent erosional surfaces where there is a clear gap in the record. Conversely within a sequence the geologic record should be relatively continuous and
237:
Each stacking pattern will give different information on the behaviour of accommodation space, a major control of which is relative level. So a rapidly progradational pattern will be indicative of falling sea level, rapidly retrogradational is evidence for rapidly transgressing sea level and
120:
or their correlative conformities. Sequence boundaries are formed due to the sea level fall. For example, multi-story fluvial sandstone packages often infill incised valleys formed by the sea level drop associated with sequence boundaries. The incised valleys of sequence boundaries correlate
325:
deglaciation. The ancient shoreline of the last glacial period is now under approximately 390 feet (120 meters) of water. Although there is debate among earth scientists whether we are currently experiencing a "high stand" it is generally accepted that the eustatic sea level is rising.
171:
evolved to link the contemporaneous depositional systems. Systems tracts form subdivision in a sequence. Different kinds of systems tracts are assigned on the basis of stratal stacking pattern, position in a sequence, and in the sea level curve and types of bounding surfaces.
824:
Bryant, I.D. 1996. The Application of Physical Measurements to Constrain Reservoir-Scale Sequence Stratigraphic Models. In: Howell, J.A. & Aitken, J.F. (eds). High Resolution Sequence Stratigraphy: Innovations and Applications. Geology Society Special Publication 104.
198:(HST) occurs during the late stage of base level rise when the rate of sea level rise drops below the sedimentation rate. In this period of sea level highstand is formed. It is bounded by maximum flooding surface at the base and composite surface at the top. 364:
varies (again explained by Milankovitch). The next larger cycle ('3rd order') is about 110,000 years and corresponds to the rate at which the Earth's orbit oscillates from elliptical to circular. Lower order cycles are recognized, which seem to result from
180:(LST) forms when the rate of sedimentation outpaces the rate of sea level rise during the early stage of the sea level curve. It is bounded by a subaerial unconformity or its correlative conformity at the base and maximum regressive surface at the top. 250:
Comparison of two sea level reconstructions during the last 500 Myr. The black bar shows the magnitude of sea level change during the Quaternary glaciations; this is for the past few million years, but the bar is offset further in the past for
547:
Van Wagoner, J.C.; Posamentier, H.W.; Mitchum, R.M. Jr.; Vail, P.R.; Sarg, J.F.; Loutit, T.S.; Hardenbol, J. (1988). "An Overview of the Fundamentals of Sequence Stratigraphy and Key Definitions".
352:
These alternating high and low sea level stands repeat at several time scales. The smallest of these cycles is approximately 20,000 years, and corresponds to the rate of precession of the
360:) and are commonly referred to as '5th order' cycles. The next larger cycle ('4th order') is about 40,000 years and approximately matches the rate at which the Earth's inclination to the 214:
and their correlative surfaces. The flooding surfaces bounding parasequences are not of the same scale as the regional transgressive surface that is associated with a sequence boundary.
139:. There have been problems in the correlation and distribution of these bodies. Sequence stratigraphic principles and identification of significant surfaces have resolved some issues. 310:
by rain, frost, rivers, etc.) and a new shoreline was established at the new level, sometimes miles basinward of the former shoreline if the sea floor was shallowly inclined.
201:
Regressive systems tract forms in the marine part of the basin during the base level fall. Subaerial unconformities form in the landward side of the basin at the same time.
50:
framework allowing understanding of the evolution of the Earth's surface in a particular region through time. Sequence stratigraphy is a useful alternative to a purely
688:
Vail, P. R.; Mitchum, R. M.; Thompson, S. (1977). "Seismic Stratigraphy and Global Changes of Sea Level, Part 3Relative Changes of Sea Level from Coastal Onlap1".
135:
upwards or changes in the character of the fluvial systems reflecting increasing accommodation space. Sandstone bodies associated with incised valleys can be good
711:
Vail, P.R.; Hardenbol, J.; Todd, R.G. (1984). "Jurassic Unconformities, Chronostratigraphy and Sea-Level Changes from Seismic Stratigraphy and Biostratigraphy".
918:(The different orders of cyclicity can be seen as higher frequency chatter on an overall asymmetric cycle. Today's date is on the right side of this chart.) 444:. Much of the development of this scientific discipline has occurred within or been funded by energy corporations and their geological research labs. 408:
Smaller and localised sedimentary cycles are not related to worldwide (eustatic) sea level changes but more to the supply of sediment to the adjacent
1894: 1884: 943: 412:
where these sediments are being supplied. For example, when the basinward (oceanward) shift with progradation of shorelines was occurring in the
447:
Sequence boundaries have economic significance because these changes in sea level cause large lateral shifts in the depositional patterns of
900:
authoritative online encyclopedia from SEPM, a scientific society whose publications have been central to defining sequence stratigraphy.
440:
Sequence stratigraphy is and essential tool in the application of geology to the exploration for oil and gas, as a part of the field of
191:
at the top. This systems tracts forms when the rate of sedimentation is outpaced by the rate of sea level rise in the sea level curves.
915: 428:, less sediment is being supplied than the rate of increase in the depth of water, and thus the shoreline migrates landward. In a 1800: 586: 2167: 1215: 983: 90:. A secondary influence is the rate of sediment supply to the basin which determines the rate at which that space is filled. 728: 526: 501: 147:
Lesser importance is attached to parasequence boundaries, however, there is a suggestion that flooding surfaces representing
1447: 936: 1337: 82:
subsidence as a sedimentary basin is filled). The net changes resulting from these vertical forces increases or reduces
2042: 1469: 1357: 1889: 1160: 909: 881: 844: 761: 1347: 1307: 2077: 1063: 573:
Seismic Stratigraphy Interpretation Using Sequence Stratigraphy: Part 2: Key Definitions of Sequence Stratigraphy
2200: 2157: 1750: 929: 401:
rapidly. These variations in local sediment supply affect the local and relative sea level which causes local
812: 674: 1205: 210:
A parasequence is a relatively conformable, genetically related succession of beds and bedsets bounded by
2205: 1265: 1402: 151:
boundaries may be more laterally extensive leaving more evidence than sequence boundaries because the
1937: 1342: 1302: 424:. These sedimentary cycles are representative of the amount of supply of sediment to the basin. In a 2067: 1442: 1432: 1372: 1008: 978: 188: 30:, that attempts to discern and understand historic geology through time by subdividing and linking 2104: 2087: 1924: 1417: 1282: 1220: 1210: 1103: 425: 334: 302:. When the world's sea level was at this "low stand", former sea bed sediments were subjected to 211: 116:
Sequence boundaries are deemed the most significant surfaces. Sequence boundaries are defined as
83: 259:. The graph on the right illustrates two recent interpretations of sea level changes during the 66:
units primarily in terms of changes in relative sea level (the combination of global changes in
2099: 2037: 1464: 1150: 43: 873: 1932: 1914: 1422: 1317: 952: 897: 865: 2119: 1952: 1655: 1512: 1377: 1088: 786: 402: 268: 130:
that is more widespread than the erosional bases of individual channels within the valley;
100: 8: 2114: 1999: 1994: 1720: 1392: 1352: 1068: 357: 296: 136: 71: 798: 790: 379:
The three controls on stratigraphic architecture and sedimentary cycle development are:
2057: 1770: 1760: 1725: 1625: 1610: 1507: 472: 448: 393: 256: 75: 67: 47: 267:. The blue spikes near date zero represent the sea level changes associated with the 2139: 2129: 2072: 2052: 1735: 1700: 1635: 1615: 1605: 1487: 1175: 1033: 877: 866: 840: 757: 724: 594: 522: 497: 466: 460: 441: 429: 409: 314: 156: 87: 51: 615:
Sloss, L. L.; Krumbein, W. C.; Dapples, E. C. (1949). "Integrated Facies Analysis".
469: â€“ Study of astronomically forced climate cycles within sedimentary successions 329:
In the distant past, sea level has been significantly higher than today. During the
42:
based on identification of surfaces which are assumed to represent time lines (e.g.
2094: 2062: 2032: 1841: 1826: 1695: 1630: 1522: 1437: 1367: 1292: 1073: 1043: 973: 968: 794: 749: 716: 693: 670: 624: 373: 78:
and load-induced subsidence as the weight of accumulated sediment and water cause
1899: 1795: 1745: 1710: 1670: 1562: 1532: 1382: 1332: 1242: 1200: 1133: 1058: 1018: 903: 127: 2009: 2004: 1909: 1904: 1740: 1680: 1675: 1407: 1297: 1118: 1053: 1028: 366: 272: 231: 117: 54:
approach, which emphasizes solely based on the compositional similarity of the
1254: 38:
bounded units on a variety of scales. The essence of the method is mapping of
2194: 2179: 2027: 1947: 1836: 1755: 1730: 1665: 1595: 1502: 1397: 1274: 1195: 1155: 1128: 1038: 988: 369:
events like the opening of new ocean basins by splitting continental masses.
338: 276: 152: 63: 661:
Sloss, L. L. (1963). "Sequences in the Cratonic Interior of North America".
571:
Van Wagoner, J.C.; Mitchum, R.M. Jr.; Posamentier, H.W.; Vail, P.R. (1987).
2134: 2082: 2022: 1973: 1851: 1846: 1821: 1805: 1780: 1497: 1387: 1327: 1113: 1023: 998: 720: 396:
is the sea level with reference to a fixed point, the centre of the Earth.
346: 226: 148: 35: 27: 746:
Seismic Stratigraphy II: An Integrated Approach to Hydrocarbon Exploration
2124: 1856: 1785: 1650: 1590: 1557: 1547: 1542: 1427: 1362: 1322: 1312: 1287: 1170: 1143: 1123: 1083: 1048: 549:
Society of Economic Paleontologists and Mineralogists Special Publication
413: 318: 260: 221: 921: 275:(BP). During this glaciation event, the world's sea level was about 320 246: 1942: 1790: 1765: 1660: 1640: 1567: 1552: 1537: 1527: 1492: 1412: 1232: 1227: 1190: 1185: 1180: 1078: 330: 2174: 628: 2014: 1876: 1861: 1775: 1620: 1459: 1454: 1237: 1165: 1093: 1013: 1003: 960: 697: 303: 122: 55: 2109: 1831: 1690: 1582: 1572: 1517: 993: 753: 322: 284: 79: 31: 642:
Sloss, L.L. (1950). "Paleozoic stratigraphy in the Montana area".
1978: 1968: 1138: 1108: 570: 546: 421: 307: 299: 264: 39: 23: 372:
Hundreds of similar glacial cycles have occurred throughout the
1685: 1098: 777:
Cross, T A; Lessenger, M A (May 1988). "Seismic Stratigraphy".
575:. American Association of Petroleum Geologists. pp. 11–14. 187:(TST) is bounded by maximum regressive surface at the base and 131: 690:
Seismic Stratigraphy — Applications to Hydrocarbon Exploration
46:, maximum flooding surfaces), thereby placing stratigraphy in 2047: 1866: 1645: 1600: 353: 342: 280: 263:. The modern age is depicted on the left side, labeled N for 238:
aggradational will be indicative of gently rising sea level.
872:. Cambridge, New York: Cambridge University Press. pp.  420:
the shorelines were receding or transgressing northwards in
1479: 828: 417: 288: 313:
Today, sea level is at a relative "high stand" within the
361: 292: 675:
10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2
217:
The parasequences are separated into stacking patterns:
333:(labeled K on the graph), sea level was so high that a 839:. St. John's Nfld.: Geological Association of Canada. 566: 564: 562: 542: 540: 538: 271:, which reached its maximum extent about 20,000 years 205: 644:
American Association of Petroleum Geologists Bulletin
614: 463: â€“ Very large-scale lithostratographic sequence 16:
Study and analysis of groups of sedimentary deposits
744:Berg, Orville Roger; Woolverton, Donald G. (1985). 687: 559: 535: 241: 1895:North West Shelf Operational Oceanographic System 710: 2192: 906:by the University of Georgia's Stratigraphy Lab. 1885:Deep-ocean Assessment and Reporting of Tsunamis 916:A chart of sea level for the past 140,000 years 283:) lower than today, due to the large amount of 62:Stratigraphers explain sequence boundaries and 776: 743: 681: 510: 937: 779:Annual Review of Earth and Planetary Sciences 59:complete record that is genetically related. 912:a fairly extensive online education resource 944: 930: 868:The Sedimentary Record of Sea-Level Change 587:"An Online Guide to Sequence Stratigraphy" 516: 287:that had evaporated and been deposited as 142: 951: 834: 491: 93: 904:An Online Guide to Sequence Stratigraphy 837:Sequence stratigraphy of clastic systems 485: 435: 245: 106: 2193: 1216:one-dimensional Saint-Venant equations 818: 663:Geological Society of America Bulletin 111: 925: 660: 641: 617:Geological Society of America Memoirs 517:Emery, Dominic; Myers, Keith (1996). 496:(2nd ed.). San Diego: Elsevier. 2163: 805: 317:glacial cycles because of rapid end- 155:has a lower gradient than the inner 863: 799:10.1146/annurev.ea.16.050188.001535 494:Principles of Sequence Stratigraphy 206:Parasequences and stacking patterns 13: 2043:National Oceanographic Data Center 1470:World Ocean Circulation Experiment 1358:Global Ocean Data Analysis Project 857: 70:and regional subsidence caused by 14: 2217: 1890:Global Sea Level Observing System 891: 162: 86:for sediments to accumulate in a 2173: 2162: 2153: 2152: 1348:Geochemical Ocean Sections Study 1264: 1253: 2078:Ocean thermal energy conversion 1801:Vine–Matthews–Morley hypothesis 910:USC's Sequence Stratigraphy Web 770: 737: 704: 242:Sea level through geologic time 811:Hampson, G.J., Davies, S. J., 654: 635: 608: 579: 337:extended across the center of 1: 521:. Oxford: Blackwell Science. 478: 126:with a regional, high relief 1338:El Niño–Southern Oscillation 1308:Craik–Leibovich vortex force 1064:Luke's variational principle 835:Catuneanu, Octavian (2003). 713:The Jurassic of the Gulf Rim 492:Catuneanu, Octavian (2022). 386:Subsidence rate of the basin 121:laterally with interfluves, 7: 454: 185:transgressive systems tract 26:, specifically a branch of 10: 2222: 1403:Ocean dynamical thermostat 1251: 383:Eustatic sea level changes 269:most recent glacial period 2148: 1987: 1961: 1938:Ocean acoustic tomography 1923: 1875: 1814: 1751:MohoroviÄŤić discontinuity 1709: 1581: 1478: 1343:General circulation model 1273: 979:Benjamin–Feir instability 959: 2068:Ocean surface topography 1443:Thermohaline circulation 1433:Subsurface ocean current 1373:Hydrothermal circulation 1206:Wave–current interaction 984:Boussinesq approximation 356:'s rotational axis (see 212:marine flooding surfaces 189:maximum flooding surface 44:subaerial unconformities 2105:Sea surface temperature 2088:Outline of oceanography 1283:Atmospheric circulation 1221:shallow water equations 1211:Waves and shallow water 1104:Significant wave height 864:Coe, Angela L. (2002). 255:Sea level changes over 196:highstand systems tract 143:Parasequence boundaries 2100:Sea surface microlayer 1465:Wind generated current 721:10.5724/gcs.84.03.0347 252: 178:lowstand systems tract 137:hydrocarbon reservoirs 94:Historical development 2201:Sequence stratigraphy 1933:Deep scattering layer 1915:World Geodetic System 1423:Princeton Ocean Model 1303:Coriolis–Stokes force 953:Physical oceanography 898:Sequence Stratigraphy 519:Sequence stratigraphy 436:Economic significance 249: 20:Sequence stratigraphy 1953:Underwater acoustics 1513:Perigean spring tide 1378:Langmuir circulation 1089:Rossby-gravity waves 107:Significant surfaces 101:seismic stratigraphy 2115:Science On a Sphere 1721:Convergent boundary 1393:Modular Ocean Model 1353:Geostrophic current 1069:Mild-slope equation 791:1988AREPS..16..319C 358:Milankovitch cycles 297:Northern Hemisphere 112:Sequence boundaries 84:accommodation space 72:tectonic subsidence 48:chronostratigraphic 2206:Historical geology 1771:Seafloor spreading 1761:Outer trench swell 1726:Divergent boundary 1626:Continental margin 1611:Carbonate platform 1508:Lunitidal interval 473:Relative sea level 449:seafloor sediments 403:sedimentary cycles 394:Eustatic sea level 253: 76:thermal subsidence 68:eustatic sea level 52:lithostratigraphic 2188: 2187: 2180:Oceans portal 2140:World Ocean Atlas 2130:Underwater glider 2073:Ocean temperature 1736:Hydrothermal vent 1701:Submarine volcano 1636:Continental shelf 1616:Coastal geography 1606:Bathymetric chart 1488:Amphidromic point 1176:Wave nonlinearity 1034:Infragravity wave 730:978-1-944966-02-7 629:10.1130/MEM39-p91 528:978-0-632-03706-3 503:978-0-08-088513-1 467:Cyclostratigraphy 461:Cratonic sequence 442:Petroleum geology 157:continental shelf 128:erosional surface 88:sedimentary basin 2213: 2178: 2177: 2166: 2165: 2156: 2155: 2095:Pelagic sediment 2033:Marine pollution 1827:Deep ocean water 1696:Submarine canyon 1631:Continental rise 1523:Rule of twelfths 1438:Sverdrup balance 1368:Humboldt Current 1293:Boundary current 1268: 1257: 1074:Radiation stress 1044:Iribarren number 1019:Equatorial waves 974:Ballantine scale 969:Airy wave theory 946: 939: 932: 923: 922: 887: 871: 851: 850: 832: 826: 822: 816: 809: 803: 802: 774: 768: 767: 741: 735: 734: 708: 702: 701: 698:10.1306/M26490C5 685: 679: 678: 658: 652: 651: 639: 633: 632: 612: 606: 605: 603: 602: 593:. Archived from 583: 577: 576: 568: 557: 556: 544: 533: 532: 514: 508: 507: 489: 389:Sediment supply. 232:Retrogradational 2221: 2220: 2216: 2215: 2214: 2212: 2211: 2210: 2191: 2190: 2189: 2184: 2172: 2144: 1983: 1957: 1919: 1900:Sea-level curve 1871: 1810: 1796:Transform fault 1746:Mid-ocean ridge 1712: 1705: 1671:Oceanic plateau 1577: 1563:Tidal resonance 1533:Theory of tides 1474: 1383:Longshore drift 1333:Ekman transport 1269: 1263: 1262: 1261: 1260: 1259: 1258: 1249: 1201:Wave turbulence 1134:Trochoidal wave 1059:Longshore drift 955: 950: 894: 884: 860: 858:Further reading 855: 854: 847: 833: 829: 823: 819: 810: 806: 775: 771: 764: 742: 738: 731: 709: 705: 686: 682: 659: 655: 640: 636: 613: 609: 600: 598: 585: 584: 580: 569: 560: 545: 536: 529: 515: 511: 504: 490: 486: 481: 457: 438: 374:Earth's history 244: 208: 167:The concept of 165: 145: 114: 109: 96: 22:is a branch of 17: 12: 11: 5: 2219: 2209: 2208: 2203: 2186: 2185: 2183: 2182: 2170: 2160: 2149: 2146: 2145: 2143: 2142: 2137: 2132: 2127: 2122: 2120:Stratification 2117: 2112: 2107: 2102: 2097: 2092: 2091: 2090: 2080: 2075: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2035: 2030: 2025: 2020: 2012: 2010:Color of water 2007: 2005:Benthic lander 2002: 1997: 1991: 1989: 1985: 1984: 1982: 1981: 1976: 1971: 1965: 1963: 1959: 1958: 1956: 1955: 1950: 1945: 1940: 1935: 1929: 1927: 1921: 1920: 1918: 1917: 1912: 1910:Sea level rise 1907: 1905:Sea level drop 1902: 1897: 1892: 1887: 1881: 1879: 1873: 1872: 1870: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1834: 1829: 1824: 1818: 1816: 1812: 1811: 1809: 1808: 1803: 1798: 1793: 1788: 1783: 1778: 1773: 1768: 1763: 1758: 1753: 1748: 1743: 1741:Marine geology 1738: 1733: 1728: 1723: 1717: 1715: 1707: 1706: 1704: 1703: 1698: 1693: 1688: 1683: 1681:Passive margin 1678: 1676:Oceanic trench 1673: 1668: 1663: 1658: 1653: 1648: 1643: 1638: 1633: 1628: 1623: 1618: 1613: 1608: 1603: 1598: 1593: 1587: 1585: 1579: 1578: 1576: 1575: 1570: 1565: 1560: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1484: 1482: 1476: 1475: 1473: 1472: 1467: 1462: 1457: 1452: 1451: 1450: 1440: 1435: 1430: 1425: 1420: 1415: 1410: 1408:Ocean dynamics 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1335: 1330: 1325: 1320: 1315: 1310: 1305: 1300: 1298:Coriolis force 1295: 1290: 1285: 1279: 1277: 1271: 1270: 1252: 1250: 1248: 1247: 1246: 1245: 1235: 1230: 1225: 1224: 1223: 1218: 1208: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1168: 1163: 1158: 1153: 1148: 1147: 1146: 1136: 1131: 1126: 1121: 1119:Stokes problem 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1076: 1071: 1066: 1061: 1056: 1054:Kinematic wave 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 991: 986: 981: 976: 971: 965: 963: 957: 956: 949: 948: 941: 934: 926: 920: 919: 913: 907: 901: 893: 892:External links 890: 889: 888: 882: 859: 856: 853: 852: 845: 827: 817: 804: 785:(1): 319–354. 769: 762: 754:10.1306/M39449 736: 729: 703: 680: 653: 634: 607: 591:strata.uga.edu 578: 558: 534: 527: 509: 502: 483: 482: 480: 477: 476: 475: 470: 464: 456: 453: 437: 434: 391: 390: 387: 384: 367:plate tectonic 273:Before Present 243: 240: 235: 234: 229: 227:Progradational 224: 207: 204: 203: 202: 199: 192: 181: 169:systems tracts 164: 163:Systems tracts 161: 144: 141: 118:unconformities 113: 110: 108: 105: 95: 92: 34:deposits into 15: 9: 6: 4: 3: 2: 2218: 2207: 2204: 2202: 2199: 2198: 2196: 2181: 2176: 2171: 2169: 2161: 2159: 2151: 2150: 2147: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2089: 2086: 2085: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2028:Marine energy 2026: 2024: 2021: 2019: 2018: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1995:Acidification 1993: 1992: 1990: 1986: 1980: 1977: 1975: 1972: 1970: 1967: 1966: 1964: 1960: 1954: 1951: 1949: 1948:SOFAR channel 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1930: 1928: 1926: 1922: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1882: 1880: 1878: 1874: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1819: 1817: 1813: 1807: 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1756:Oceanic crust 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1731:Fracture zone 1729: 1727: 1724: 1722: 1719: 1718: 1716: 1714: 1708: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1666:Oceanic basin 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1596:Abyssal plain 1594: 1592: 1589: 1588: 1586: 1584: 1580: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1503:Internal tide 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1485: 1483: 1481: 1477: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1449: 1446: 1445: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1398:Ocean current 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1280: 1278: 1276: 1272: 1267: 1256: 1244: 1241: 1240: 1239: 1236: 1234: 1231: 1229: 1226: 1222: 1219: 1217: 1214: 1213: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1196:Wave shoaling 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1156:Ursell number 1154: 1152: 1149: 1145: 1142: 1141: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1039:Internal wave 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 989:Breaking wave 987: 985: 982: 980: 977: 975: 972: 970: 967: 966: 964: 962: 958: 954: 947: 942: 940: 935: 933: 928: 927: 924: 917: 914: 911: 908: 905: 902: 899: 896: 895: 885: 883:0-521-53842-4 879: 875: 870: 869: 862: 861: 848: 846:0-919216-90-0 842: 838: 831: 821: 814: 808: 800: 796: 792: 788: 784: 780: 773: 765: 763:0-89181-316-0 759: 755: 751: 747: 740: 732: 726: 722: 718: 714: 707: 699: 695: 691: 684: 676: 672: 668: 664: 657: 649: 645: 638: 630: 626: 622: 618: 611: 597:on 2022-04-01 596: 592: 588: 582: 574: 567: 565: 563: 554: 550: 543: 541: 539: 530: 524: 520: 513: 505: 499: 495: 488: 484: 474: 471: 468: 465: 462: 459: 458: 452: 450: 445: 443: 433: 431: 427: 426:transgression 423: 419: 415: 411: 406: 404: 399: 395: 388: 385: 382: 381: 380: 377: 375: 370: 368: 363: 359: 355: 350: 348: 344: 340: 339:North America 336: 332: 327: 324: 320: 316: 311: 309: 305: 301: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 257:geologic time 248: 239: 233: 230: 228: 225: 223: 222:Aggradational 220: 219: 218: 215: 213: 200: 197: 193: 190: 186: 182: 179: 175: 174: 173: 170: 160: 158: 154: 153:coastal plain 150: 140: 138: 133: 129: 124: 119: 104: 102: 91: 89: 85: 81: 77: 73: 69: 65: 64:stratigraphic 60: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 2135:Water column 2083:Oceanography 2058:Observations 2053:Explorations 2023:Marginal sea 2016: 1974:OSTM/Jason-2 1806:Volcanic arc 1781:Slab suction 1498:Head of tide 1388:Loop Current 1328:Ekman spiral 1114:Stokes drift 1024:Gravity wave 999:Cnoidal wave 867: 836: 830: 820: 807: 782: 778: 772: 745: 739: 712: 706: 689: 683: 666: 662: 656: 647: 643: 637: 620: 616: 610: 599:. Retrieved 595:the original 590: 581: 572: 552: 548: 518: 512: 493: 487: 446: 439: 407: 397: 392: 378: 371: 351: 347:Arctic Ocean 328: 312: 306:weathering ( 254: 251:readability. 236: 216: 209: 195: 184: 177: 168: 166: 149:parasequence 146: 115: 97: 61: 36:unconformity 28:stratigraphy 19: 18: 2125:Thermocline 1842:Mesopelagic 1815:Ocean zones 1786:Slab window 1651:Hydrography 1591:Abyssal fan 1558:Tidal range 1548:Tidal power 1543:Tidal force 1428:Rip current 1363:Gulf Stream 1323:Ekman layer 1313:Downwelling 1288:Baroclinity 1275:Circulation 1171:Wave height 1161:Wave action 1144:megatsunami 1124:Stokes wave 1084:Rossby wave 1049:Kelvin wave 1029:Green's law 813:Elliott, T. 414:Book Cliffs 319:Pleistocene 261:Phanerozoic 32:sedimentary 2195:Categories 2063:Reanalysis 1962:Satellites 1943:Sofar bomb 1791:Subduction 1766:Ridge push 1661:Ocean bank 1641:Contourite 1568:Tide gauge 1553:Tidal race 1538:Tidal bore 1528:Slack tide 1493:Earth tide 1413:Ocean gyre 1233:Wind setup 1228:Wind fetch 1191:Wave setup 1186:Wave radar 1181:Wave power 1079:Rogue wave 1009:Dispersion 650:: 425–451. 623:: 91–124. 601:2018-08-05 479:References 430:regression 331:Cretaceous 321:and early- 315:Quaternary 123:palaeosols 1925:Acoustics 1877:Sea level 1776:Slab pull 1713:tectonics 1621:Cold seep 1583:Landforms 1460:Whirlpool 1455:Upwelling 1238:Wind wave 1166:Wave base 1094:Sea state 1014:Edge wave 1004:Cross sea 669:(2): 93. 304:subaerial 285:sea water 80:isostatic 56:lithology 2158:Category 2110:Seawater 1837:Littoral 1832:Deep sea 1691:Seamount 1573:Tideline 1518:Rip tide 1448:shutdown 1418:Overflow 1151:Undertow 994:Clapotis 555:: 39–45. 455:See also 416:area of 398:Relative 323:Holocene 300:glaciers 2168:Commons 2038:Mooring 1988:Related 1979:Jason-3 1969:Jason-1 1852:Pelagic 1847:Oceanic 1822:Benthic 1139:Tsunami 1109:Soliton 787:Bibcode 422:Wyoming 345:to the 308:erosion 265:Neogene 24:geology 1857:Photic 1686:Seabed 1099:Seiche 880:  843:  760:  727:  525:  500:  410:basins 335:seaway 281:meters 132:facies 40:strata 2048:Ocean 2017:Alvin 1867:Swash 1711:Plate 1656:Knoll 1646:Guyot 1601:Atoll 1480:Tides 1243:model 1129:Swell 961:Waves 876:–98. 825:51–64 354:Earth 343:Texas 341:from 2015:DSV 2000:Argo 1862:Surf 1318:Eddy 878:ISBN 841:ISBN 758:ISBN 725:ISBN 523:ISBN 498:ISBN 418:Utah 291:and 289:snow 279:(98 277:feet 795:doi 750:doi 717:doi 694:doi 671:doi 625:doi 362:Sun 295:in 293:ice 2197:: 874:57 793:. 783:16 781:. 756:. 748:. 723:. 715:. 692:. 667:74 665:. 648:34 646:. 621:39 619:. 589:. 561:^ 553:42 551:. 537:^ 405:. 349:. 194:A 183:A 176:A 74:, 945:e 938:t 931:v 886:. 849:. 801:. 797:: 789:: 766:. 752:: 733:. 719:: 700:. 696:: 677:. 673:: 631:. 627:: 604:. 531:. 506:.

Index

geology
stratigraphy
sedimentary
unconformity
strata
subaerial unconformities
chronostratigraphic
lithostratigraphic
lithology
stratigraphic
eustatic sea level
tectonic subsidence
thermal subsidence
isostatic
accommodation space
sedimentary basin
seismic stratigraphy
unconformities
palaeosols
erosional surface
facies
hydrocarbon reservoirs
parasequence
coastal plain
continental shelf
maximum flooding surface
marine flooding surfaces
Aggradational
Progradational
Retrogradational

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑