Knowledge

Orthogonal group

Source 📝

11524: 11236: 5174: 52: 4752: 5353: 3818: 3759: 3774:. In particular, most notations are undefined; no context for explaining why these consideration belong to the article. Moreover, the section consists essentially in a list of advanced results without providing the information that is needed for a non-specialist for verifying them (no reference, no link to articles about the methods of computation that are used, no sketch of proofs. 11519:{\displaystyle {\begin{aligned}\mathrm {U} (n)&\supset \mathrm {O} (n)\\\mathrm {USp} (2n)&\supset \mathrm {O} (n)\\\mathrm {G} _{2}&\supset \mathrm {O} (3)\\\mathrm {F} _{4}&\supset \mathrm {O} (9)\\\mathrm {E} _{6}&\supset \mathrm {O} (10)\\\mathrm {E} _{7}&\supset \mathrm {O} (12)\\\mathrm {E} _{8}&\supset \mathrm {O} (16)\end{aligned}}} 2079: 4836: 9109: 5974: 4438: 7990: 8755: 4184: 12078:
In other words, the space of orthonormal bases is like the orthogonal group, but without a choice of base point: given an orthogonal space, there is no natural choice of orthonormal basis, but once one is given one, there is a one-to-one correspondence between bases and the orthogonal group.
1952: 6256:
has four connected components, depending on whether an element preserves orientation on either of the two maximal subspaces where the quadratic form is positive definite or negative definite. The component of the identity, whose elements preserve orientation on both subspaces, is denoted
5169:{\displaystyle {\begin{aligned}\pi _{0}(KO)&=\mathbf {Z} \\\pi _{1}(KO)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{2}(KO)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{3}(KO)&=0\\\pi _{4}(KO)&=\mathbf {Z} \\\pi _{5}(KO)&=0\\\pi _{6}(KO)&=0\\\pi _{7}(KO)&=0\end{aligned}}} 8974: 4747:{\displaystyle {\begin{aligned}\pi _{0}(O)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{1}(O)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{2}(O)&=0\\\pi _{3}(O)&=\mathbf {Z} \\\pi _{4}(O)&=0\\\pi _{5}(O)&=0\\\pi _{6}(O)&=0\\\pi _{7}(O)&=\mathbf {Z} \end{aligned}}} 5869: 3415: 9749: 9574: 6541:
The non-degenerate quadratic forms over a finite field of characteristic different from two are completely classified into congruence classes, and it results from this classification that there is only one orthogonal group in odd dimension and two in even dimension.
1164: 8959: 3629: 2652: 8589: 7744: 10313: 8630: 9399: 3133: 7352: 4070: 7736: 7639: 6980: 1556:
vector that maps the second point to the first one. This is a well defined homomorphism, since a straightforward verification shows that, if two pairs of points have the same difference, the same is true for their images by
11082: 7539: 2074:{\displaystyle {\begin{bmatrix}{\begin{matrix}R_{1}&&\\&\ddots &\\&&R_{k}\end{matrix}}&0\\0&{\begin{matrix}\pm 1&&\\&\ddots &\\&&\pm 1\end{matrix}}\\\end{bmatrix}},} 4290: 6708: 7132: 9260: 8052: 6628: 9182: 8218: 1046: 9104:{\displaystyle {\begin{aligned}\mathbf {C} &\to \operatorname {SO} (2,\mathbf {R} )\\x&\mapsto {\begin{bmatrix}\cos \theta &\sin \theta \\-\sin \theta &\cos \theta \end{bmatrix}},\end{aligned}}} 12296:(if it has two non-zero entries or a larger entry, the norm will be larger than 1), and in an orthogonal matrix these entries must be in different coordinates, which is exactly the signed permutation matrices. 6844: 3518: 7191: 2329: 2162: 10210:) of an orthogonal group. As an algebraic group, an orthogonal group is in general neither connected nor simply-connected; the latter point brings in the spin phenomena, while the former is related to the 5969:{\displaystyle \cdots \rightarrow \operatorname {Fivebrane} (n)\rightarrow \operatorname {String} (n)\rightarrow \operatorname {Spin} (n)\rightarrow \operatorname {SO} (n)\rightarrow \operatorname {O} (n)} 3731: 2912: 10175:
For the usual orthogonal group over the reals, it is trivial, but it is often non-trivial over other fields, or for the orthogonal group of a quadratic form over the reals that is not positive definite.
3321: 6803: 11165: 5427:, which consists of two points. Thus over each point, the bundle is trivial, and the non-triviality of the bundle is the difference between the dimensions of the vector spaces over the two points, so 11009: 10809: 9580: 9405: 11212: 10089:. In fact the symmetric form is alternating in characteristic 2, and as the dimension is odd it must have a kernel of dimension 1, and the quotient by this kernel is a symplectic space of dimension 11241: 8979: 8883: 8635: 8492: 4841: 4443: 12002: 8878: 8868: 10731: 3552: 2550: 10099:
In even dimensions in characteristic 2 the orthogonal group is a subgroup of the symplectic group, because the symmetric bilinear form of the quadratic form is also an alternating form.
3238: 8487: 8809: 8422: 7985:{\displaystyle A_{1}A_{2}={\begin{bmatrix}a_{1}a_{2}+\omega b_{1}b_{2}&a_{1}b_{2}+b_{1}a_{2}\\\omega b_{1}a_{2}+\omega a_{1}b_{2}&\omega b_{1}b_{2}+a_{1}a_{1}\end{bmatrix}}.} 10854: 10536: 8750:{\displaystyle {\begin{aligned}\mathbf {T} &\to \operatorname {SO} ^{+}(2,\mathbf {F} _{q})\\x&\mapsto {\begin{bmatrix}a&b\\\omega b&a\end{bmatrix}},\end{aligned}}} 10494: 1547: 10243: 6538:, that is if a change of basis transforms the matrix of the first form into the matrix of the second form. Two equivalent quadratic forms have clearly the same orthogonal group. 1687: 9271: 8364: 1359: 9948:
Any orthogonal group over any field is generated by reflections, except for a unique example where the vector space is 4-dimensional over the field with 2 elements and the
9840:
to the power of the Dickson invariant. Over fields of characteristic 2, the determinant is always 1, so the Dickson invariant gives more information than the determinant.
4060:, and thus are in general hard to compute. However, one can compute the homotopy groups of the stable orthogonal group (aka the infinite orthogonal group), defined as the 497: 472: 435: 3057: 10669: 9940:
Over fields of characteristic 2 orthogonal groups often exhibit special behaviors, some of which are listed in this section. (Formerly these groups were known as the
10883:
The orthogonal groups and special orthogonal groups have a number of important subgroups, supergroups, quotient groups, and covering groups. These are listed below.
4179:{\displaystyle \operatorname {O} (0)\subset \operatorname {O} (1)\subset \operatorname {O} (2)\subset \cdots \subset O=\bigcup _{k=0}^{\infty }\operatorname {O} (k)} 10192:, some further points of view are introduced. They have explanatory value, in particular in relation with the theory of quadratic forms; but were for the most part 7292: 12079:
Concretely, a linear map is determined by where it sends a basis: just as an invertible map can take any basis to any other basis, an orthogonal map can take any
7644: 7547: 6927: 972:. This component does not form a group, as the product of any two of its elements is of determinant 1, and therefore not an element of the component. 12019:
In dimension 3 and above these are the covers and quotients, while dimension 2 and below are somewhat degenerate; see specific articles for details.
11016: 7454: 2350:
identity matrix, and the zeros denote row or column zero matrices. In other words, a reflection is a transformation that transforms the space in its
10733:). Over a field of characteristic 2 we consider instead the alternating endomorphisms. Concretely we can equate these with the alternating tensors 10404:
of the kernel of the spin covering. The cohomology is non-abelian so that this is as far as we can go, at least with the conventional definitions.
3836: 2402:
is the generalization of this result to the orthogonal group of a nondegenerate quadratic form over a field of characteristic different from two.
8471:
For finishing the proof, it suffices to verify that the group all orthogonal matrices is not abelian, and is the semidirect product of the group
4223: 6658: 799: 7072: 2806:
equations that the entries of an orthogonal matrix must satisfy, and which are not all satisfied by the entries of any non-orthogonal matrix.
9952:
is 2. A reflection in characteristic two has a slightly different definition. In characteristic two, the reflection orthogonal to a vector
9187: 7998: 6559: 9117: 8124: 2362: 1441:, since the choice of a point as an origin induces an isomorphism between the Euclidean space and its associated Euclidean vector space. 6808: 3442: 10225:). This may now be explained quickly by Galois cohomology (which however postdates the introduction of the term by more direct use of 7137: 2275: 2108: 3683: 3410:{\displaystyle {\begin{bmatrix}1&0\\0&1\end{bmatrix}}\quad {\text{or}}\quad {\begin{bmatrix}0&1\\1&0\end{bmatrix}},} 2827: 10919: 12236: 10610:
is not simply connected, the representation theory of the orthogonal Lie algebras includes both representations corresponding to
9744:{\displaystyle \left|\operatorname {O} ^{-}(2n,q)\right|=2q^{n(n-1)}\left(q^{n}+1\right)\prod _{i=1}^{n-1}\left(q^{2i}-1\right).} 9569:{\displaystyle \left|\operatorname {O} ^{+}(2n,q)\right|=2q^{n(n-1)}\left(q^{n}-1\right)\prod _{i=1}^{n-1}\left(q^{2i}-1\right),} 6770: 11113: 2962: 357: 10960: 10746: 12612: 12443: 11171: 1159:{\displaystyle \operatorname {O} (n,F)=\left\{Q\in \operatorname {GL} (n,F)\mid Q^{\mathsf {T}}Q=QQ^{\mathsf {T}}=I\right\}.} 12292:
equals the signed permutation matrices because an integer vector of norm 1 must have a single non-zero entry, which must be
1192:
that preserve the form. The preceding orthogonal groups are the special case where, on some basis, the bilinear form is the
12154: 6155:, is an invariant of the quadratic form, in the sense that it does not depend on the way of computing the diagonal matrix. 307: 11889: 8954:{\displaystyle {\begin{aligned}\mathbf {R} /2\pi \mathbf {R} &\to C\\\theta &\mapsto e^{i\theta },\end{aligned}}} 950:
around a point (in dimension 2) or a line (in dimension 3). In low dimension, these groups have been widely studied, see
11697:
As the orthogonal group is compact, discrete subgroups are equivalent to finite subgroups. These subgroups are known as
12638: 6641: 5979:
which is obtained by successively removing (killing) homotopy groups of increasing order. This is done by constructing
1621:
and the group of translations. It follows that the study of the Euclidean group is essentially reduced to the study of
1390:. This group does not depend on the choice of a particular space, since all Euclidean spaces of the same dimension are 792: 302: 11963: 12656: 12578: 12496: 11725: 11561: 10331:; over a field of characteristic not 2 it is roughly the same as a two-element group with trivial Galois action. The 8814: 6549:
asserts that (in characteristic different from two) every vector space equipped with a non-degenerate quadratic form
5393: 3854: 3799: 3624:{\displaystyle \left(\varepsilon _{1},\ldots ,\varepsilon _{n}\right)\mapsto \varepsilon _{1}\cdots \varepsilon _{n}} 2647:{\displaystyle {\begin{bmatrix}\cos(\varphi )&-\sin(\varphi )\\\sin(\varphi )&\cos(\varphi )\end{bmatrix}}.} 1641:
of a Euclidean vector space, the orthogonal group can be identified with the group (under matrix multiplication) of
12749: 11717: 10674: 8454: 8307: 5610: 11640:, so this is not a direct product, but it is a direct product with the subgroup of dilation by a positive scalar: 12600: 8584:{\displaystyle {\begin{aligned}\mathbf {Z} /(q+1)\mathbf {Z} &\to T\\k&\mapsto g^{(q-1)k},\end{aligned}}} 6546: 3194: 2399: 1733: 11957: 11729: 11552:, though not all conformal linear transforms are orthogonal. In classical terms this is the difference between 10328: 2193:, and taking into account that the absolute values of the eigenvalues of an orthogonal matrix are all equal to 915: 718: 5189:
The first few homotopy groups can be calculated by using the concrete descriptions of low-dimensional groups.
12744: 12699: 12604: 12159: 8763: 8380: 6745: 6090: 2406: 1565: 785: 10308:{\displaystyle 1\rightarrow \mu _{2}\rightarrow \mathrm {Pin} _{V}\rightarrow \mathrm {O_{V}} \rightarrow 1} 12219: 10817: 10499: 8242:
is a homomorphism of the group of orthogonal matrices of determinant one into the multiplicative group of
6086: 10460: 1475: 12694: 12197: 12034: 11845: 11757: 6080: 5984: 2239: 1651: 402: 216: 10954:
compactification, it is important to find out the subgroups of the orthogonal group. The main ones are:
9394:{\displaystyle \left|\operatorname {O} (2n+1,q)\right|=2q^{n^{2}}\prod _{i=1}^{n}\left(q^{2i}-1\right),} 6719: 4383:: thus the homotopy groups of the stable space equal the lower homotopy groups of the unstable spaces. 4057: 1745: 1211:
The name of "orthogonal group" originates from the following characterization of its elements. Given a
134: 12689: 3542: 12224: 11587: 8317: 5566: 5216: 4314: 1314: 6375:
has two connected components. The component of the identity consists of all matrices of determinant
6158:
The orthogonal group of a quadratic form depends only on the inertia, and is thus generally denoted
3128:{\displaystyle {\begin{bmatrix}R_{1}&&0\\&\ddots &\\0&&R_{n}\end{bmatrix}},} 12739: 12346: 11597: 9833: 9800:
in case the element is the product of an even number of reflections, and the value of 1 otherwise.
5664: 5371: 3777: 3241: 3048: 2258: 1850: 600: 334: 211: 99: 7244:
cannot be both zero (because of the first equation), the second equation implies the existence of
480: 455: 418: 12350: 11097: 10939: 10875:
of a vector field (naturally a 2-vector) as an infinitesimal rotation or "curl", hence the name.
10332: 5824: 4028: 3934: 2717: 1810: 1169: 10647:(over a field with characteristic not equal to 2) with a nondegenerate symmetric bilinear form 10557: 10007: 8311: 7134:
because, given a quadratic form, there is a basis where its matrix is diagonalizable. A matrix
4763: 3267: 2945:
has two irreducible components, that are distinguished by the sign of the determinant (that is
1553: 1212: 947: 750: 540: 10654: 7347:{\displaystyle {\begin{bmatrix}a&b\\\varepsilon \omega b&\varepsilon a\end{bmatrix}},} 11557: 11553: 10441: 5375: 4322: 3939: 3921: 3781: 2930: 2926: 1787: 878: 624: 17: 7279:. Reporting these values in the third equation, and using the first equation, one gets that 12666: 12622: 12279: 12172: 11739: 11706: 11627: 10230: 10133: 7731:{\displaystyle A_{2}={\begin{bmatrix}a_{2}&b_{2}\\\omega b_{2}&a_{2}\end{bmatrix}}} 7634:{\displaystyle A_{1}={\begin{bmatrix}a_{1}&b_{1}\\\omega b_{1}&a_{1}\end{bmatrix}}} 6850:
is a non-square scalar. It results that there is only one orthogonal group that is denoted
5980: 5679: 3915: 1283: 1029: 861: 853: 564: 552: 170: 104: 12674: 12588: 12506: 12453: 3832: 1770:
of the determinant, which is a group homomorphism whose image is the multiplicative group
8: 12734: 10635: 8424:
is a group isomorphism from the orthogonal matrices of determinant 1 to the group of the
6170:. Moreover, as a quadratic form and its opposite have the same orthogonal group, one has 5785: 5363: 3769: 1910: 1642: 1395: 1181: 835: 139: 34: 3177: 2395:. This results immediately from the above canonical form and the case of dimension two. 1203:, since the condition of preserving a form can be expressed as an equality of matrices. 12261: 10872: 7382:
For further studying the orthogonal group, it is convenient to introduce a square root
6535: 5336: 3963: 3189: 2792: 2751: 1775: 1610: 1595: 1445: 1372: 124: 96: 12711: 10053:
of the orthogonal group usually has order 1 in characteristic 2, rather than 2, since
3290:} by permuting factors. The elements of the Weyl group are represented by matrices in 12652: 12634: 12608: 12574: 12492: 12439: 12063: 11565: 10553: 10185: 10050: 6480: 6281: 4773: 4304: 4202: 3974: 3891: 3873: 2682: 2190: 1638: 1263: 886: 874: 529: 372: 266: 10814:
This description applies equally for the indefinite special orthogonal Lie algebras
3307:
factor is represented by block permutation matrices with 2-by-2 blocks, and a final
3169:, the maximal tori have the same form, bordered by a row and a column of zeros, and 1196:, or, equivalently, the quadratic form is the sum of the square of the coordinates. 695: 12670: 12584: 12562: 12502: 12449: 12207: 12046: 12028: 11786: 11721: 11710: 10951: 10226: 10146: 10079: 5624: 5457: 4387: 3737:
coordinate to make their determinants positive, and hence cannot be represented in
2665:
has a more complicated structure (in particular, it is no longer commutative). The
2182: 1767: 1573: 919: 680: 672: 664: 656: 648: 636: 516: 506: 348: 290: 165: 12438:. Graduate Texts in Mathematics. Vol. 251. London: Springer. pp. 69–75. 10196:, as far as the discovery of the phenomenon is concerned. The first point is that 10006:
is the quadratic form associated to the orthogonal geometry. Compare this to the
6992:
is even, there are only two orthogonal groups, depending whether the dimension of
6119:. In other words, there is a basis on which the matrix of the quadratic form is a 2475:) and all objects with spherical symmetry, if the origin is chosen at the center. 12662: 12618: 12488: 11535: 10923: 10234: 10189: 9844: 6975:{\displaystyle \textstyle {\begin{bmatrix}1&0\\0&\varphi \end{bmatrix}},} 6337: 6120: 5996: 5987:
for the homotopy group to be removed. The first few entries in the tower are the
5860: 5668: 5542: 5445: 4016: 4005: 3248: 2755: 2739: 1806: 1583: 1376: 1239: 1200: 923: 894: 843: 764: 757: 743: 700: 588: 511: 341: 255: 195: 75: 4325:, which is an orthogonal group one dimension lower." Thus the natural inclusion 12570: 12354: 12241: 11798: 11794: 11773: 11077:{\displaystyle \mathrm {O} (2n)\supset \mathrm {U} (n)\supset \mathrm {SU} (n)} 10614:
representations of the orthogonal groups, and representations corresponding to
10197: 10119: 9925: 8433: 8377:
one can reconstruct a corresponding orthogonal matrix. It follows that the map
7534:{\displaystyle xy=1,\qquad a={\frac {x+y}{2}}\qquad b={\frac {x-y}{2\alpha }}.} 7032: 6527: 6311: 6307: 5692: 5512: 4040: 3047:, for every maximal torus, there is a basis on which the torus consists of the 2934: 2681:
are strongly correlated, and this correlation is widely used for studying both
2537: 2510: 2479: 2450: 1302: 1173: 946:, generalizing the fact that in dimensions 2 and 3, its elements are the usual 771: 707: 397: 377: 314: 279: 200: 190: 175: 160: 114: 91: 12407: 6360:, complex matrices whose product with their transpose is the identity matrix. 3315:
component is represented by block-diagonal matrices with 2-by-2 blocks either
12728: 12706: 12487:, Grundlehren der Mathematischen Wissenschaften, vol. 294, Berlin etc.: 12202: 11761: 11743: 11549: 10618:
representations of the orthogonal groups. (The projective representations of
10075: 6277: 5418: 3001: 2818: 2710: 2504: 1877: 1298: 902: 690: 612: 446: 319: 185: 12651:, Sigma Series in Pure Mathematics, vol. 9, Berlin: Heldermann Verlag, 1598:
under the action of the translations, and all stabilizers are isomorphic to
12403: 10217:
The 'spin' name of the spinor norm can be explained by a connection to the
9265:
When the characteristic is not two, the order of the orthogonal groups are
6749: 6496: 5992: 5812: 4214: 4061: 3990: 2499: 2351: 1896: 1177: 545: 244: 233: 180: 155: 150: 109: 80: 43: 4285:{\displaystyle \operatorname {O} (n)\to \operatorname {O} (n+1)\to S^{n},} 2513:
of absolute value equal to one. This isomorphism sends the complex number
12633:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 12631:
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
11728:. In 2 dimensions, the finite groups are either cyclic or dihedral – see 11698: 10651:, the special orthogonal Lie algebra consists of tracefree endomorphisms 10413: 10211: 9754:
In characteristic two, the formulas are the same, except that the factor
6866:
is the number of elements of the finite field (a power of an odd prime).
6703:{\displaystyle \textstyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}} 5641: 4338: 4318: 4190: 2666: 2186: 1693: 1193: 968:. The other component consists of all orthogonal matrices of determinant 939: 882: 813: 12124:-frames) are still homogeneous spaces for the orthogonal group, but not 11586:, and consists of the product of the orthogonal group with the group of 7127:{\displaystyle Q={\begin{bmatrix}1&0\\0&-\omega \end{bmatrix}},} 6877:
is not a square in the ground field (that is, if its number of elements
11871: 11790: 10627: 10454: 10389:
is isomorphic to the multiplicative group of the field modulo squares.
10218: 9949: 5988: 5590: 5249: 3994: 3887: 2355: 1391: 1247: 1189: 712: 440: 12140:-frame by an orthogonal map, but this map is not uniquely determined. 9255:{\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}.} 8047:{\displaystyle {\begin{bmatrix}a&b\\\omega b&a\end{bmatrix}},} 6623:{\displaystyle V=L_{1}\oplus L_{2}\oplus \cdots \oplus L_{m}\oplus W,} 3644:
is the subgroup with an even number of minus signs. The Weyl group of
11806: 10871:
Over real numbers, this characterization is used in interpreting the
10457:. One Lie algebra corresponds to both groups. It is often denoted by 10222: 9929: 8478:
The comparison of this proof with the real case may be illuminating.
6644:(that is there is a basis such that the matrix of the restriction of 6336:. Thus, up to isomorphism, there is only one non-degenerate complex 5649: 5308: 4020: 3005: 2713: 1582:
is the vector space of the translations. So, the translations form a
1243: 898: 890: 533: 9177:{\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}} 8213:{\displaystyle a+\alpha b=(a_{1}+\alpha b_{1})(a_{2}+\alpha b_{2}).} 6209:. So, in the remainder of this section, it is supposed that neither 5179: 11702: 11541: 6553:
can be decomposed as a direct sum of pairwise orthogonal subspaces
5439: 4195: 3943: 2454: 2247: 852:
that preserve a fixed point, where the group operation is given by
839: 70: 12317:
is centerless (but not simply connected), while in even dimension
9786:
is a homomorphism from the orthogonal group to the quotient group
7738:
are two matrices of determinant one in the orthogonal group then
6839:{\displaystyle \textstyle {\begin{bmatrix}\varphi \end{bmatrix}},} 3513:{\displaystyle H_{n-1}\rtimes S_{n}<\{\pm 1\}^{n}\rtimes S_{n}} 2387:
elementary reflections always suffices to generate any element of
2363:
every rotation can be decomposed into a product of two reflections
12067: 11772:); also equals the intersection of the orthogonal group with the 5723:, these yield vector bundles over the corresponding spheres, and 5466:
in terms of simpler-to-analyze homotopies of lower order. Using π
3244: 412: 326: 12022: 11867:
For the special orthogonal group, the corresponding groups are:
7186:{\displaystyle A={\begin{bmatrix}a&b\\c&d\end{bmatrix}}} 2324:{\displaystyle {\begin{bmatrix}-1&0\\0&I\end{bmatrix}},} 2157:{\displaystyle {\begin{bmatrix}a&b\\-b&a\end{bmatrix}},} 10207: 3906: 2483: 2472: 51: 12707:
John Baez "This Week's Finds in Mathematical Physics" week 105
6916:
is congruent to 1, modulo 4) the matrix of the restriction of
6881:
is congruent to 3 modulo 4), the matrix of the restriction of
6074: 4193:, this can also be interpreted as a union. On the other hand, 3726:{\displaystyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}} 2907:{\displaystyle {\frac {n(n-1)}{2}}=n^{2}-{\frac {n(n+1)}{2}},} 2371:
is the product of two reflections whose axes form an angle of
856:
transformations. The orthogonal group is sometimes called the
12719: 12184: 11596:
is odd, these two subgroups do not intersect, and they are a
11545: 10142: 6068: 1235: 964: 958: 952: 10626:
are just linear representations of the universal cover, the
6767:
is thus equal to one, and its matrix is congruent either to
2102:
are 2-by-2 rotation matrices, that is matrices of the form
1946:
there is an orthogonal basis, where its matrix has the form
7069:, one can suppose that the matrix of the quadratic form is 6097:, such a form can be written as the difference of a sum of 1552:
where, as usual, the subtraction of two points denotes the
10179: 10010:
of odd characteristic or characteristic zero, which takes
9836:
2 it is equivalent to the determinant: the determinant is
8613:
is the multiplicative group of the element of norm one in
7286:, and thus the orthogonal group consists of the matrices 6798:{\displaystyle \textstyle {\begin{bmatrix}1\end{bmatrix}}} 3872:
The low-dimensional (real) orthogonal groups are familiar
1433:. This stabilizer is (or, more exactly, is isomorphic to) 11160:{\displaystyle \mathrm {O} (2n)\supset \mathrm {USp} (n)} 8475:
and the group of orthogonal matrices of determinant one.
4432:, and one need only to list the lower 8 homotopy groups: 3011:
is a maximal subgroup among those that are isomorphic to
12569:, London Mathematical Society Monographs, vol. 13, 11004:{\displaystyle \mathrm {O} (n)\supset \mathrm {O} (n-1)} 10804:{\displaystyle v\wedge w\mapsto (v,\cdot )w-(w,\cdot )v} 10229:). The spin covering of the orthogonal group provides a 10112:
is a homomorphism from an orthogonal group over a field
9935: 1774:. This implies that the orthogonal group is an internal 997:
such that its inverse equals its transpose is called an
11207:{\displaystyle \mathrm {O} (7)\supset \mathrm {G} _{2}} 11092:
are those that preserve a compatible complex structure
9803:
Algebraically, the Dickson invariant can be defined as
6526:
Over a field of characteristic different from two, two
6344:, and one associated orthogonal group, usually denoted 12720:
n-dimensional Special Orthogonal Group parametrization
10546:. Over real numbers, these Lie algebras for different 9917:. Thus in characteristic 2, the determinant is always 9036: 8872:
In the real case, the corresponding isomorphisms are:
8706: 8007: 7776: 7666: 7569: 7301: 7152: 7087: 6937: 6931: 6818: 6812: 6780: 6774: 6668: 6662: 4772:
are identified with stable vector bundles on spheres (
3692: 3373: 3330: 3066: 2559: 2284: 2117: 2024: 1965: 1961: 11966: 11239: 11230:
is also an important subgroup of various Lie groups:
11174: 11116: 11019: 10963: 10820: 10749: 10677: 10657: 10502: 10463: 10246: 10149:
elements), that takes reflection in a vector of norm
9583: 9408: 9274: 9190: 9120: 8977: 8881: 8817: 8766: 8633: 8490: 8383: 8320: 8127: 8001: 7747: 7647: 7550: 7457: 7295: 7140: 7075: 6930: 6811: 6773: 6661: 6562: 6093:, which asserts that, on a vector space of dimension 5872: 4839: 4441: 4226: 4073: 3686: 3555: 3445: 3324: 3197: 3060: 2830: 2553: 2278: 2242:, which asserts that every (non-identity) element of 2111: 1955: 1692:
It follows from this equation that the square of the
1654: 1478: 1317: 1049: 483: 458: 421: 9847:
of the Dickson invariant and usually has index 2 in
6521: 6460:, these groups are noncompact. As in the real case, 5518: 8310:, and are therefore the image of each other by the 5999:. The homotopy groups that are killed are in turn 3827:
may be too technical for most readers to understand
2821:. Moreover, it can be proved that its dimension is 11996: 11518: 11206: 11159: 11076: 11003: 10848: 10803: 10725: 10663: 10530: 10488: 10307: 9743: 9568: 9393: 9254: 9176: 9103: 8968:is the circle of the complex numbers of norm one; 8953: 8862: 8803: 8749: 8583: 8416: 8358: 8212: 8046: 7984: 7730: 7633: 7533: 7346: 7185: 7126: 6974: 6838: 6797: 6702: 6622: 5968: 5456:Using concrete descriptions of the loop spaces in 5168: 4746: 4284: 4178: 3725: 3623: 3512: 3409: 3232: 3127: 2906: 2754:, that is, the connected component containing the 2646: 2323: 2156: 2073: 1681: 1541: 1353: 1158: 491: 466: 429: 11908:Spin is a 2-to-1 cover, while in even dimension, 10918:are part of a sequence of 8 inclusions used in a 6220:The subgroup of the matrices of determinant 1 in 5180:Computation and interpretation of homotopy groups 4295:which can be understood as "The orthogonal group 2774:can be identified with the group of the matrices 1786:and any subgroup formed with the identity and a 1566:Affine space § Subtraction and Weyl's axioms 12726: 11997:{\displaystyle {\mathfrak {so}}(n,\mathbf {R} )} 6904:is the 2×2 identity matrix. If the dimension of 12357:, but in characteristic 2 these notions differ. 11780: 10920:geometric proof of the Bott periodicity theorem 10392:There is also the connecting homomorphism from 8863:{\displaystyle b={\frac {x-x^{-1}}{2\alpha }}.} 2995: 11701:and can be realized as the symmetry groups of 9924:The Dickson invariant can also be defined for 9832:, Theorem 11.43). Over fields that are not of 5219:-preserving/reversing (this class survives to 3660:by the preimages under the standard injection 12023:Principal homogeneous space: Stiefel manifold 11705:. A very important class of examples are the 10726:{\displaystyle (\varphi A,B)+(A,\varphi B)=0} 10453:matrices, with the Lie bracket given by the 7375:. Moreover, the determinant of the matrix is 6912:is a square in the ground field (that is, if 6295: 5460:, one can interpret the higher homotopies of 3672:of the representatives for the Weyl group of 1016:orthogonal matrices form a subgroup, denoted 793: 12260:Infinite subsets of a compact space have an 10922:, and the corresponding quotient spaces are 10856:for symmetric bilinear forms with signature 10074:in characteristic 2, orthogonal groups over 5374:. There might be a discussion about this on 4056:of the real orthogonal group are related to 4019:and the universal cover corresponds to the 3780:. There might be a discussion about this on 3488: 3478: 3208: 3198: 2933:have the same dimension, and that it has no 2436: 1922:. All these groups are normal subgroups of 1345: 1339: 1333: 1318: 938:. It consists of all orthogonal matrices of 12325:is neither centerless nor simply connected. 10200:over a field can be identified as a Galois 8268:, the image is the multiplicative group of 6996:zero or two. They are denoted respectively 6075:Of indefinite quadratic form over the reals 4189:Since the inclusions are all closed, hence 3867: 3259:acts on the corresponding circle factor of 2791:. Since both members of this equation are 2208:if and only if there are an even number of 1716:. The orthogonal matrices with determinant 1632: 11716:Dimension 3 is particularly studied – see 9885:is commonly defined to be the elements of 8481:Here two group isomorphisms are involved: 5815:, thinking of it as the fundamental group 5677:, and its class in K-theory. Noting that 3233:{\displaystyle \{\pm 1\}^{n}\rtimes S_{n}} 800: 786: 12478: 12476: 12429: 12427: 12412:This Week's Finds in Mathematical Physics 11560:, as exemplified by SSS (side-side-side) 10950:In physics, particularly in the areas of 9873:. Thus when the characteristic is not 2, 5394:Learn how and when to remove this message 5184: 3855:Learn how and when to remove this message 3839:, without removing the technical details. 3800:Learn how and when to remove this message 485: 460: 423: 12485:Quadratic and Hermitian forms over rings 12230: 11916:is a 2-to-1 cover, and in odd dimension 11568:. The group of conformal linear maps of 11096:a compatible symplectic structure – see 10671:which are skew-symmetric for this form ( 10378:is essentially the spinor norm, because 8436:. This group is a cyclic group of order 5515:components, and the rest are connected. 4830:fit into the periodicity), one obtains: 4757: 4348:, so the homotopy groups stabilize, and 1269: 877:, where the group operation is given by 12561: 12544: 12237:Representations of classical Lie groups 11924:is a 1-to-1 cover; i.e., isomorphic to 11709:, which include the symmetry groups of 10926:of independent interest – for example, 10180:Galois cohomology and orthogonal groups 8804:{\displaystyle a={\frac {x+x^{-1}}{2}}} 8417:{\displaystyle (a,b)\mapsto a+\alpha b} 6067:) and so on to obtain the higher order 3680:. Those matrices with an odd number of 3251:, where the nontrivial element of each 3028:is the standard one-dimensional torus. 2212:on the diagonal. A pair of eigenvalues 1226:, the elements of the orthogonal group 1168:More generally, given a non-degenerate 14: 12727: 12646: 12597:Classical groups and geometric algebra 12519: 12473: 12467: 12433: 12424: 12148: 11636:is even, these subgroups intersect in 11544:, real orthogonal transforms preserve 9932:in a similar way (in all dimensions). 9829: 9796:(integers modulo 2), taking the value 6988:This implies that if the dimension of 6288:corresponds to space coordinates, and 4766:, homotopy groups of the stable space 2761: 2490:. The orientation-preserving subgroup 2365:. More precisely, a rotation of angle 1664: 1136: 1115: 358:Classification of finite simple groups 12594: 12532: 11692: 11108:also preserves a complex orientation. 10849:{\displaystyle {\mathfrak {so}}(p,q)} 10641:More generally, given a vector space 10531:{\displaystyle {\mathfrak {so}}(n,F)} 10096:, acted upon by the orthogonal group. 9936:Orthogonal groups of characteristic 2 7061:For studying the orthogonal group of 6516: 3837:make it understandable to non-experts 2224:can be identified with a rotation by 2216:can be identified with a rotation by 12649:The Geometry of the Classical Groups 12628: 12538: 12482: 12390: 12378: 12366: 12353:is equivalent to that in terms of a 12349:not 2, the definition in terms of a 12155:Coordinate rotations and reflections 12008:is the simply connected form, while 10489:{\displaystyle {\mathfrak {o}}(n,F)} 10329:algebraic group of square roots of 1 9944:, but this term is no longer used.) 9843:The special orthogonal group is the 9777: 6430:are complex Lie groups of dimension 6292:corresponds to the time coordinate. 5346: 3957: 3811: 3752: 2427:that is not a product of fewer than 1744:, which are those that preserve the 1645:, which are the matrices such that 1594:, the stabilizers of two points are 1542:{\displaystyle p(g)(y-x)=g(y)-g(x),} 12191: 11972: 11969: 11956:are Lie group forms of the compact 11890:Projective special orthogonal group 10826: 10823: 10508: 10505: 10466: 9865:is not 2, the Dickson Invariant is 8279:, which is a cyclic group of order 7193:belongs to the orthogonal group if 6499:, whereas the fundamental group of 4401:, therefore the homotopy groups of 1682:{\displaystyle QQ^{\mathsf {T}}=I.} 1609:Moreover, the Euclidean group is a 864:. Equivalently, it is the group of 840:distance-preserving transformations 24: 12603:, vol. 39, Providence, R.I.: 12213: 12165: 11529: 11499: 11481: 11462: 11444: 11425: 11407: 11388: 11370: 11351: 11333: 11314: 11290: 11287: 11284: 11266: 11245: 11217: 11194: 11176: 11144: 11141: 11138: 11118: 11061: 11058: 11041: 11021: 10982: 10965: 10740:. The correspondence is given by: 10638:, which are important in physics. 10293: 10289: 10274: 10271: 10268: 10103: 9590: 9415: 9280: 5951: 5854: 4245: 4227: 4161: 4156: 4110: 4092: 4074: 4034: 2688: 2509:, the multiplicative group of the 1050: 908:The orthogonal group in dimension 25: 12761: 12682: 12134:-frame can be taken to any other 11726:list of spherical symmetry groups 10878: 10634:).) The latter are the so-called 6522:Characteristic different from two 6193:The standard orthogonal group is 5519:Interpretation of homotopy groups 5342: 4321:) is the orthogonal group of the 2544:to the special orthogonal matrix 2419:) is an example of an element of 1933: 942:1. This group is also called the 12402: 11987: 11785:The orthogonal group is neither 11735:Other finite subgroups include: 11718:point groups in three dimensions 10945: 10398:of the orthogonal group, to the 9010: 8983: 8903: 8887: 8674: 8639: 8521: 8496: 8443:which consists of the powers of 5611:topological quantum field theory 5351: 5050: 4976: 4963: 4925: 4912: 4874: 4776:), with a dimension shift of 1: 4736: 4602: 4534: 4521: 4486: 4473: 3816: 3757: 2250:about a unique axis–angle pair. 1895:). Its finite subgroups are the 1408:is the subgroup of the elements 50: 12601:Graduate Studies in Mathematics 12525: 12299: 12267: 12254: 12118:orthonormal bases (orthonormal 10556:of two of the four families of 8359:{\displaystyle y=x^{-1}=x^{q},} 7498: 7473: 5859:The orthogonal group anchors a 4064:of the sequence of inclusions: 3733:blocks have no remaining final 3424:chosen to make the determinant 3367: 3361: 2963:nonsingular algebraic varieties 1354:{\displaystyle \|g(x)\|=\|x\|.} 12512: 12460: 12396: 12384: 12372: 12360: 12339: 11991: 11977: 11958:special orthogonal Lie algebra 11730:point groups in two dimensions 11509: 11503: 11472: 11466: 11435: 11429: 11398: 11392: 11361: 11355: 11324: 11318: 11303: 11294: 11276: 11270: 11255: 11249: 11186: 11180: 11154: 11148: 11131: 11122: 11071: 11065: 11051: 11045: 11034: 11025: 10998: 10986: 10975: 10969: 10843: 10831: 10795: 10783: 10774: 10762: 10759: 10714: 10699: 10693: 10678: 10544:special orthogonal Lie algebra 10525: 10513: 10483: 10471: 10407: 10299: 10284: 10263: 10250: 9651: 9639: 9617: 9602: 9476: 9464: 9442: 9427: 9307: 9286: 9028: 9014: 9000: 8991: 8928: 8911: 8698: 8684: 8663: 8647: 8566: 8554: 8546: 8529: 8517: 8505: 8399: 8396: 8384: 8204: 8175: 8172: 8143: 7390:. This square root belongs to 5963: 5957: 5948: 5945: 5939: 5930: 5927: 5921: 5912: 5909: 5903: 5894: 5891: 5885: 5876: 5451: 5149: 5140: 5113: 5104: 5077: 5068: 5039: 5030: 5003: 4994: 4952: 4943: 4901: 4892: 4863: 4854: 4725: 4719: 4692: 4686: 4659: 4653: 4626: 4620: 4591: 4585: 4558: 4552: 4510: 4504: 4462: 4456: 4266: 4263: 4251: 4242: 4239: 4233: 4173: 4167: 4122: 4116: 4104: 4098: 4086: 4080: 3595: 2892: 2880: 2849: 2837: 2630: 2624: 2613: 2607: 2594: 2588: 2574: 2568: 2253: 1704:, and thus the determinant of 1533: 1527: 1518: 1512: 1503: 1491: 1488: 1482: 1330: 1324: 1103: 1091: 1068: 1056: 893:). The orthogonal group is an 719:Infinite dimensional Lie group 13: 1: 12605:American Mathematical Society 12554: 12160:Reflection through the origin 11864:These are all 2-to-1 covers. 10346:, which is simply the group 9859:. When the characteristic of 7995:This is an orthogonal matrix 6472:is not simply connected: For 6087:nondegenerate quadratic forms 5985:Eilenberg–MacLane space 5302: 4407:are 8-fold periodic, meaning 2407:reflection through the origin 1918:, for every positive integer 1805:is the identity matrix) is a 12332: 12220:list of finite simple groups 12090:The other Stiefel manifolds 12012:is the centerless form, and 11781:Covering and quotient groups 11564:and AAA (angle-angle-angle) 10416:corresponding to Lie groups 9869:whenever the determinant is 6547:Witt's decomposition theorem 5298:; this latter thus vanishes. 4317:of a point (thought of as a 4213:, and one has the following 3545:of the product homomorphism 2996:Maximal tori and Weyl groups 2929:. This implies that all its 1793:The group with two elements 1186:orthogonal group of the form 975:By extension, for any field 918:. The one that contains the 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 27:Type of group in mathematics 7: 12695:Encyclopedia of Mathematics 12198:indefinite orthogonal group 12143: 12035:principal homogeneous space 11846:projective orthogonal group 11758:Signed permutation matrices 9782:For orthogonal groups, the 7401:if the orthogonal group is 6358:complex orthogonal matrices 6318:variables is equivalent to 6081:Indefinite orthogonal group 3748: 1720:form a subgroup called the 1188:is the group of invertible 881:(an orthogonal matrix is a 217:List of group theory topics 10: 12766: 12647:Taylor, Donald E. (1992), 12434:Wilson, Robert A. (2009). 12026: 11584:conformal orthogonal group 11533: 10580:, while in even dimension 8598:is a primitive element of 6985:is any non-square scalar. 6710:), and the restriction of 6296:Of complex quadratic forms 6091:Sylvester's law of inertia 6078: 5995:, and are preceded by the 5811:can be interpreted as the 5784:From the point of view of 4058:homotopy groups of spheres 3270:, and the symmetric group 2220:and a pair of eigenvalues 1199:All orthogonal groups are 12483:Knus, Max-Albert (1991), 12225:list of simple Lie groups 12037:for the orthogonal group 11658:Similarly one can define 10000:is the bilinear form and 6763:is odd, the dimension of 6746:Chevalley–Warning theorem 5307:From general facts about 4015:the fundamental group is 2437:Symmetry group of spheres 2269:whose canonical form is 1305:; that is, endomorphisms 12595:Grove, Larry C. (2002), 12567:Rational Quadratic Forms 12535:, Theorem 6.6 and 14.16) 12436:The finite simple groups 12247: 12128:homogeneous spaces: any 10664:{\displaystyle \varphi } 8223:It follows that the map 5665:tautological line bundle 4323:perpendicular complement 4027:is the unique connected 3868:Low-dimensional topology 3420:with the last component 2400:Cartan–Dieudonné theorem 2240:Euler's rotation theorem 1758:is a normal subgroup of 1722:special orthogonal group 1633:Special orthogonal group 928:special orthogonal group 858:general orthogonal group 335:Elementary abelian group 212:Glossary of group theory 12750:Linear algebraic groups 12629:Hall, Brian C. (2015), 12351:symmetric bilinear form 12016:is in general neither. 11566:similarity of triangles 11562:congruence of triangles 10940:Lagrangian Grassmannian 10558:semisimple Lie algebras 10333:connecting homomorphism 6889:is congruent to either 6310:, every non-degenerate 6280:that is fundamental in 6085:Over the real numbers, 5825:Lagrangian Grassmannian 3049:block-diagonal matrices 2200:The element belongs to 1811:characteristic subgroup 1282:is the subgroup of the 1266:to orthogonal vectors. 1206: 1170:symmetric bilinear form 991:matrix with entries in 12712:John Baez on Octonions 11998: 11793:, and thus has both a 11520: 11208: 11161: 11078: 11005: 10850: 10805: 10727: 10665: 10540:orthogonal Lie algebra 10532: 10490: 10309: 10008:Householder reflection 9745: 9708: 9570: 9533: 9395: 9358: 9256: 9178: 9105: 8955: 8864: 8805: 8751: 8585: 8418: 8360: 8312:Frobenius automorphism 8214: 8048: 7986: 7732: 7635: 7535: 7348: 7187: 7128: 6976: 6840: 6799: 6704: 6624: 6534:if their matrices are 5970: 5290:, which surjects onto 5185:Low-dimensional groups 5170: 4764:clutching construction 4748: 4286: 4180: 4160: 3727: 3625: 3514: 3411: 3234: 3129: 2965:of the same dimension 2931:irreducible components 2908: 2648: 2325: 2181:This results from the 2158: 2075: 1683: 1543: 1469:, which is defined by 1355: 1213:Euclidean vector space 1160: 999:orthogonal matrix over 860:, by analogy with the 751:Linear algebraic group 493: 468: 431: 12264:and are not discrete. 12231:Representation theory 11999: 11707:finite Coxeter groups 11521: 11222:The orthogonal group 11209: 11162: 11079: 11006: 10851: 10806: 10728: 10666: 10533: 10491: 10310: 9746: 9682: 9571: 9507: 9396: 9338: 9257: 9179: 9106: 8956: 8865: 8806: 8752: 8586: 8419: 8361: 8215: 8049: 7987: 7733: 7636: 7536: 7349: 7188: 7129: 7023:The orthogonal group 6977: 6841: 6800: 6748:asserts that, over a 6705: 6625: 6363:As in the real case, 6356:. It is the group of 6101:squares and a sum of 5981:short exact sequences 5971: 5483:have two components, 5323:always vanishes, and 5171: 4758:Relation to KO-theory 4749: 4287: 4181: 4140: 3728: 3626: 3515: 3412: 3311:on the diagonal. The 3235: 3130: 2976:. The component with 2927:complete intersection 2909: 2766:The orthogonal group 2657:In higher dimension, 2649: 2441:The orthogonal group 2326: 2159: 2076: 1684: 1544: 1356: 1270:In Euclidean geometry 1161: 879:matrix multiplication 494: 469: 432: 12745:Euclidean symmetries 11964: 11740:Permutation matrices 11628:multiplicative group 11237: 11172: 11114: 11017: 10961: 10818: 10747: 10675: 10655: 10500: 10461: 10364:-valued points, to 10244: 10231:short exact sequence 10206:, or twisted forms ( 10134:multiplicative group 9581: 9406: 9272: 9188: 9118: 8975: 8879: 8815: 8764: 8631: 8488: 8381: 8318: 8125: 7999: 7745: 7645: 7548: 7455: 7293: 7138: 7073: 6928: 6869:If the dimension of 6809: 6771: 6759:If the dimension of 6659: 6560: 6453:is twice that). For 6447:(the dimension over 5870: 5364:confusing or unclear 4837: 4439: 4224: 4071: 3770:confusing or unclear 3684: 3553: 3443: 3322: 3195: 3058: 2828: 2740:connected components 2551: 2494:is isomorphic (as a 2276: 2261:are the elements of 2231:The special case of 2109: 1953: 1888:is not abelian when 1732:, consisting of all 1652: 1476: 1373:Euclidean isometries 1371:be the group of the 1315: 1297:, consisting of all 1284:general linear group 1047: 1030:general linear group 916:connected components 862:general linear group 481: 456: 419: 12345:For base fields of 12149:Specific transforms 12083:basis to any other 11098:2-out-of-3 property 10636:spin representation 10560:: in odd dimension 10221:(more accurately a 7420:otherwise. Setting 6752:, the dimension of 5786:symplectic geometry 5623:be any of the four 5372:clarify the section 4307:on the unit sphere 3778:clarify the section 2917:which implies that 2762:As algebraic groups 2471:, this is just the 2381:A product of up to 2084:where the matrices 1938:For any element of 1643:orthogonal matrices 1444:There is a natural 1396:stabilizer subgroup 875:orthogonal matrices 125:Group homomorphisms 35:Algebraic structure 12690:"Orthogonal group" 12305:In odd dimension, 12262:accumulation point 11994: 11693:Discrete subgroups 11666:; this is always: 11516: 11514: 11204: 11157: 11074: 11011:– preserve an axis 11001: 10846: 10801: 10723: 10661: 10554:compact real forms 10528: 10486: 10305: 10145:multiplication by 10066:In odd dimensions 9942:hypoabelian groups 9901:. Each element in 9741: 9566: 9391: 9252: 9174: 9101: 9099: 9088: 8951: 8949: 8860: 8801: 8747: 8745: 8734: 8581: 8579: 8414: 8356: 8314:. This meant that 8210: 8044: 8035: 7982: 7973: 7728: 7722: 7631: 7625: 7531: 7344: 7335: 7183: 7177: 7124: 7115: 7059: 6972: 6971: 6962: 6836: 6835: 6826: 6795: 6794: 6788: 6733:for every nonzero 6700: 6699: 6693: 6620: 6517:Over finite fields 6089:are classified by 5966: 5166: 5164: 4744: 4742: 4282: 4176: 3964:algebraic topology 3723: 3717: 3652:is represented in 3621: 3510: 3431:The Weyl group of 3407: 3398: 3355: 3242:elementary abelian 3230: 3190:semidirect product 3125: 3116: 2935:embedded component 2904: 2793:symmetric matrices 2752:identity component 2683:topological spaces 2669:structures of the 2644: 2635: 2498:Lie group) to the 2361:In dimension two, 2354:with respect to a 2321: 2312: 2154: 2145: 2071: 2062: 2058: 2007: 1776:semidirect product 1679: 1611:semidirect product 1563:(for details, see 1539: 1446:group homomorphism 1351: 1301:that preserve the 1264:orthogonal vectors 1156: 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 12614:978-0-8218-2019-3 12445:978-1-84800-987-5 12393:Proposition 13.10 12064:orthonormal bases 11722:polyhedral groups 11711:regular polytopes 10538:, and called the 10227:Clifford algebras 10186:Galois cohomology 10184:In the theory of 10080:symplectic groups 9897:with determinant 9828:is the identity ( 9784:Dickson invariant 9778:Dickson invariant 9774:must be removed. 9247: 9172: 8855: 8799: 8455:primitive element 8373:. For every such 7526: 7496: 7057: 6497:cyclic of order 2 6481:fundamental group 6282:relativity theory 6135:entries equal to 6127:entries equal to 5983:starting with an 5625:division algebras 5404: 5403: 5396: 5223:and hence stably) 4774:up to isomorphism 4203:homogeneous space 3991:cyclic of order 2 3975:fundamental group 3958:Fundamental group 3865: 3864: 3857: 3810: 3809: 3802: 3365: 3173:on the diagonal. 2899: 2856: 2809:This proves that 2191:complex conjugate 1827:is even, also of 1734:direct isometries 1639:orthonormal basis 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 12757: 12718: 12703: 12677: 12643: 12625: 12591: 12548: 12542: 12536: 12529: 12523: 12516: 12510: 12509: 12480: 12471: 12464: 12458: 12457: 12431: 12422: 12421: 12419: 12418: 12400: 12394: 12388: 12382: 12376: 12370: 12364: 12358: 12343: 12326: 12324: 12316: 12303: 12297: 12295: 12291: 12271: 12265: 12258: 12208:symplectic group 12187: 12179: 12171:rotation group, 12139: 12133: 12123: 12113: 12103: 12072: 12061: 12047:Stiefel manifold 12044: 12029:Stiefel manifold 12015: 12011: 12007: 12003: 12001: 12000: 11995: 11990: 11976: 11975: 11955: 11947: 11939: 11932:. These groups, 11931: 11923: 11915: 11903: 11885: 11859: 11840: 11824: 11801:, respectively: 11787:simply connected 11774:integer matrices 11771: 11753: 11688: 11665: 11654: 11639: 11635: 11625: 11614: 11595: 11581: 11573: 11525: 11523: 11522: 11517: 11515: 11502: 11490: 11489: 11484: 11465: 11453: 11452: 11447: 11428: 11416: 11415: 11410: 11391: 11379: 11378: 11373: 11354: 11342: 11341: 11336: 11317: 11293: 11269: 11248: 11229: 11213: 11211: 11210: 11205: 11203: 11202: 11197: 11179: 11166: 11164: 11163: 11158: 11147: 11121: 11107: 11091: 11083: 11081: 11080: 11075: 11064: 11044: 11024: 11010: 11008: 11007: 11002: 10985: 10968: 10937: 10924:symmetric spaces 10917: 10901: 10867: 10855: 10853: 10852: 10847: 10830: 10829: 10810: 10808: 10807: 10802: 10739: 10732: 10730: 10729: 10724: 10670: 10668: 10667: 10662: 10650: 10646: 10625: 10609: 10602:Since the group 10598: 10588: 10579: 10568: 10551: 10537: 10535: 10534: 10529: 10512: 10511: 10495: 10493: 10492: 10487: 10470: 10469: 10452: 10440:consists of the 10439: 10427: 10403: 10397: 10388: 10377: 10363: 10357: 10345: 10326: 10314: 10312: 10311: 10306: 10298: 10297: 10296: 10283: 10282: 10277: 10262: 10261: 10235:algebraic groups 10205: 10190:algebraic groups 10171: 10160: 10155:to the image of 10154: 10141: 10131: 10117: 10095: 10088: 10078:are the same as 10073: 10062: 10045: 10015: 10005: 9999: 9993: 9963: 9957: 9920: 9916: 9913:has determinant 9912: 9900: 9896: 9884: 9872: 9868: 9864: 9858: 9839: 9827: 9821: 9799: 9795: 9773: 9771: 9757: 9750: 9748: 9747: 9742: 9737: 9733: 9726: 9725: 9707: 9696: 9681: 9677: 9670: 9669: 9655: 9654: 9624: 9620: 9598: 9597: 9575: 9573: 9572: 9567: 9562: 9558: 9551: 9550: 9532: 9521: 9506: 9502: 9495: 9494: 9480: 9479: 9449: 9445: 9423: 9422: 9400: 9398: 9397: 9392: 9387: 9383: 9376: 9375: 9357: 9352: 9337: 9336: 9335: 9334: 9314: 9310: 9261: 9259: 9258: 9253: 9248: 9246: 9238: 9237: 9236: 9218: 9217: 9204: 9183: 9181: 9180: 9175: 9173: 9168: 9167: 9166: 9148: 9147: 9134: 9110: 9108: 9107: 9102: 9100: 9093: 9092: 9013: 8986: 8967: 8960: 8958: 8957: 8952: 8950: 8943: 8942: 8906: 8895: 8890: 8869: 8867: 8866: 8861: 8856: 8854: 8846: 8845: 8844: 8825: 8810: 8808: 8807: 8802: 8800: 8795: 8794: 8793: 8774: 8756: 8754: 8753: 8748: 8746: 8739: 8738: 8683: 8682: 8677: 8659: 8658: 8642: 8623: 8612: 8608: 8597: 8590: 8588: 8587: 8582: 8580: 8573: 8572: 8524: 8504: 8499: 8474: 8467: 8452: 8448: 8442: 8431: 8423: 8421: 8420: 8415: 8376: 8372: 8365: 8363: 8362: 8357: 8352: 8351: 8339: 8338: 8305: 8301: 8297: 8282: 8278: 8267: 8252: 8241: 8219: 8217: 8216: 8211: 8203: 8202: 8187: 8186: 8171: 8170: 8155: 8154: 8117: 8085: 8053: 8051: 8050: 8045: 8040: 8039: 7991: 7989: 7988: 7983: 7978: 7977: 7970: 7969: 7960: 7959: 7947: 7946: 7937: 7936: 7922: 7921: 7912: 7911: 7896: 7895: 7886: 7885: 7869: 7868: 7859: 7858: 7846: 7845: 7836: 7835: 7824: 7823: 7814: 7813: 7798: 7797: 7788: 7787: 7767: 7766: 7757: 7756: 7737: 7735: 7734: 7729: 7727: 7726: 7719: 7718: 7707: 7706: 7690: 7689: 7678: 7677: 7657: 7656: 7640: 7638: 7637: 7632: 7630: 7629: 7622: 7621: 7610: 7609: 7593: 7592: 7581: 7580: 7560: 7559: 7540: 7538: 7537: 7532: 7527: 7525: 7517: 7506: 7497: 7492: 7481: 7447: 7433: 7419: 7408: 7400: 7389: 7385: 7378: 7374: 7367: 7353: 7351: 7350: 7345: 7340: 7339: 7285: 7278: 7268: 7258: 7247: 7243: 7239: 7235: 7221: 7210: 7199: 7192: 7190: 7189: 7184: 7182: 7181: 7133: 7131: 7130: 7125: 7120: 7119: 7068: 7053: 7046: 7030: 7019: 7007: 6995: 6991: 6984: 6981: 6979: 6978: 6973: 6967: 6966: 6924:is congruent to 6923: 6919: 6915: 6911: 6907: 6903: 6899: 6892: 6888: 6884: 6880: 6876: 6872: 6865: 6861: 6849: 6845: 6843: 6842: 6837: 6831: 6830: 6804: 6802: 6801: 6796: 6793: 6792: 6766: 6762: 6756:is at most two. 6755: 6740: 6736: 6732: 6717: 6713: 6709: 6707: 6706: 6701: 6698: 6697: 6654: 6647: 6642:hyperbolic plane 6639: 6629: 6627: 6626: 6621: 6610: 6609: 6591: 6590: 6578: 6577: 6552: 6545:More precisely, 6512: 6506: 6494: 6478: 6471: 6459: 6452: 6446: 6440: 6429: 6417: 6402: 6391:; it is denoted 6390: 6378: 6374: 6355: 6343: 6335: 6317: 6305: 6291: 6287: 6275: 6268: 6255: 6243: 6231: 6216: 6212: 6208: 6189: 6169: 6150: 6138: 6134: 6130: 6126: 6118: 6104: 6100: 6096: 6059: 6040: 6021: 6002: 5975: 5973: 5972: 5967: 5850: 5834: 5822: 5810: 5780:is generated by 5779: 5766:is generated by 5765: 5752:is generated by 5751: 5738:is generated by 5737: 5722: 5712: 5702: 5689: 5676: 5662: 5653: 5645: 5637: 5631: 5622: 5608: 5588: 5564: 5540: 5510: 5496: 5482: 5475: 5465: 5458:Bott periodicity 5443: 5426: 5416: 5399: 5392: 5388: 5385: 5379: 5355: 5354: 5347: 5334: 5322: 5297: 5289: 5271: 5247: 5222: 5214: 5175: 5173: 5172: 5167: 5165: 5139: 5138: 5103: 5102: 5067: 5066: 5053: 5029: 5028: 4993: 4992: 4979: 4971: 4966: 4942: 4941: 4928: 4920: 4915: 4891: 4890: 4877: 4853: 4852: 4829: 4822: 4800: 4771: 4753: 4751: 4750: 4745: 4743: 4739: 4718: 4717: 4685: 4684: 4652: 4651: 4619: 4618: 4605: 4584: 4583: 4551: 4550: 4537: 4529: 4524: 4503: 4502: 4489: 4481: 4476: 4455: 4454: 4431: 4406: 4400: 4388:Bott periodicity 4382: 4371: 4345: 4336: 4312: 4302: 4291: 4289: 4288: 4283: 4278: 4277: 4212: 4200: 4185: 4183: 4182: 4177: 4159: 4154: 4055: 4026: 4014: 4003: 3988: 3972: 3952: 3932: 3927: 3918: 3911: 3903: 3898: 3885: 3860: 3853: 3849: 3846: 3840: 3820: 3819: 3812: 3805: 3798: 3794: 3791: 3785: 3761: 3760: 3753: 3744: 3736: 3732: 3730: 3729: 3724: 3722: 3721: 3679: 3671: 3659: 3651: 3643: 3630: 3628: 3627: 3622: 3620: 3619: 3607: 3606: 3594: 3590: 3589: 3588: 3570: 3569: 3548: 3540: 3527: 3519: 3517: 3516: 3511: 3509: 3508: 3496: 3495: 3474: 3473: 3461: 3460: 3439:is the subgroup 3438: 3427: 3423: 3416: 3414: 3413: 3408: 3403: 3402: 3366: 3363: 3360: 3359: 3314: 3310: 3306: 3297: 3289: 3282: 3278: 3265: 3258: 3254: 3239: 3237: 3236: 3231: 3229: 3228: 3216: 3215: 3187: 3172: 3168: 3160: 3152: 3148: 3134: 3132: 3131: 3126: 3121: 3120: 3113: 3112: 3102: 3094: 3088: 3080: 3078: 3077: 3046: 3038: 3027: 3020: 3016: 2991: 2983: 2975: 2960: 2952: 2944: 2924: 2913: 2911: 2910: 2905: 2900: 2895: 2875: 2870: 2869: 2857: 2852: 2832: 2816: 2805: 2795:, this provides 2790: 2777: 2773: 2749: 2737: 2729: 2708: 2700: 2680: 2672: 2664: 2653: 2651: 2650: 2645: 2640: 2639: 2543: 2535: 2508: 2502:, also known as 2493: 2489: 2470: 2461: 2448: 2432: 2426: 2418: 2394: 2386: 2377: 2370: 2349: 2337: 2330: 2328: 2327: 2322: 2317: 2316: 2268: 2245: 2237: 2227: 2223: 2219: 2215: 2211: 2207: 2196: 2183:spectral theorem 2177: 2163: 2161: 2160: 2155: 2150: 2149: 2101: 2080: 2078: 2077: 2072: 2067: 2066: 2059: 2048: 2047: 2044: 2038: 2035: 2034: 2008: 2004: 2003: 1993: 1992: 1989: 1983: 1980: 1979: 1977: 1976: 1945: 1929: 1925: 1921: 1915: 1908: 1894: 1887: 1875: 1868: 1860: 1849:is the internal 1848: 1840: 1834: 1826: 1820: 1804: 1800: 1785: 1773: 1765: 1757: 1743: 1731: 1719: 1715: 1711: 1707: 1703: 1699: 1688: 1686: 1685: 1680: 1669: 1668: 1667: 1628: 1620: 1605: 1593: 1581: 1562: 1548: 1546: 1545: 1540: 1468: 1460: 1452: 1440: 1432: 1418: 1407: 1389: 1383: 1370: 1360: 1358: 1357: 1352: 1310: 1296: 1281: 1261: 1255: 1233: 1225: 1219: 1201:algebraic groups 1165: 1163: 1162: 1157: 1152: 1148: 1141: 1140: 1139: 1120: 1119: 1118: 1042: 1027: 1015: 1005: 996: 990: 980: 971: 967: 961: 955: 937: 920:identity element 913: 873: 851: 833: 825: 818:orthogonal group 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 238: 65: 64: 54: 41: 30: 29: 21: 12765: 12764: 12760: 12759: 12758: 12756: 12755: 12754: 12740:Quadratic forms 12725: 12724: 12716: 12688: 12685: 12680: 12659: 12641: 12615: 12581: 12563:Cassels, J.W.S. 12557: 12552: 12551: 12543: 12539: 12530: 12526: 12517: 12513: 12499: 12491:, p. 224, 12489:Springer-Verlag 12481: 12474: 12465: 12461: 12446: 12432: 12425: 12416: 12414: 12401: 12397: 12389: 12385: 12377: 12373: 12365: 12361: 12344: 12340: 12335: 12330: 12329: 12318: 12306: 12304: 12300: 12293: 12273: 12272: 12268: 12259: 12255: 12250: 12233: 12216: 12214:Lists of groups 12194: 12183: 12173: 12168: 12166:Specific groups 12151: 12146: 12135: 12129: 12119: 12105: 12096: 12091: 12068: 12054: 12049: 12038: 12031: 12025: 12013: 12009: 12005: 11986: 11968: 11967: 11965: 11962: 11961: 11949: 11941: 11933: 11925: 11917: 11909: 11893: 11875: 11849: 11830: 11826: 11814: 11810: 11783: 11770: 11764: 11752: 11746: 11695: 11667: 11659: 11641: 11637: 11631: 11616: 11601: 11591: 11575: 11569: 11548:, and are thus 11538: 11536:Conformal group 11532: 11530:Conformal group 11513: 11512: 11498: 11491: 11485: 11480: 11479: 11476: 11475: 11461: 11454: 11448: 11443: 11442: 11439: 11438: 11424: 11417: 11411: 11406: 11405: 11402: 11401: 11387: 11380: 11374: 11369: 11368: 11365: 11364: 11350: 11343: 11337: 11332: 11331: 11328: 11327: 11313: 11306: 11283: 11280: 11279: 11265: 11258: 11244: 11240: 11238: 11235: 11234: 11223: 11220: 11218:Lie supergroups 11198: 11193: 11192: 11175: 11173: 11170: 11169: 11137: 11117: 11115: 11112: 11111: 11101: 11085: 11057: 11040: 11020: 11018: 11015: 11014: 10981: 10964: 10962: 10959: 10958: 10948: 10927: 10903: 10887: 10886:The inclusions 10881: 10857: 10822: 10821: 10819: 10816: 10815: 10748: 10745: 10744: 10734: 10676: 10673: 10672: 10656: 10653: 10652: 10648: 10642: 10619: 10603: 10590: 10587: 10581: 10570: 10567: 10561: 10547: 10504: 10503: 10501: 10498: 10497: 10465: 10464: 10462: 10459: 10458: 10444: 10429: 10417: 10410: 10399: 10393: 10386: 10379: 10375: 10365: 10359: 10351: 10347: 10343: 10336: 10325: 10319: 10292: 10288: 10287: 10278: 10267: 10266: 10257: 10253: 10245: 10242: 10241: 10201: 10198:quadratic forms 10182: 10162: 10156: 10150: 10137: 10122: 10113: 10106: 10104:The spinor norm 10090: 10083: 10067: 10054: 10017: 10011: 10001: 9995: 9965: 9959: 9958:takes a vector 9953: 9938: 9926:Clifford groups 9918: 9914: 9902: 9898: 9886: 9874: 9870: 9866: 9860: 9848: 9837: 9823: 9804: 9797: 9787: 9780: 9761: 9759: 9755: 9718: 9714: 9713: 9709: 9697: 9686: 9665: 9661: 9660: 9656: 9635: 9631: 9593: 9589: 9588: 9584: 9582: 9579: 9578: 9543: 9539: 9538: 9534: 9522: 9511: 9490: 9486: 9485: 9481: 9460: 9456: 9418: 9414: 9413: 9409: 9407: 9404: 9403: 9368: 9364: 9363: 9359: 9353: 9342: 9330: 9326: 9325: 9321: 9279: 9275: 9273: 9270: 9269: 9263: 9239: 9226: 9222: 9210: 9206: 9205: 9203: 9189: 9186: 9185: 9156: 9152: 9140: 9136: 9135: 9133: 9119: 9116: 9115: 9098: 9097: 9087: 9086: 9075: 9060: 9059: 9048: 9032: 9031: 9024: 9018: 9017: 9009: 8987: 8982: 8978: 8976: 8973: 8972: 8965: 8948: 8947: 8935: 8931: 8924: 8918: 8917: 8907: 8902: 8891: 8886: 8882: 8880: 8877: 8876: 8847: 8837: 8833: 8826: 8824: 8816: 8813: 8812: 8786: 8782: 8775: 8773: 8765: 8762: 8761: 8744: 8743: 8733: 8732: 8727: 8718: 8717: 8712: 8702: 8701: 8694: 8688: 8687: 8678: 8673: 8672: 8654: 8650: 8643: 8638: 8634: 8632: 8629: 8628: 8622: 8614: 8610: 8607: 8599: 8595: 8578: 8577: 8553: 8549: 8542: 8536: 8535: 8525: 8520: 8500: 8495: 8491: 8489: 8486: 8485: 8472: 8466: 8458: 8450: 8444: 8437: 8425: 8382: 8379: 8378: 8374: 8367: 8347: 8343: 8331: 8327: 8319: 8316: 8315: 8303: 8299: 8287: 8286:In the case of 8280: 8277: 8269: 8257: 8256:In the case of 8251: 8243: 8224: 8198: 8194: 8182: 8178: 8166: 8162: 8150: 8146: 8126: 8123: 8122: 8116: 8110: 8103: 8097: 8087: 8084: 8078: 8071: 8065: 8055: 8034: 8033: 8028: 8019: 8018: 8013: 8003: 8002: 8000: 7997: 7996: 7972: 7971: 7965: 7961: 7955: 7951: 7942: 7938: 7932: 7928: 7923: 7917: 7913: 7907: 7903: 7891: 7887: 7881: 7877: 7871: 7870: 7864: 7860: 7854: 7850: 7841: 7837: 7831: 7827: 7825: 7819: 7815: 7809: 7805: 7793: 7789: 7783: 7779: 7772: 7771: 7762: 7758: 7752: 7748: 7746: 7743: 7742: 7721: 7720: 7714: 7710: 7708: 7702: 7698: 7692: 7691: 7685: 7681: 7679: 7673: 7669: 7662: 7661: 7652: 7648: 7646: 7643: 7642: 7624: 7623: 7617: 7613: 7611: 7605: 7601: 7595: 7594: 7588: 7584: 7582: 7576: 7572: 7565: 7564: 7555: 7551: 7549: 7546: 7545: 7518: 7507: 7505: 7482: 7480: 7456: 7453: 7452: 7435: 7421: 7418: 7410: 7402: 7399: 7391: 7387: 7383: 7376: 7369: 7358: 7334: 7333: 7325: 7313: 7312: 7307: 7297: 7296: 7294: 7291: 7290: 7280: 7270: 7260: 7257: 7249: 7245: 7241: 7237: 7223: 7212: 7201: 7194: 7176: 7175: 7170: 7164: 7163: 7158: 7148: 7147: 7139: 7136: 7135: 7114: 7113: 7105: 7099: 7098: 7093: 7083: 7082: 7074: 7071: 7070: 7062: 7048: 7036: 7024: 7009: 6997: 6993: 6989: 6982: 6961: 6960: 6955: 6949: 6948: 6943: 6933: 6932: 6929: 6926: 6925: 6921: 6917: 6913: 6909: 6905: 6901: 6894: 6890: 6886: 6882: 6878: 6874: 6870: 6863: 6851: 6847: 6825: 6824: 6814: 6813: 6810: 6807: 6806: 6787: 6786: 6776: 6775: 6772: 6769: 6768: 6764: 6760: 6753: 6738: 6734: 6723: 6715: 6711: 6692: 6691: 6686: 6680: 6679: 6674: 6664: 6663: 6660: 6657: 6656: 6653: 6649: 6645: 6638: 6634: 6605: 6601: 6586: 6582: 6573: 6569: 6561: 6558: 6557: 6550: 6528:quadratic forms 6524: 6519: 6508: 6500: 6484: 6473: 6461: 6454: 6448: 6442: 6431: 6419: 6407: 6392: 6380: 6376: 6364: 6345: 6341: 6338:quadratic space 6334: 6325: 6319: 6315: 6308:complex numbers 6301: 6300:Over the field 6298: 6289: 6285: 6273: 6258: 6245: 6233: 6221: 6214: 6210: 6194: 6171: 6159: 6140: 6136: 6132: 6128: 6124: 6121:diagonal matrix 6106: 6102: 6098: 6094: 6083: 6077: 6062: 6057: 6043: 6038: 6024: 6019: 6005: 6000: 5997:fivebrane group 5871: 5868: 5867: 5861:Whitehead tower 5857: 5855:Whitehead tower 5844: 5840: 5836: 5828: 5820: 5816: 5801: 5793: 5789: 5773: 5769: 5759: 5755: 5745: 5741: 5731: 5727: 5714: 5704: 5691: 5678: 5671: 5669:projective line 5660: 5655: 5647: 5639: 5633: 5627: 5618: 5599: 5595: 5575: 5571: 5551: 5547: 5531: 5527: 5523:In a nutshell: 5521: 5498: 5484: 5477: 5471: 5469: 5461: 5454: 5432: 5428: 5422: 5410: 5406: 5400: 5389: 5383: 5380: 5369: 5356: 5352: 5345: 5328: 5324: 5316: 5312: 5305: 5295: 5291: 5287: 5279: 5275: 5253: 5238: 5230: 5226: 5220: 5205: 5197: 5193: 5187: 5182: 5163: 5162: 5152: 5134: 5130: 5127: 5126: 5116: 5098: 5094: 5091: 5090: 5080: 5062: 5058: 5055: 5054: 5049: 5042: 5024: 5020: 5017: 5016: 5006: 4988: 4984: 4981: 4980: 4975: 4967: 4962: 4955: 4937: 4933: 4930: 4929: 4924: 4916: 4911: 4904: 4886: 4882: 4879: 4878: 4873: 4866: 4848: 4844: 4840: 4838: 4835: 4834: 4828: 4824: 4802: 4794: 4783: 4777: 4767: 4760: 4741: 4740: 4735: 4728: 4713: 4709: 4706: 4705: 4695: 4680: 4676: 4673: 4672: 4662: 4647: 4643: 4640: 4639: 4629: 4614: 4610: 4607: 4606: 4601: 4594: 4579: 4575: 4572: 4571: 4561: 4546: 4542: 4539: 4538: 4533: 4525: 4520: 4513: 4498: 4494: 4491: 4490: 4485: 4477: 4472: 4465: 4450: 4446: 4442: 4440: 4437: 4436: 4425: 4415: 4408: 4402: 4391: 4373: 4365: 4355: 4349: 4339: 4326: 4308: 4296: 4273: 4269: 4225: 4222: 4221: 4206: 4194: 4155: 4144: 4072: 4069: 4068: 4049: 4043: 4041:homotopy groups 4039:Generally, the 4037: 4035:Homotopy groups 4024: 4017:infinite cyclic 4009: 4006:universal cover 3997: 3978: 3967: 3960: 3938: 3930: 3920: 3914: 3905: 3901: 3896: 3880: 3870: 3861: 3850: 3844: 3841: 3833:help improve it 3830: 3821: 3817: 3806: 3795: 3789: 3786: 3775: 3762: 3758: 3751: 3738: 3734: 3716: 3715: 3710: 3704: 3703: 3698: 3688: 3687: 3685: 3682: 3681: 3673: 3661: 3653: 3645: 3641: 3632: 3615: 3611: 3602: 3598: 3584: 3580: 3565: 3561: 3560: 3556: 3554: 3551: 3550: 3546: 3538: 3529: 3521: 3504: 3500: 3491: 3487: 3469: 3465: 3450: 3446: 3444: 3441: 3440: 3432: 3425: 3421: 3397: 3396: 3391: 3385: 3384: 3379: 3369: 3368: 3362: 3354: 3353: 3348: 3342: 3341: 3336: 3326: 3325: 3323: 3320: 3319: 3312: 3308: 3304: 3299: 3291: 3284: 3280: 3276: 3271: 3260: 3256: 3252: 3249:symmetric group 3224: 3220: 3211: 3207: 3196: 3193: 3192: 3181: 3170: 3162: 3154: 3150: 3147: 3139: 3115: 3114: 3108: 3104: 3101: 3095: 3093: 3086: 3085: 3079: 3073: 3069: 3062: 3061: 3059: 3056: 3055: 3040: 3032: 3022: 3018: 3012: 2998: 2985: 2977: 2966: 2954: 2946: 2938: 2918: 2876: 2874: 2865: 2861: 2833: 2831: 2829: 2826: 2825: 2810: 2796: 2779: 2775: 2767: 2764: 2756:identity matrix 2743: 2731: 2720: 2702: 2694: 2691: 2689:Group structure 2674: 2670: 2658: 2634: 2633: 2616: 2598: 2597: 2577: 2555: 2554: 2552: 2549: 2548: 2541: 2514: 2511:complex numbers 2503: 2491: 2487: 2465: 2455: 2442: 2439: 2428: 2420: 2410: 2388: 2382: 2372: 2366: 2339: 2335: 2311: 2310: 2305: 2299: 2298: 2293: 2280: 2279: 2277: 2274: 2273: 2262: 2256: 2243: 2232: 2225: 2221: 2217: 2213: 2209: 2201: 2194: 2168: 2144: 2143: 2138: 2129: 2128: 2123: 2113: 2112: 2110: 2107: 2106: 2100: 2091: 2085: 2061: 2060: 2057: 2056: 2045: 2043: 2036: 2033: 2023: 2021: 2015: 2014: 2009: 2006: 2005: 1999: 1995: 1990: 1988: 1981: 1978: 1972: 1968: 1964: 1957: 1956: 1954: 1951: 1950: 1939: 1936: 1927: 1923: 1919: 1916:-fold rotations 1911: 1907: 1899: 1889: 1881: 1873: 1862: 1854: 1842: 1836: 1828: 1822: 1814: 1807:normal subgroup 1802: 1794: 1779: 1771: 1766:, as being the 1759: 1751: 1737: 1725: 1717: 1713: 1709: 1705: 1701: 1697: 1663: 1662: 1658: 1653: 1650: 1649: 1637:By choosing an 1635: 1622: 1614: 1599: 1587: 1584:normal subgroup 1577: 1558: 1477: 1474: 1473: 1462: 1454: 1448: 1434: 1420: 1409: 1399: 1385: 1379: 1377:Euclidean space 1364: 1316: 1313: 1312: 1306: 1286: 1275: 1274:The orthogonal 1272: 1257: 1251: 1240:uniform scaling 1227: 1221: 1215: 1209: 1135: 1134: 1130: 1114: 1113: 1109: 1078: 1074: 1048: 1045: 1044: 1032: 1017: 1007: 1001: 992: 982: 976: 969: 963: 957: 951: 931: 924:normal subgroup 909: 895:algebraic group 865: 847: 844:Euclidean space 827: 821: 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 484: 482: 479: 478: 459: 457: 454: 453: 422: 420: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 12763: 12753: 12752: 12747: 12742: 12737: 12723: 12722: 12714: 12709: 12704: 12684: 12683:External links 12681: 12679: 12678: 12657: 12644: 12640:978-3319134666 12639: 12626: 12613: 12592: 12579: 12571:Academic Press 12558: 12556: 12553: 12550: 12549: 12537: 12524: 12511: 12497: 12472: 12470:, p. 141) 12459: 12444: 12423: 12395: 12383: 12371: 12359: 12355:quadratic form 12347:characteristic 12337: 12336: 12334: 12331: 12328: 12327: 12298: 12266: 12252: 12251: 12249: 12246: 12245: 12244: 12242:Brauer algebra 12239: 12232: 12229: 12228: 12227: 12222: 12215: 12212: 12211: 12210: 12205: 12200: 12193: 12192:Related groups 12190: 12189: 12188: 12181: 12167: 12164: 12163: 12162: 12157: 12150: 12147: 12145: 12142: 12094: 12052: 12027:Main article: 12024: 12021: 11993: 11989: 11985: 11982: 11979: 11974: 11971: 11906: 11905: 11887: 11862: 11861: 11842: 11828: 11812: 11799:quotient group 11795:covering group 11782: 11779: 11778: 11777: 11766: 11755: 11748: 11694: 11691: 11626:} is the real 11598:direct product 11550:conformal maps 11534:Main article: 11531: 11528: 11527: 11526: 11511: 11508: 11505: 11501: 11497: 11494: 11492: 11488: 11483: 11478: 11477: 11474: 11471: 11468: 11464: 11460: 11457: 11455: 11451: 11446: 11441: 11440: 11437: 11434: 11431: 11427: 11423: 11420: 11418: 11414: 11409: 11404: 11403: 11400: 11397: 11394: 11390: 11386: 11383: 11381: 11377: 11372: 11367: 11366: 11363: 11360: 11357: 11353: 11349: 11346: 11344: 11340: 11335: 11330: 11329: 11326: 11323: 11320: 11316: 11312: 11309: 11307: 11305: 11302: 11299: 11296: 11292: 11289: 11286: 11282: 11281: 11278: 11275: 11272: 11268: 11264: 11261: 11259: 11257: 11254: 11251: 11247: 11243: 11242: 11219: 11216: 11215: 11214: 11201: 11196: 11191: 11188: 11185: 11182: 11178: 11167: 11156: 11153: 11150: 11146: 11143: 11140: 11136: 11133: 11130: 11127: 11124: 11120: 11109: 11073: 11070: 11067: 11063: 11060: 11056: 11053: 11050: 11047: 11043: 11039: 11036: 11033: 11030: 11027: 11023: 11012: 11000: 10997: 10994: 10991: 10988: 10984: 10980: 10977: 10974: 10971: 10967: 10947: 10944: 10880: 10879:Related groups 10877: 10845: 10842: 10839: 10836: 10833: 10828: 10825: 10812: 10811: 10800: 10797: 10794: 10791: 10788: 10785: 10782: 10779: 10776: 10773: 10770: 10767: 10764: 10761: 10758: 10755: 10752: 10722: 10719: 10716: 10713: 10710: 10707: 10704: 10701: 10698: 10695: 10692: 10689: 10686: 10683: 10680: 10660: 10583: 10563: 10527: 10524: 10521: 10518: 10515: 10510: 10507: 10485: 10482: 10479: 10476: 10473: 10468: 10442:skew-symmetric 10409: 10406: 10384: 10373: 10349: 10341: 10323: 10316: 10315: 10304: 10301: 10295: 10291: 10286: 10281: 10276: 10273: 10270: 10265: 10260: 10256: 10252: 10249: 10181: 10178: 10120:quotient group 10105: 10102: 10101: 10100: 10097: 10076:perfect fields 10064: 10047: 9937: 9934: 9834:characteristic 9779: 9776: 9752: 9751: 9740: 9736: 9732: 9729: 9724: 9721: 9717: 9712: 9706: 9703: 9700: 9695: 9692: 9689: 9685: 9680: 9676: 9673: 9668: 9664: 9659: 9653: 9650: 9647: 9644: 9641: 9638: 9634: 9630: 9627: 9623: 9619: 9616: 9613: 9610: 9607: 9604: 9601: 9596: 9592: 9587: 9576: 9565: 9561: 9557: 9554: 9549: 9546: 9542: 9537: 9531: 9528: 9525: 9520: 9517: 9514: 9510: 9505: 9501: 9498: 9493: 9489: 9484: 9478: 9475: 9472: 9469: 9466: 9463: 9459: 9455: 9452: 9448: 9444: 9441: 9438: 9435: 9432: 9429: 9426: 9421: 9417: 9412: 9401: 9390: 9386: 9382: 9379: 9374: 9371: 9367: 9362: 9356: 9351: 9348: 9345: 9341: 9333: 9329: 9324: 9320: 9317: 9313: 9309: 9306: 9303: 9300: 9297: 9294: 9291: 9288: 9285: 9282: 9278: 9251: 9245: 9242: 9235: 9232: 9229: 9225: 9221: 9216: 9213: 9209: 9202: 9199: 9196: 9193: 9171: 9165: 9162: 9159: 9155: 9151: 9146: 9143: 9139: 9132: 9129: 9126: 9123: 9112: 9111: 9096: 9091: 9085: 9082: 9079: 9076: 9074: 9071: 9068: 9065: 9062: 9061: 9058: 9055: 9052: 9049: 9047: 9044: 9041: 9038: 9037: 9035: 9030: 9027: 9025: 9023: 9020: 9019: 9016: 9012: 9008: 9005: 9002: 8999: 8996: 8993: 8990: 8988: 8985: 8981: 8980: 8962: 8961: 8946: 8941: 8938: 8934: 8930: 8927: 8925: 8923: 8920: 8919: 8916: 8913: 8910: 8908: 8905: 8901: 8898: 8894: 8889: 8885: 8884: 8859: 8853: 8850: 8843: 8840: 8836: 8832: 8829: 8823: 8820: 8798: 8792: 8789: 8785: 8781: 8778: 8772: 8769: 8758: 8757: 8742: 8737: 8731: 8728: 8726: 8723: 8720: 8719: 8716: 8713: 8711: 8708: 8707: 8705: 8700: 8697: 8695: 8693: 8690: 8689: 8686: 8681: 8676: 8671: 8668: 8665: 8662: 8657: 8653: 8649: 8646: 8644: 8641: 8637: 8636: 8618: 8603: 8592: 8591: 8576: 8571: 8568: 8565: 8562: 8559: 8556: 8552: 8548: 8545: 8543: 8541: 8538: 8537: 8534: 8531: 8528: 8526: 8523: 8519: 8516: 8513: 8510: 8507: 8503: 8498: 8494: 8493: 8462: 8434:roots of unity 8413: 8410: 8407: 8404: 8401: 8398: 8395: 8392: 8389: 8386: 8355: 8350: 8346: 8342: 8337: 8334: 8330: 8326: 8323: 8273: 8247: 8221: 8220: 8209: 8206: 8201: 8197: 8193: 8190: 8185: 8181: 8177: 8174: 8169: 8165: 8161: 8158: 8153: 8149: 8145: 8142: 8139: 8136: 8133: 8130: 8114: 8108: 8101: 8095: 8082: 8076: 8069: 8063: 8043: 8038: 8032: 8029: 8027: 8024: 8021: 8020: 8017: 8014: 8012: 8009: 8008: 8006: 7993: 7992: 7981: 7976: 7968: 7964: 7958: 7954: 7950: 7945: 7941: 7935: 7931: 7927: 7924: 7920: 7916: 7910: 7906: 7902: 7899: 7894: 7890: 7884: 7880: 7876: 7873: 7872: 7867: 7863: 7857: 7853: 7849: 7844: 7840: 7834: 7830: 7826: 7822: 7818: 7812: 7808: 7804: 7801: 7796: 7792: 7786: 7782: 7778: 7777: 7775: 7770: 7765: 7761: 7755: 7751: 7725: 7717: 7713: 7709: 7705: 7701: 7697: 7694: 7693: 7688: 7684: 7680: 7676: 7672: 7668: 7667: 7665: 7660: 7655: 7651: 7628: 7620: 7616: 7612: 7608: 7604: 7600: 7597: 7596: 7591: 7587: 7583: 7579: 7575: 7571: 7570: 7568: 7563: 7558: 7554: 7542: 7541: 7530: 7524: 7521: 7516: 7513: 7510: 7504: 7501: 7495: 7491: 7488: 7485: 7479: 7476: 7472: 7469: 7466: 7463: 7460: 7414: 7395: 7355: 7354: 7343: 7338: 7332: 7329: 7326: 7324: 7321: 7318: 7315: 7314: 7311: 7308: 7306: 7303: 7302: 7300: 7253: 7180: 7174: 7171: 7169: 7166: 7165: 7162: 7159: 7157: 7154: 7153: 7151: 7146: 7143: 7123: 7118: 7112: 7109: 7106: 7104: 7101: 7100: 7097: 7094: 7092: 7089: 7088: 7086: 7081: 7078: 7056: 7033:dihedral group 6970: 6965: 6959: 6956: 6954: 6951: 6950: 6947: 6944: 6942: 6939: 6938: 6936: 6834: 6829: 6823: 6820: 6819: 6817: 6791: 6785: 6782: 6781: 6779: 6696: 6690: 6687: 6685: 6682: 6681: 6678: 6675: 6673: 6670: 6669: 6667: 6651: 6636: 6631: 6630: 6619: 6616: 6613: 6608: 6604: 6600: 6597: 6594: 6589: 6585: 6581: 6576: 6572: 6568: 6565: 6523: 6520: 6518: 6515: 6330: 6323: 6312:quadratic form 6297: 6294: 6105:squares, with 6079:Main article: 6076: 6073: 6060: 6041: 6022: 6003: 5977: 5976: 5965: 5962: 5959: 5956: 5953: 5950: 5947: 5944: 5941: 5938: 5935: 5932: 5929: 5926: 5923: 5920: 5917: 5914: 5911: 5908: 5905: 5902: 5899: 5896: 5893: 5890: 5887: 5884: 5881: 5878: 5875: 5856: 5853: 5842: 5838: 5823:of the stable 5818: 5799: 5791: 5782: 5781: 5771: 5767: 5757: 5753: 5743: 5739: 5729: 5658: 5615: 5614: 5597: 5593: 5573: 5569: 5549: 5545: 5529: 5520: 5517: 5513:countably many 5467: 5453: 5450: 5430: 5408: 5402: 5401: 5359: 5357: 5350: 5344: 5343:Vector bundles 5341: 5326: 5314: 5304: 5301: 5300: 5299: 5293: 5285: 5277: 5273: 5236: 5228: 5224: 5203: 5195: 5186: 5183: 5181: 5178: 5177: 5176: 5161: 5158: 5155: 5153: 5151: 5148: 5145: 5142: 5137: 5133: 5129: 5128: 5125: 5122: 5119: 5117: 5115: 5112: 5109: 5106: 5101: 5097: 5093: 5092: 5089: 5086: 5083: 5081: 5079: 5076: 5073: 5070: 5065: 5061: 5057: 5056: 5052: 5048: 5045: 5043: 5041: 5038: 5035: 5032: 5027: 5023: 5019: 5018: 5015: 5012: 5009: 5007: 5005: 5002: 4999: 4996: 4991: 4987: 4983: 4982: 4978: 4974: 4970: 4965: 4961: 4958: 4956: 4954: 4951: 4948: 4945: 4940: 4936: 4932: 4931: 4927: 4923: 4919: 4914: 4910: 4907: 4905: 4903: 4900: 4897: 4894: 4889: 4885: 4881: 4880: 4876: 4872: 4869: 4867: 4865: 4862: 4859: 4856: 4851: 4847: 4843: 4842: 4826: 4789: 4779: 4759: 4756: 4755: 4754: 4738: 4734: 4731: 4729: 4727: 4724: 4721: 4716: 4712: 4708: 4707: 4704: 4701: 4698: 4696: 4694: 4691: 4688: 4683: 4679: 4675: 4674: 4671: 4668: 4665: 4663: 4661: 4658: 4655: 4650: 4646: 4642: 4641: 4638: 4635: 4632: 4630: 4628: 4625: 4622: 4617: 4613: 4609: 4608: 4604: 4600: 4597: 4595: 4593: 4590: 4587: 4582: 4578: 4574: 4573: 4570: 4567: 4564: 4562: 4560: 4557: 4554: 4549: 4545: 4541: 4540: 4536: 4532: 4528: 4523: 4519: 4516: 4514: 4512: 4509: 4506: 4501: 4497: 4493: 4492: 4488: 4484: 4480: 4475: 4471: 4468: 4466: 4464: 4461: 4458: 4453: 4449: 4445: 4444: 4421: 4410: 4361: 4351: 4293: 4292: 4281: 4276: 4272: 4268: 4265: 4262: 4259: 4256: 4253: 4250: 4247: 4244: 4241: 4238: 4235: 4232: 4229: 4187: 4186: 4175: 4172: 4169: 4166: 4163: 4158: 4153: 4150: 4147: 4143: 4139: 4136: 4133: 4130: 4127: 4124: 4121: 4118: 4115: 4112: 4109: 4106: 4103: 4100: 4097: 4094: 4091: 4088: 4085: 4082: 4079: 4076: 4045: 4036: 4033: 3959: 3956: 3955: 3954: 3942:(2) × SU(2) = 3935:doubly covered 3928: 3912: 3899: 3894: 3892:discrete space 3869: 3866: 3863: 3862: 3824: 3822: 3815: 3808: 3807: 3765: 3763: 3756: 3750: 3747: 3720: 3714: 3711: 3709: 3706: 3705: 3702: 3699: 3697: 3694: 3693: 3691: 3636: 3618: 3614: 3610: 3605: 3601: 3597: 3593: 3587: 3583: 3579: 3576: 3573: 3568: 3564: 3559: 3533: 3507: 3503: 3499: 3494: 3490: 3486: 3483: 3480: 3477: 3472: 3468: 3464: 3459: 3456: 3453: 3449: 3418: 3417: 3406: 3401: 3395: 3392: 3390: 3387: 3386: 3383: 3380: 3378: 3375: 3374: 3372: 3358: 3352: 3349: 3347: 3344: 3343: 3340: 3337: 3335: 3332: 3331: 3329: 3302: 3274: 3227: 3223: 3219: 3214: 3210: 3206: 3203: 3200: 3143: 3136: 3135: 3124: 3119: 3111: 3107: 3103: 3100: 3097: 3096: 3092: 3089: 3087: 3084: 3081: 3076: 3072: 3068: 3067: 3065: 2997: 2994: 2915: 2914: 2903: 2898: 2894: 2891: 2888: 2885: 2882: 2879: 2873: 2868: 2864: 2860: 2855: 2851: 2848: 2845: 2842: 2839: 2836: 2763: 2760: 2690: 2687: 2655: 2654: 2643: 2638: 2632: 2629: 2626: 2623: 2620: 2617: 2615: 2612: 2609: 2606: 2603: 2600: 2599: 2596: 2593: 2590: 2587: 2584: 2581: 2578: 2576: 2573: 2570: 2567: 2564: 2561: 2560: 2558: 2538:absolute value 2480:symmetry group 2451:symmetry group 2438: 2435: 2332: 2331: 2320: 2315: 2309: 2306: 2304: 2301: 2300: 2297: 2294: 2292: 2289: 2286: 2285: 2283: 2255: 2252: 2185:by regrouping 2165: 2164: 2153: 2148: 2142: 2139: 2137: 2134: 2131: 2130: 2127: 2124: 2122: 2119: 2118: 2116: 2096: 2089: 2082: 2081: 2070: 2065: 2055: 2052: 2049: 2046: 2042: 2039: 2037: 2032: 2029: 2026: 2025: 2022: 2020: 2017: 2016: 2013: 2010: 2002: 1998: 1994: 1991: 1987: 1984: 1982: 1975: 1971: 1967: 1966: 1963: 1962: 1960: 1935: 1934:Canonical form 1932: 1903: 1851:direct product 1748:of the space. 1690: 1689: 1678: 1675: 1672: 1666: 1661: 1657: 1634: 1631: 1550: 1549: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1493: 1490: 1487: 1484: 1481: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1329: 1326: 1323: 1320: 1303:Euclidean norm 1271: 1268: 1208: 1205: 1174:quadratic form 1155: 1151: 1147: 1144: 1138: 1133: 1129: 1126: 1123: 1117: 1112: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1077: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1052: 944:rotation group 930:, and denoted 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 9: 6: 4: 3: 2: 12762: 12751: 12748: 12746: 12743: 12741: 12738: 12736: 12733: 12732: 12730: 12721: 12715: 12713: 12710: 12708: 12705: 12701: 12697: 12696: 12691: 12687: 12686: 12676: 12672: 12668: 12664: 12660: 12658:3-88538-009-9 12654: 12650: 12645: 12642: 12636: 12632: 12627: 12624: 12620: 12616: 12610: 12606: 12602: 12598: 12593: 12590: 12586: 12582: 12580:0-12-163260-1 12576: 12572: 12568: 12564: 12560: 12559: 12547:, p. 178 12546: 12541: 12534: 12528: 12521: 12515: 12508: 12504: 12500: 12498:3-540-52117-8 12494: 12490: 12486: 12479: 12477: 12469: 12463: 12455: 12451: 12447: 12441: 12437: 12430: 12428: 12413: 12409: 12405: 12399: 12392: 12387: 12381:Section 1.3.4 12380: 12375: 12368: 12363: 12356: 12352: 12348: 12342: 12338: 12322: 12314: 12310: 12302: 12289: 12285: 12281: 12277: 12270: 12263: 12257: 12253: 12243: 12240: 12238: 12235: 12234: 12226: 12223: 12221: 12218: 12217: 12209: 12206: 12204: 12203:unitary group 12201: 12199: 12196: 12195: 12186: 12182: 12180: 12177: 12170: 12169: 12161: 12158: 12156: 12153: 12152: 12141: 12138: 12132: 12127: 12122: 12117: 12112: 12108: 12101: 12097: 12088: 12086: 12082: 12076: 12074: 12071: 12066:(orthonormal 12065: 12059: 12055: 12048: 12042: 12036: 12030: 12020: 12017: 11983: 11980: 11959: 11953: 11945: 11937: 11929: 11921: 11913: 11901: 11897: 11891: 11888: 11883: 11879: 11873: 11870: 11869: 11868: 11865: 11857: 11853: 11847: 11844:The quotient 11843: 11838: 11834: 11822: 11818: 11808: 11805:Two covering 11804: 11803: 11802: 11800: 11796: 11792: 11788: 11775: 11769: 11763: 11762:Coxeter group 11759: 11756: 11751: 11745: 11744:Coxeter group 11741: 11738: 11737: 11736: 11733: 11731: 11727: 11723: 11719: 11714: 11712: 11708: 11704: 11700: 11690: 11687: 11683: 11679: 11675: 11671: 11663: 11656: 11653: 11649: 11645: 11634: 11629: 11623: 11619: 11613: 11609: 11605: 11599: 11594: 11589: 11585: 11579: 11572: 11567: 11563: 11559: 11555: 11551: 11547: 11543: 11537: 11506: 11495: 11493: 11486: 11469: 11458: 11456: 11449: 11432: 11421: 11419: 11412: 11395: 11384: 11382: 11375: 11358: 11347: 11345: 11338: 11321: 11310: 11308: 11300: 11297: 11273: 11262: 11260: 11252: 11233: 11232: 11231: 11227: 11199: 11189: 11183: 11168: 11151: 11134: 11128: 11125: 11110: 11105: 11099: 11095: 11089: 11068: 11054: 11048: 11037: 11031: 11028: 11013: 10995: 10992: 10989: 10978: 10972: 10957: 10956: 10955: 10953: 10946:Lie subgroups 10943: 10941: 10935: 10931: 10925: 10921: 10915: 10911: 10907: 10899: 10895: 10891: 10884: 10876: 10874: 10869: 10865: 10861: 10840: 10837: 10834: 10798: 10792: 10789: 10786: 10780: 10777: 10771: 10768: 10765: 10756: 10753: 10750: 10743: 10742: 10741: 10738: 10720: 10717: 10711: 10708: 10705: 10702: 10696: 10690: 10687: 10684: 10681: 10658: 10645: 10639: 10637: 10633: 10629: 10623: 10617: 10613: 10607: 10600: 10597: 10593: 10586: 10577: 10573: 10566: 10559: 10555: 10550: 10545: 10541: 10522: 10519: 10516: 10480: 10477: 10474: 10456: 10451: 10447: 10443: 10437: 10433: 10425: 10421: 10415: 10405: 10402: 10396: 10390: 10382: 10372: 10368: 10362: 10355: 10339: 10334: 10330: 10322: 10302: 10279: 10258: 10254: 10247: 10240: 10239: 10238: 10236: 10232: 10228: 10224: 10220: 10215: 10213: 10209: 10204: 10199: 10195: 10191: 10187: 10177: 10173: 10169: 10165: 10159: 10153: 10148: 10144: 10140: 10136:of the field 10135: 10129: 10125: 10121: 10116: 10111: 10098: 10094: 10087: 10082:in dimension 10081: 10077: 10071: 10065: 10061: 10057: 10052: 10048: 10044: 10040: 10036: 10032: 10028: 10024: 10020: 10014: 10009: 10004: 9998: 9992: 9988: 9984: 9980: 9976: 9972: 9968: 9962: 9956: 9951: 9947: 9946: 9945: 9943: 9933: 9931: 9927: 9922: 9910: 9906: 9894: 9890: 9882: 9878: 9863: 9856: 9852: 9846: 9841: 9835: 9831: 9826: 9819: 9815: 9811: 9807: 9801: 9794: 9790: 9785: 9775: 9769: 9765: 9738: 9734: 9730: 9727: 9722: 9719: 9715: 9710: 9704: 9701: 9698: 9693: 9690: 9687: 9683: 9678: 9674: 9671: 9666: 9662: 9657: 9648: 9645: 9642: 9636: 9632: 9628: 9625: 9621: 9614: 9611: 9608: 9605: 9599: 9594: 9585: 9577: 9563: 9559: 9555: 9552: 9547: 9544: 9540: 9535: 9529: 9526: 9523: 9518: 9515: 9512: 9508: 9503: 9499: 9496: 9491: 9487: 9482: 9473: 9470: 9467: 9461: 9457: 9453: 9450: 9446: 9439: 9436: 9433: 9430: 9424: 9419: 9410: 9402: 9388: 9384: 9380: 9377: 9372: 9369: 9365: 9360: 9354: 9349: 9346: 9343: 9339: 9331: 9327: 9322: 9318: 9315: 9311: 9304: 9301: 9298: 9295: 9292: 9289: 9283: 9276: 9268: 9267: 9266: 9262: 9249: 9243: 9240: 9233: 9230: 9227: 9223: 9219: 9214: 9211: 9207: 9200: 9197: 9194: 9191: 9169: 9163: 9160: 9157: 9153: 9149: 9144: 9141: 9137: 9130: 9127: 9124: 9121: 9094: 9089: 9083: 9080: 9077: 9072: 9069: 9066: 9063: 9056: 9053: 9050: 9045: 9042: 9039: 9033: 9026: 9021: 9006: 9003: 8997: 8994: 8989: 8971: 8970: 8969: 8944: 8939: 8936: 8932: 8926: 8921: 8914: 8909: 8899: 8896: 8892: 8875: 8874: 8873: 8870: 8857: 8851: 8848: 8841: 8838: 8834: 8830: 8827: 8821: 8818: 8796: 8790: 8787: 8783: 8779: 8776: 8770: 8767: 8740: 8735: 8729: 8724: 8721: 8714: 8709: 8703: 8696: 8691: 8679: 8669: 8666: 8660: 8655: 8651: 8645: 8627: 8626: 8625: 8621: 8617: 8606: 8602: 8574: 8569: 8563: 8560: 8557: 8550: 8544: 8539: 8532: 8527: 8514: 8511: 8508: 8501: 8484: 8483: 8482: 8479: 8476: 8469: 8465: 8461: 8456: 8447: 8440: 8435: 8429: 8411: 8408: 8405: 8402: 8393: 8390: 8387: 8370: 8353: 8348: 8344: 8340: 8335: 8332: 8328: 8324: 8321: 8313: 8309: 8295: 8291: 8284: 8276: 8272: 8265: 8261: 8254: 8250: 8246: 8240: 8236: 8232: 8228: 8207: 8199: 8195: 8191: 8188: 8183: 8179: 8167: 8163: 8159: 8156: 8151: 8147: 8140: 8137: 8134: 8131: 8128: 8121: 8120: 8119: 8113: 8107: 8100: 8094: 8090: 8081: 8075: 8068: 8062: 8058: 8041: 8036: 8030: 8025: 8022: 8015: 8010: 8004: 7979: 7974: 7966: 7962: 7956: 7952: 7948: 7943: 7939: 7933: 7929: 7925: 7918: 7914: 7908: 7904: 7900: 7897: 7892: 7888: 7882: 7878: 7874: 7865: 7861: 7855: 7851: 7847: 7842: 7838: 7832: 7828: 7820: 7816: 7810: 7806: 7802: 7799: 7794: 7790: 7784: 7780: 7773: 7768: 7763: 7759: 7753: 7749: 7741: 7740: 7739: 7723: 7715: 7711: 7703: 7699: 7695: 7686: 7682: 7674: 7670: 7663: 7658: 7653: 7649: 7626: 7618: 7614: 7606: 7602: 7598: 7589: 7585: 7577: 7573: 7566: 7561: 7556: 7552: 7528: 7522: 7519: 7514: 7511: 7508: 7502: 7499: 7493: 7489: 7486: 7483: 7477: 7474: 7470: 7467: 7464: 7461: 7458: 7451: 7450: 7449: 7446: 7442: 7438: 7432: 7428: 7424: 7417: 7413: 7406: 7398: 7394: 7380: 7372: 7365: 7361: 7341: 7336: 7330: 7327: 7322: 7319: 7316: 7309: 7304: 7298: 7289: 7288: 7287: 7283: 7277: 7273: 7267: 7263: 7256: 7252: 7234: 7230: 7226: 7219: 7215: 7208: 7204: 7197: 7178: 7172: 7167: 7160: 7155: 7149: 7144: 7141: 7121: 7116: 7110: 7107: 7102: 7095: 7090: 7084: 7079: 7076: 7066: 7055: 7051: 7044: 7040: 7034: 7028: 7021: 7017: 7013: 7005: 7001: 6986: 6968: 6963: 6957: 6952: 6945: 6940: 6934: 6898: 6867: 6859: 6855: 6832: 6827: 6821: 6815: 6789: 6783: 6777: 6757: 6751: 6747: 6742: 6730: 6726: 6721: 6694: 6688: 6683: 6676: 6671: 6665: 6655:has the form 6643: 6617: 6614: 6611: 6606: 6602: 6598: 6595: 6592: 6587: 6583: 6579: 6574: 6570: 6566: 6563: 6556: 6555: 6554: 6548: 6543: 6539: 6537: 6533: 6529: 6514: 6511: 6504: 6498: 6492: 6488: 6482: 6476: 6469: 6465: 6457: 6451: 6445: 6438: 6434: 6427: 6423: 6415: 6411: 6404: 6400: 6396: 6388: 6384: 6372: 6368: 6361: 6359: 6353: 6349: 6340:of dimension 6339: 6333: 6329: 6322: 6313: 6309: 6304: 6293: 6283: 6279: 6278:Lorentz group 6270: 6266: 6262: 6253: 6249: 6241: 6237: 6229: 6225: 6218: 6206: 6202: 6198: 6191: 6187: 6183: 6179: 6175: 6167: 6163: 6156: 6154: 6148: 6144: 6122: 6117: 6113: 6109: 6092: 6088: 6082: 6072: 6070: 6066: 6055: 6051: 6047: 6036: 6032: 6028: 6017: 6013: 6009: 5998: 5994: 5990: 5986: 5982: 5960: 5954: 5942: 5936: 5933: 5924: 5918: 5915: 5906: 5900: 5897: 5888: 5882: 5879: 5873: 5866: 5865: 5864: 5862: 5852: 5848: 5832: 5826: 5814: 5809: 5805: 5797: 5787: 5777: 5768: 5763: 5754: 5749: 5740: 5735: 5726: 5725: 5724: 5721: 5717: 5711: 5707: 5701: 5697: 5695: 5688: 5684: 5682: 5674: 5670: 5666: 5661: 5652: 5651: 5644: 5643: 5636: 5630: 5626: 5621: 5612: 5607: 5603: 5594: 5592: 5587: 5583: 5579: 5570: 5568: 5563: 5559: 5555: 5546: 5544: 5539: 5535: 5526: 5525: 5524: 5516: 5514: 5509: 5505: 5501: 5495: 5491: 5487: 5480: 5474: 5464: 5459: 5449: 5447: 5442: 5441: 5436: 5425: 5420: 5419:vector bundle 5414: 5398: 5395: 5387: 5377: 5376:the talk page 5373: 5367: 5365: 5360:This section 5358: 5349: 5348: 5340: 5338: 5332: 5320: 5310: 5283: 5274: 5269: 5265: 5261: 5257: 5251: 5246: 5242: 5234: 5225: 5218: 5213: 5209: 5201: 5192: 5191: 5190: 5159: 5156: 5154: 5146: 5143: 5135: 5131: 5123: 5120: 5118: 5110: 5107: 5099: 5095: 5087: 5084: 5082: 5074: 5071: 5063: 5059: 5046: 5044: 5036: 5033: 5025: 5021: 5013: 5010: 5008: 5000: 4997: 4989: 4985: 4972: 4968: 4959: 4957: 4949: 4946: 4938: 4934: 4921: 4917: 4908: 4906: 4898: 4895: 4887: 4883: 4870: 4868: 4860: 4857: 4849: 4845: 4833: 4832: 4831: 4821: 4817: 4813: 4809: 4805: 4798: 4792: 4787: 4782: 4775: 4770: 4765: 4732: 4730: 4722: 4714: 4710: 4702: 4699: 4697: 4689: 4681: 4677: 4669: 4666: 4664: 4656: 4648: 4644: 4636: 4633: 4631: 4623: 4615: 4611: 4598: 4596: 4588: 4580: 4576: 4568: 4565: 4563: 4555: 4547: 4543: 4530: 4526: 4517: 4515: 4507: 4499: 4495: 4482: 4478: 4469: 4467: 4459: 4451: 4447: 4435: 4434: 4433: 4429: 4424: 4419: 4413: 4405: 4399: 4395: 4389: 4384: 4380: 4376: 4369: 4364: 4359: 4354: 4347: 4343: 4334: 4330: 4324: 4320: 4316: 4311: 4306: 4300: 4279: 4274: 4270: 4260: 4257: 4254: 4248: 4236: 4230: 4220: 4219: 4218: 4216: 4210: 4204: 4199: 4198: 4192: 4170: 4164: 4151: 4148: 4145: 4141: 4137: 4134: 4131: 4128: 4125: 4119: 4113: 4107: 4101: 4095: 4089: 4083: 4077: 4067: 4066: 4065: 4063: 4059: 4053: 4048: 4042: 4032: 4030: 4022: 4018: 4012: 4007: 4001: 3996: 3992: 3986: 3982: 3976: 3970: 3965: 3951: 3947: 3946: 3941: 3936: 3929: 3926: 3924: 3917: 3913: 3910: 3909: 3900: 3895: 3893: 3889: 3884: 3879: 3878: 3877: 3875: 3859: 3856: 3848: 3845:November 2019 3838: 3834: 3828: 3825:This section 3823: 3814: 3813: 3804: 3801: 3793: 3790:November 2019 3783: 3782:the talk page 3779: 3773: 3771: 3766:This section 3764: 3755: 3754: 3746: 3742: 3718: 3712: 3707: 3700: 3695: 3689: 3677: 3669: 3665: 3657: 3649: 3639: 3635: 3616: 3612: 3608: 3603: 3599: 3591: 3585: 3581: 3577: 3574: 3571: 3566: 3562: 3557: 3544: 3536: 3532: 3525: 3505: 3501: 3497: 3492: 3484: 3481: 3475: 3470: 3466: 3462: 3457: 3454: 3451: 3447: 3436: 3429: 3404: 3399: 3393: 3388: 3381: 3376: 3370: 3356: 3350: 3345: 3338: 3333: 3327: 3318: 3317: 3316: 3305: 3295: 3287: 3279:acts on both 3277: 3269: 3263: 3250: 3246: 3243: 3225: 3221: 3217: 3212: 3204: 3201: 3191: 3185: 3179: 3174: 3166: 3158: 3146: 3142: 3122: 3117: 3109: 3105: 3098: 3090: 3082: 3074: 3070: 3063: 3054: 3053: 3052: 3051:of the form 3050: 3044: 3036: 3029: 3025: 3015: 3010: 3007: 3004:in a compact 3003: 3002:maximal torus 2993: 2989: 2981: 2973: 2969: 2964: 2958: 2950: 2942: 2936: 2932: 2928: 2922: 2901: 2896: 2889: 2886: 2883: 2877: 2871: 2866: 2862: 2858: 2853: 2846: 2843: 2840: 2834: 2824: 2823: 2822: 2820: 2819:algebraic set 2814: 2807: 2803: 2799: 2794: 2789: 2785: 2782: 2771: 2759: 2757: 2753: 2747: 2741: 2735: 2727: 2723: 2719: 2715: 2712: 2706: 2698: 2686: 2684: 2678: 2668: 2662: 2641: 2636: 2627: 2621: 2618: 2610: 2604: 2601: 2591: 2585: 2582: 2579: 2571: 2565: 2562: 2556: 2547: 2546: 2545: 2539: 2533: 2529: 2525: 2521: 2518: 2512: 2506: 2501: 2497: 2485: 2481: 2476: 2474: 2468: 2463: 2459: 2452: 2446: 2434: 2433:reflections. 2431: 2424: 2417: 2413: 2408: 2403: 2401: 2396: 2392: 2385: 2379: 2375: 2369: 2364: 2359: 2357: 2353: 2347: 2343: 2318: 2313: 2307: 2302: 2295: 2290: 2287: 2281: 2272: 2271: 2270: 2266: 2260: 2251: 2249: 2241: 2235: 2229: 2205: 2198: 2192: 2188: 2184: 2179: 2175: 2171: 2151: 2146: 2140: 2135: 2132: 2125: 2120: 2114: 2105: 2104: 2103: 2099: 2095: 2088: 2068: 2063: 2053: 2050: 2040: 2030: 2027: 2018: 2011: 2000: 1996: 1985: 1973: 1969: 1958: 1949: 1948: 1947: 1943: 1931: 1917: 1914: 1906: 1902: 1898: 1892: 1885: 1879: 1870: 1866: 1858: 1852: 1846: 1839: 1832: 1825: 1818: 1812: 1808: 1798: 1791: 1789: 1783: 1777: 1769: 1763: 1755: 1749: 1747: 1741: 1735: 1729: 1723: 1695: 1676: 1673: 1670: 1659: 1655: 1648: 1647: 1646: 1644: 1640: 1630: 1626: 1618: 1612: 1607: 1603: 1597: 1591: 1585: 1580: 1575: 1570: 1568: 1567: 1561: 1555: 1536: 1530: 1524: 1521: 1515: 1509: 1506: 1500: 1497: 1494: 1485: 1479: 1472: 1471: 1470: 1466: 1458: 1451: 1447: 1442: 1438: 1431: 1427: 1423: 1416: 1412: 1406: 1402: 1397: 1393: 1388: 1384:of dimension 1382: 1378: 1374: 1368: 1361: 1348: 1342: 1336: 1327: 1321: 1309: 1304: 1300: 1299:endomorphisms 1294: 1290: 1285: 1279: 1267: 1265: 1260: 1254: 1249: 1245: 1241: 1237: 1231: 1224: 1220:of dimension 1218: 1214: 1204: 1202: 1197: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1166: 1153: 1149: 1145: 1142: 1131: 1127: 1124: 1121: 1110: 1106: 1100: 1097: 1094: 1088: 1085: 1082: 1079: 1075: 1071: 1065: 1062: 1059: 1053: 1040: 1036: 1031: 1025: 1021: 1014: 1010: 1004: 1000: 995: 989: 985: 979: 973: 966: 960: 954: 949: 945: 941: 935: 929: 926:, called the 925: 921: 917: 912: 906: 904: 900: 896: 892: 888: 884: 880: 876: 872: 868: 863: 859: 855: 850: 846:of dimension 845: 841: 837: 831: 824: 820:in dimension 819: 815: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 356: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 122: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 32: 31: 19: 12717:(in Italian) 12693: 12648: 12630: 12596: 12566: 12545:Cassels 1978 12540: 12527: 12514: 12484: 12462: 12435: 12415:. Retrieved 12411: 12398: 12386: 12374: 12369:Theorem 11.2 12362: 12341: 12320: 12312: 12311:+ 1) ≅ PSO(2 12308: 12301: 12287: 12283: 12275: 12269: 12256: 12175: 12136: 12130: 12125: 12120: 12115: 12110: 12106: 12099: 12092: 12089: 12084: 12080: 12077: 12069: 12057: 12050: 12040: 12032: 12018: 11951: 11943: 11935: 11927: 11919: 11911: 11907: 11899: 11895: 11881: 11877: 11866: 11863: 11855: 11851: 11836: 11832: 11820: 11816: 11784: 11767: 11749: 11734: 11715: 11699:point groups 11696: 11685: 11681: 11677: 11673: 11669: 11661: 11657: 11651: 11647: 11643: 11632: 11621: 11617: 11611: 11607: 11603: 11592: 11583: 11577: 11570: 11539: 11225: 11221: 11103: 11093: 11087: 10952:Kaluza–Klein 10949: 10933: 10929: 10913: 10909: 10905: 10897: 10893: 10889: 10885: 10882: 10870: 10863: 10859: 10813: 10736: 10643: 10640: 10631: 10621: 10615: 10611: 10605: 10601: 10595: 10591: 10584: 10575: 10571: 10564: 10548: 10543: 10539: 10449: 10445: 10435: 10431: 10423: 10419: 10411: 10400: 10394: 10391: 10380: 10370: 10366: 10360: 10353: 10337: 10320: 10317: 10216: 10202: 10193: 10183: 10174: 10167: 10163: 10157: 10151: 10138: 10127: 10123: 10114: 10109: 10107: 10092: 10085: 10069: 10059: 10055: 10042: 10038: 10034: 10030: 10026: 10022: 10018: 10012: 10002: 9996: 9990: 9986: 9982: 9978: 9974: 9970: 9966: 9960: 9954: 9941: 9939: 9923: 9908: 9904: 9892: 9888: 9880: 9876: 9861: 9854: 9850: 9842: 9824: 9817: 9813: 9809: 9805: 9802: 9792: 9788: 9783: 9781: 9767: 9763: 9753: 9264: 9113: 8963: 8871: 8759: 8619: 8615: 8604: 8600: 8593: 8480: 8477: 8470: 8463: 8459: 8445: 8438: 8427: 8368: 8298:, the above 8293: 8289: 8285: 8274: 8270: 8263: 8259: 8255: 8248: 8244: 8238: 8234: 8230: 8226: 8222: 8111: 8105: 8098: 8092: 8088: 8079: 8073: 8066: 8060: 8056: 7994: 7543: 7444: 7440: 7436: 7430: 7426: 7422: 7415: 7411: 7404: 7396: 7392: 7381: 7370: 7363: 7359: 7356: 7281: 7275: 7271: 7265: 7261: 7259:, such that 7254: 7250: 7232: 7228: 7224: 7217: 7213: 7206: 7202: 7195: 7064: 7060: 7049: 7042: 7038: 7026: 7022: 7015: 7011: 7003: 6999: 6987: 6896: 6868: 6857: 6853: 6758: 6750:finite field 6743: 6728: 6724: 6632: 6544: 6540: 6531: 6525: 6509: 6502: 6490: 6486: 6474: 6467: 6463: 6455: 6449: 6443: 6436: 6432: 6425: 6421: 6413: 6409: 6405: 6398: 6394: 6386: 6382: 6370: 6366: 6362: 6357: 6351: 6347: 6331: 6327: 6320: 6302: 6299: 6271: 6264: 6260: 6251: 6247: 6244:. The group 6239: 6235: 6227: 6223: 6219: 6204: 6203:, 0) = O(0, 6200: 6196: 6192: 6185: 6181: 6177: 6173: 6165: 6161: 6157: 6152: 6146: 6142: 6115: 6111: 6107: 6084: 6064: 6053: 6049: 6048:) to obtain 6045: 6034: 6030: 6029:) to obtain 6026: 6015: 6011: 6010:) to obtain 6007: 5993:string group 5978: 5858: 5846: 5830: 5813:Maslov index 5807: 5803: 5795: 5783: 5775: 5761: 5747: 5733: 5719: 5715: 5709: 5705: 5699: 5693: 5686: 5680: 5672: 5656: 5648: 5640: 5634: 5628: 5619: 5616: 5605: 5601: 5585: 5581: 5577: 5561: 5557: 5553: 5537: 5533: 5522: 5507: 5503: 5499: 5493: 5489: 5485: 5478: 5472: 5462: 5455: 5438: 5434: 5423: 5412: 5405: 5390: 5384:January 2024 5381: 5370:Please help 5361: 5337:free abelian 5330: 5318: 5306: 5281: 5267: 5263: 5259: 5255: 5244: 5240: 5232: 5211: 5207: 5199: 5188: 4819: 4815: 4811: 4807: 4803: 4796: 4790: 4785: 4780: 4768: 4761: 4427: 4422: 4417: 4411: 4403: 4397: 4393: 4385: 4378: 4374: 4367: 4362: 4357: 4352: 4341: 4332: 4328: 4309: 4305:transitively 4298: 4294: 4215:fiber bundle 4208: 4196: 4191:cofibrations 4188: 4062:direct limit 4051: 4046: 4038: 4029:2-fold cover 4010: 3999: 3984: 3980: 3968: 3962:In terms of 3961: 3949: 3944: 3922: 3907: 3882: 3871: 3851: 3842: 3826: 3796: 3787: 3776:Please help 3767: 3740: 3675: 3667: 3663: 3655: 3647: 3637: 3633: 3534: 3530: 3523: 3434: 3430: 3419: 3300: 3293: 3285: 3272: 3261: 3240:of a normal 3183: 3175: 3164: 3156: 3144: 3140: 3137: 3042: 3034: 3030: 3023: 3013: 3008: 2999: 2987: 2979: 2971: 2967: 2961:). Both are 2956: 2948: 2940: 2920: 2916: 2812: 2808: 2801: 2797: 2787: 2783: 2780: 2769: 2765: 2745: 2733: 2730:. The group 2725: 2721: 2704: 2696: 2692: 2676: 2673:-sphere and 2660: 2656: 2531: 2527: 2523: 2519: 2516: 2500:circle group 2495: 2477: 2466: 2457: 2444: 2440: 2429: 2422: 2415: 2411: 2404: 2397: 2390: 2383: 2380: 2373: 2367: 2360: 2352:mirror image 2345: 2341: 2333: 2264: 2257: 2238:is known as 2233: 2230: 2203: 2199: 2180: 2173: 2169: 2166: 2097: 2093: 2086: 2083: 1941: 1937: 1912: 1904: 1900: 1897:cyclic group 1890: 1883: 1871: 1864: 1856: 1844: 1837: 1830: 1823: 1816: 1796: 1792: 1781: 1761: 1753: 1750: 1739: 1727: 1721: 1691: 1636: 1624: 1616: 1608: 1601: 1589: 1578: 1571: 1564: 1559: 1551: 1464: 1456: 1449: 1443: 1436: 1429: 1425: 1421: 1414: 1410: 1404: 1400: 1386: 1380: 1366: 1362: 1307: 1292: 1288: 1277: 1273: 1258: 1252: 1229: 1222: 1216: 1210: 1198: 1185: 1178:vector space 1167: 1038: 1034: 1023: 1019: 1012: 1008: 1002: 998: 993: 987: 983: 977: 974: 943: 933: 927: 910: 907: 870: 866: 857: 848: 829: 822: 817: 811: 640: 628: 616: 604: 592: 580: 576: 568: 556: 327: 284: 271: 260: 249: 245:Cyclic group 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 12522:, page 160) 12520:Taylor 1992 12468:Taylor 1992 11630:, while if 11574:is denoted 10414:Lie algebra 10408:Lie algebra 10212:determinant 10110:spinor norm 9830:Taylor 1992 7200:, that is, 6908:is two and 6873:is two and 6720:anisotropic 6633:where each 6406:The groups 6284:. Here the 6232:is denoted 6151:called the 6139:. The pair 6056:, and then 5567:orientation 5452:Loop spaces 5288:(SO(3)) = 0 5252:comes from 5248:, which is 5217:orientation 4319:unit vector 4023:(the group 3897:SO(1) = {1} 3631:; that is, 3547:{±1} → {±1} 3520:of that of 3149:belongs to 3138:where each 2937:. In fact, 2693:The groups 2667:topological 2259:Reflections 2254:Reflections 2187:eigenvalues 1809:and even a 1746:orientation 1694:determinant 1554:translation 1398:of a point 1248:linear maps 1194:dot product 1190:linear maps 1043:; that is 940:determinant 889:equals its 883:real matrix 814:mathematics 530:Topological 369:alternating 12735:Lie groups 12729:Categories 12675:0767.20001 12589:0395.10029 12555:References 12533:Grove 2002 12507:0756.11008 12454:1203.20012 12417:2023-02-01 12408:"Week 105" 12404:Baez, John 12116:incomplete 12085:orthogonal 12081:orthogonal 11872:Spin group 11807:Pin groups 11791:centerless 11606:+ 1) = O(2 11558:similarity 11554:congruence 11542:isometries 10628:spin group 10616:projective 10455:commutator 10219:spin group 9950:Witt index 9930:pin groups 9820:) modulo 2 7448:, one has 6722:(that is, 6532:equivalent 6272:The group 5989:spin group 5654:, and let 5366:to readers 5309:Lie groups 5303:Lie groups 5239:(SO(3)) = 4801:. Setting 4390:we obtain 4346:-connected 4315:stabilizer 4313:, and the 3995:spin group 3993:, and the 3772:to readers 3255:factor of 3245:2-subgroup 3178:Weyl group 2778:such that 2750:being the 2714:Lie groups 2356:hyperplane 1872:The group 1821:, and, if 1788:reflection 1724:, denoted 1708:is either 1419:such that 1392:isomorphic 1311:such that 826:, denoted 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 12700:EMS Press 12391:Hall 2015 12379:Hall 2015 12367:Hall 2015 12333:Citations 12126:principal 11703:polytopes 11588:dilations 11496:⊃ 11459:⊃ 11422:⊃ 11385:⊃ 11348:⊃ 11311:⊃ 11263:⊃ 11190:⊃ 11135:⊃ 11055:⊃ 11038:⊃ 10993:− 10979:⊃ 10896:) ⊂ USp(2 10793:⋅ 10781:− 10772:⋅ 10760:↦ 10754:∧ 10709:φ 10682:φ 10659:φ 10300:→ 10285:→ 10264:→ 10255:μ 10251:→ 10223:pin group 9812:) = rank( 9728:− 9702:− 9684:∏ 9646:− 9600:⁡ 9595:− 9553:− 9527:− 9509:∏ 9497:− 9471:− 9425:⁡ 9378:− 9340:∏ 9284:⁡ 9234:θ 9228:− 9220:− 9215:θ 9198:θ 9195:⁡ 9164:θ 9158:− 9145:θ 9128:θ 9125:⁡ 9084:θ 9081:⁡ 9073:θ 9070:⁡ 9064:− 9057:θ 9054:⁡ 9046:θ 9043:⁡ 9029:↦ 8998:⁡ 8992:→ 8940:θ 8929:↦ 8922:θ 8912:→ 8900:π 8852:α 8839:− 8831:− 8788:− 8722:ω 8699:↦ 8661:⁡ 8648:→ 8561:− 8547:↦ 8530:→ 8409:α 8400:↦ 8366:and thus 8333:− 8308:conjugate 8192:α 8160:α 8135:α 8023:ω 7926:ω 7901:ω 7875:ω 7803:ω 7696:ω 7599:ω 7523:α 7512:− 7409:, and to 7328:ε 7320:ω 7317:ε 7111:ω 7108:− 7035:of order 6958:φ 6822:φ 6612:⊕ 6599:⊕ 6596:⋯ 6593:⊕ 6580:⊕ 6536:congruent 6217:is zero. 5955:⁡ 5949:→ 5937:⁡ 5931:→ 5919:⁡ 5913:→ 5901:⁡ 5895:→ 5883:⁡ 5880:Fivebrane 5877:→ 5874:⋯ 5841:(U/O) = π 5667:over the 5609:is about 5589:is about 5565:is about 5543:dimension 5541:is about 5446:dimension 5335:is free ( 5206:(O(1)) = 5132:π 5096:π 5060:π 5022:π 4986:π 4935:π 4884:π 4846:π 4823:(to make 4711:π 4678:π 4645:π 4612:π 4577:π 4544:π 4496:π 4448:π 4360:+ 1)) = π 4267:→ 4249:⁡ 4243:→ 4231:⁡ 4165:⁡ 4157:∞ 4142:⋃ 4132:⊂ 4129:⋯ 4126:⊂ 4114:⁡ 4108:⊂ 4096:⁡ 4090:⊂ 4078:⁡ 4021:real line 3642:< {±1} 3613:ε 3609:⋯ 3600:ε 3596:↦ 3582:ε 3575:… 3563:ε 3549:given by 3539:< {±1} 3498:⋊ 3482:± 3463:⋊ 3455:− 3268:inversion 3218:⋊ 3202:± 3091:⋱ 3017:for some 3006:Lie group 2872:− 2844:− 2718:dimension 2709:are real 2628:φ 2622:⁡ 2611:φ 2605:⁡ 2592:φ 2586:⁡ 2580:− 2572:φ 2566:⁡ 2409:(the map 2288:− 2189:that are 2133:− 2051:± 2041:⋱ 2028:± 1986:⋱ 1880:(whereas 1596:conjugate 1522:− 1498:− 1346:‖ 1340:‖ 1334:‖ 1319:‖ 1262:that map 1244:homothecy 1107:∣ 1089:⁡ 1083:∈ 1054:⁡ 1028:, of the 948:rotations 899:Lie group 891:transpose 854:composing 834:, is the 701:Conformal 589:Euclidean 196:nilpotent 12565:(1978), 12144:See also 11898:) → PSO( 11615:, where 11582:for the 10612:ordinary 10589:, where 10569:, where 10552:are the 10194:post hoc 9822:, where 8624: ; 8449:, where 8118:. Thus 7047:, where 6900:, where 6862:, where 6439:− 1) / 2 6326:+ ... + 5991:and the 5829:U/O ≅ Ω( 5254:SO(3) = 4762:Via the 3749:Topology 3666:) → SO(2 3528:, where 3296:) × {±1} 3021:, where 2974:− 1) / 2 2804:+ 1) / 2 2738:has two 2728:− 1) / 2 2522:) = cos( 2344:− 1) × ( 2248:rotation 1841:is odd, 1772:{−1, +1} 914:has two 901:. It is 696:Poincaré 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 12702:, 2001 12667:1189139 12623:1859189 12087:basis. 12073:-frames 12045:is the 11880:) → SO( 11854:) → PO( 11680:) = SO( 11676:) ∩ GL( 11672:) = CO( 11646:) = O(2 11610:+ 1) × 10938:is the 10912:) ⊂ O(2 10327:is the 10208:torsors 10118:to the 8473:{1, −1} 6276:is the 6274:O(3, 1) 6153:inertia 6123:, with 5663:be the 5444:is the 5362:may be 5296:(SO(4)) 5215:, from 4025:Spin(2) 4004:is its 3890:-point 3881:O(1) = 3831:Please 3768:may be 3541:is the 3188:is the 3026:= SO(2) 2742:, with 2711:compact 2462:-sphere 2453:of the 2449:is the 2338:is the 2092:, ..., 1878:abelian 1801:(where 1700:equals 1246:), the 1180:over a 903:compact 887:inverse 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 12673:  12665:  12655:  12637:  12621:  12611:  12587:  12577:  12505:  12495:  12452:  12442:  12174:SO(3, 11948:, and 11835:) → O( 11819:) → O( 11797:and a 11724:, and 11546:angles 11540:Being 10908:) ⊂ U( 10892:) ⊂ U( 10649:(⋅, ⋅) 10147:square 10051:center 9994:where 9845:kernel 9772:| 9760:| 8964:where 8594:where 8086:, and 8054:with 7434:, and 7357:where 7222:, and 6983:φ 6846:where 6805:or to 6501:SO(2, 6479:, the 6477:> 2 6199:) = O( 6180:) = O( 6131:, and 6069:branes 6050:String 5898:String 5798:O) ≅ π 4331:) → O( 4008:. For 3971:> 2 3966:, for 3874:spaces 3543:kernel 3298:. The 3247:and a 3153:. In 2959:) = −1 2817:is an 2540:  2484:circle 2473:sphere 2334:where 1893:> 2 1768:kernel 1574:kernel 1394:. The 1184:, the 1006:. The 897:and a 885:whose 816:, the 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 12248:Notes 12185:SO(8) 12109:< 11934:Spin( 11918:PSO(2 11910:PSO(2 11876:Spin( 11760:(the 11742:(the 11590:. If 10630:Spin( 10335:from 10318:Here 10143:up to 10132:(the 9766:+ 1, 9114:with 8760:with 8453:is a 7403:O(2, 7236:. As 7063:O(2, 7058:Proof 7031:is a 7025:O(2, 6856:+ 1, 6731:) ≠ 0 6640:is a 6441:over 6052:from 6033:from 6014:from 5835:, so 5821:(U/O) 5806:O) = 5604:O) = 5580:O) = 5556:O) = 5536:O) = 5511:have 5506:Sp × 5502:Sp = 5437:O) = 5421:over 5417:is a 5284:) = π 5235:) = π 5202:) = π 4788:) = π 4420:) = π 4386:From 4377:> 4303:acts 4201:is a 3998:Spin( 3931:SO(4) 3916:SO(3) 3902:SO(2) 3266:} by 3151:SO(2) 2982:) = 1 2951:) = 1 2925:is a 2492:SO(2) 2482:of a 2464:(for 2246:is a 2244:SO(3) 2167:with 1928:SO(2) 1874:SO(2) 1835:. If 1453:from 1375:of a 1250:from 1236:up to 1234:are, 1182:field 1176:on a 981:, an 965:SO(4) 959:SO(3) 953:SO(2) 922:is a 842:of a 836:group 730:Sp(∞) 727:SU(∞) 140:image 18:SO(n) 12653:ISBN 12635:ISBN 12609:ISBN 12575:ISBN 12493:ISBN 12440:ISBN 12319:SO(2 12315:+ 1) 12307:SO(2 12278:) ∩ 12104:for 12033:The 12006:Spin 11950:PSO( 11930:+ 1) 11926:SO(2 11922:+ 1) 11825:and 11789:nor 11684:) × 11668:CSO( 11660:CSO( 11650:) × 11642:CO(2 11602:CO(2 11556:and 10932:)/O( 10904:USp( 10902:and 10873:curl 10428:and 10412:The 10108:The 10049:The 10041:) · 10021:− 2· 9989:) · 9928:and 9184:and 8811:and 8609:and 8430:+ 1) 8306:are 8302:and 8233:) ↦ 7641:and 7373:= ±1 7368:and 7269:and 7240:and 7008:and 6744:The 6530:are 6418:and 6213:nor 6054:Spin 6031:Spin 5916:Spin 5718:P = 5708:P = 5617:Let 5591:spin 5497:and 5492:O × 5488:O = 5476:and 5258:P = 5250:spin 5221:O(2) 4372:for 4344:− 1) 4335:+ 1) 4301:+ 1) 4211:+ 1) 4205:for 3973:the 3886:, a 3739:SO(2 3678:+ 1) 3674:SO(2 3670:+ 1) 3662:SO(2 3654:SO(2 3646:SO(2 3526:+ 1) 3522:SO(2 3476:< 3433:SO(2 3313:{±1} 3288:× {1 3283:and 3281:{±1} 3264:× {1 3257:{±1} 3253:{±1} 3186:+ 1) 3182:SO(2 3176:The 3167:+ 1) 3163:SO(2 3161:and 3159:+ 1) 3041:SO(2 3039:and 2978:det( 2955:det( 2947:det( 2701:and 2530:sin( 2526:) + 2515:exp( 2496:real 2488:O(2) 2478:The 2460:− 1) 2405:The 2398:The 2348:− 1) 1926:and 1924:O(2) 1861:and 1572:The 1428:) = 1413:∈ E( 1363:Let 1207:Name 962:and 724:O(∞) 713:Loop 532:and 12671:Zbl 12585:Zbl 12503:Zbl 12450:Zbl 12114:of 12075:). 12062:of 12010:PSO 11942:SO( 11894:SO( 11827:Pin 11811:Pin 11624:∖{0 11576:CO( 11102:SU( 10620:SO( 10604:SO( 10594:= 2 10578:+ 1 10574:= 2 10542:or 10496:or 10430:SO( 10358:of 10233:of 10188:of 10166:/ ( 10161:in 10126:/ ( 10072:+ 1 10058:= − 10016:to 9964:to 9875:SO( 9791:/ 2 9762:O(2 9758:of 9192:sin 9122:cos 9078:cos 9067:sin 9051:sin 9040:cos 8457:of 8441:+ 1 8371:= 1 8288:O(2 8258:O(2 7544:If 7386:of 7366:= 1 7284:= 1 7266:εωb 7248:in 7231:= – 7220:= 0 7218:ωbd 7209:= 1 7198:= Q 7196:AQA 7052:= ± 7010:O(2 6998:O(2 6920:to 6893:or 6885:to 6852:O(2 6741:). 6737:in 6718:is 6714:to 6648:to 6507:is 6495:is 6485:SO( 6483:of 6462:SO( 6458:≥ 2 6420:SO( 6393:SO( 6379:in 6314:in 6306:of 6259:SO( 6234:SO( 5843:1+7 5827:as 5584:/ 2 5560:/ 2 5339:). 5266:/ 2 5262:/ ( 5243:/ 2 5210:/ 2 4814:= Ω 4793:+ 1 4414:+ 8 4381:+ 1 4366:(O( 4356:(O( 4337:is 4031:). 4013:= 2 3989:is 3979:SO( 3977:of 3937:by 3933:is 3919:is 3904:is 3888:two 3835:to 3292:O(2 3180:of 3155:O(2 3033:O(2 3031:In 2986:SO( 2984:is 2953:or 2744:SO( 2716:of 2703:SO( 2619:cos 2602:sin 2583:sin 2563:cos 2536:of 2507:(1) 2486:is 2469:= 3 2414:↦ − 2376:/ 2 2236:= 3 2202:SO( 2176:= 1 1909:of 1882:SO( 1876:is 1855:SO( 1853:of 1829:SO( 1813:of 1780:SO( 1778:of 1752:SO( 1736:of 1726:SO( 1712:or 1696:of 1613:of 1586:of 1576:of 1569:). 1461:to 1287:GL( 1256:to 1172:or 1033:GL( 932:SO( 838:of 812:In 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 12731:: 12698:, 12692:, 12669:, 12663:MR 12661:, 12619:MR 12617:, 12607:, 12599:, 12583:, 12573:, 12501:, 12475:^ 12448:. 12426:^ 12410:. 12406:. 12294:±1 12286:, 12280:GL 12274:O( 12039:O( 12014:SO 12004:– 11960:, 11940:, 11892:, 11874:, 11850:O( 11848:, 11809:, 11732:. 11720:, 11713:. 11689:. 11655:. 11638:±1 11620:= 11600:: 11507:16 11470:12 11433:10 11224:O( 11100:; 11094:or 11086:U( 11084:– 10942:. 10928:U( 10888:O( 10868:. 10862:, 10599:. 10448:× 10434:, 10422:, 10418:O( 10383:(μ 10340:(O 10237:. 10214:. 10172:. 10033:)/ 10029:, 9981:)/ 9977:, 9969:+ 9921:. 9915:±1 9907:, 9903:O( 9891:, 9887:O( 9879:, 9853:, 9849:O( 9838:−1 9816:− 8995:SO 8652:SO 8468:, 8292:, 8283:. 8262:, 8253:. 8239:αb 8237:+ 8229:, 8104:+ 8091:= 8074:ωb 8072:+ 8059:= 7445:αb 7443:– 7439:= 7431:αb 7429:+ 7425:= 7379:. 7364:ωb 7362:– 7276:εa 7274:= 7264:= 7229:ωd 7227:– 7216:– 7214:ac 7211:, 7207:ωb 7205:– 7054:. 7041:− 7037:2( 7020:. 7014:, 7002:, 6910:−1 6875:−1 6848:𝜑 6513:. 6489:, 6466:, 6424:, 6412:, 6408:O( 6403:. 6397:, 6385:, 6381:O( 6369:, 6365:O( 6350:, 6346:O( 6269:. 6263:, 6250:, 6246:O( 6238:, 6226:, 6222:O( 6195:O( 6190:. 6184:, 6176:, 6172:O( 6164:, 6160:O( 6145:, 6137:−1 6114:= 6110:+ 6071:. 6037:, 6035:SO 6018:, 6012:SO 5934:SO 5863:: 5851:. 5849:O) 5833:O) 5788:, 5778:O) 5764:O) 5750:O) 5736:O) 5713:, 5703:, 5698:= 5690:, 5685:= 5646:, 5638:, 5632:, 5481:/U 5470:, 5448:. 5415:O) 5311:, 4818:× 4810:× 4808:BO 4806:= 4804:KO 4797:BO 4396:≅ 4370:)) 4327:O( 4297:O( 4217:: 4207:O( 3983:, 3948:× 3940:SU 3876:: 3745:. 3735:−1 3640:−1 3537:−1 3428:. 3422:±1 3364:or 3000:A 2992:. 2939:O( 2919:O( 2811:O( 2786:= 2768:O( 2758:. 2732:O( 2695:O( 2685:. 2675:O( 2659:O( 2443:O( 2421:O( 2389:O( 2378:. 2358:. 2263:O( 2228:. 2222:+1 2214:−1 2210:−1 2197:. 2178:. 2172:+ 1940:O( 1930:. 1869:. 1863:{± 1843:O( 1815:O( 1795:{± 1790:. 1760:O( 1738:O( 1714:−1 1629:. 1623:O( 1615:O( 1606:. 1600:O( 1588:E( 1463:O( 1455:E( 1435:O( 1403:∈ 1365:E( 1291:, 1276:O( 1238:a 1228:O( 1086:GL 1037:, 1022:, 1018:O( 1011:× 986:× 970:−1 956:, 905:. 869:× 828:O( 615:U( 591:E( 579:O( 37:→ 12531:( 12518:( 12466:( 12456:. 12420:. 12323:) 12321:k 12313:k 12309:k 12290:) 12288:Z 12284:n 12282:( 12276:n 12178:) 12176:R 12137:k 12131:k 12121:k 12111:n 12107:k 12102:) 12100:R 12098:( 12095:k 12093:V 12070:n 12060:) 12058:R 12056:( 12053:n 12051:V 12043:) 12041:n 11992:) 11988:R 11984:, 11981:n 11978:( 11973:o 11970:s 11954:) 11952:n 11946:) 11944:n 11938:) 11936:n 11928:k 11920:k 11914:) 11912:k 11904:. 11902:) 11900:n 11896:n 11886:, 11884:) 11882:n 11878:n 11860:. 11858:) 11856:n 11852:n 11841:, 11839:) 11837:n 11833:n 11831:( 11829:− 11823:) 11821:n 11817:n 11815:( 11813:+ 11776:. 11768:n 11765:B 11754:) 11750:n 11747:A 11686:R 11682:n 11678:n 11674:n 11670:n 11664:) 11662:n 11652:R 11648:k 11644:k 11633:n 11622:R 11618:R 11612:R 11608:k 11604:k 11593:n 11580:) 11578:n 11571:R 11510:) 11504:( 11500:O 11487:8 11482:E 11473:) 11467:( 11463:O 11450:7 11445:E 11436:) 11430:( 11426:O 11413:6 11408:E 11399:) 11396:9 11393:( 11389:O 11376:4 11371:F 11362:) 11359:3 11356:( 11352:O 11339:2 11334:G 11325:) 11322:n 11319:( 11315:O 11304:) 11301:n 11298:2 11295:( 11291:p 11288:S 11285:U 11277:) 11274:n 11271:( 11267:O 11256:) 11253:n 11250:( 11246:U 11228:) 11226:n 11200:2 11195:G 11187:) 11184:7 11181:( 11177:O 11155:) 11152:n 11149:( 11145:p 11142:S 11139:U 11132:) 11129:n 11126:2 11123:( 11119:O 11106:) 11104:n 11090:) 11088:n 11072:) 11069:n 11066:( 11062:U 11059:S 11052:) 11049:n 11046:( 11042:U 11035:) 11032:n 11029:2 11026:( 11022:O 10999:) 10996:1 10990:n 10987:( 10983:O 10976:) 10973:n 10970:( 10966:O 10936:) 10934:n 10930:n 10916:) 10914:n 10910:n 10906:n 10900:) 10898:n 10894:n 10890:n 10866:) 10864:q 10860:p 10858:( 10844:) 10841:q 10838:, 10835:p 10832:( 10827:o 10824:s 10799:v 10796:) 10790:, 10787:w 10784:( 10778:w 10775:) 10769:, 10766:v 10763:( 10757:w 10751:v 10737:V 10735:Λ 10721:0 10718:= 10715:) 10712:B 10706:, 10703:A 10700:( 10697:+ 10694:) 10691:B 10688:, 10685:A 10679:( 10644:V 10632:n 10624:) 10622:n 10608:) 10606:n 10596:r 10592:n 10585:r 10582:D 10576:k 10572:n 10565:k 10562:B 10549:n 10526:) 10523:F 10520:, 10517:n 10514:( 10509:o 10506:s 10484:) 10481:F 10478:, 10475:n 10472:( 10467:o 10450:n 10446:n 10438:) 10436:F 10432:n 10426:) 10424:F 10420:n 10401:H 10395:H 10387:) 10385:2 10381:H 10376:) 10374:2 10371:μ 10369:( 10367:H 10361:F 10356:) 10354:F 10352:( 10350:V 10348:O 10344:) 10342:V 10338:H 10324:2 10321:μ 10303:1 10294:V 10290:O 10280:V 10275:n 10272:i 10269:P 10259:2 10248:1 10203:H 10170:) 10168:F 10164:F 10158:n 10152:n 10139:F 10130:) 10128:F 10124:F 10115:F 10093:n 10091:2 10086:n 10084:2 10070:n 10068:2 10063:. 10060:I 10056:I 10046:. 10043:u 10039:u 10037:( 10035:Q 10031:u 10027:v 10025:( 10023:B 10019:v 10013:v 10003:Q 9997:B 9991:u 9987:u 9985:( 9983:Q 9979:u 9975:v 9973:( 9971:B 9967:v 9961:v 9955:u 9919:1 9911:) 9909:F 9905:n 9899:1 9895:) 9893:F 9889:n 9883:) 9881:F 9877:n 9871:1 9867:0 9862:F 9857:) 9855:F 9851:n 9825:I 9818:f 9814:I 9810:f 9808:( 9806:D 9798:0 9793:Z 9789:Z 9770:) 9768:q 9764:n 9756:2 9739:. 9735:) 9731:1 9723:i 9720:2 9716:q 9711:( 9705:1 9699:n 9694:1 9691:= 9688:i 9679:) 9675:1 9672:+ 9667:n 9663:q 9658:( 9652:) 9649:1 9643:n 9640:( 9637:n 9633:q 9629:2 9626:= 9622:| 9618:) 9615:q 9612:, 9609:n 9606:2 9603:( 9591:O 9586:| 9564:, 9560:) 9556:1 9548:i 9545:2 9541:q 9536:( 9530:1 9524:n 9519:1 9516:= 9513:i 9504:) 9500:1 9492:n 9488:q 9483:( 9477:) 9474:1 9468:n 9465:( 9462:n 9458:q 9454:2 9451:= 9447:| 9443:) 9440:q 9437:, 9434:n 9431:2 9428:( 9420:+ 9416:O 9411:| 9389:, 9385:) 9381:1 9373:i 9370:2 9366:q 9361:( 9355:n 9350:1 9347:= 9344:i 9332:2 9328:n 9323:q 9319:2 9316:= 9312:| 9308:) 9305:q 9302:, 9299:1 9296:+ 9293:n 9290:2 9287:( 9281:O 9277:| 9250:. 9244:i 9241:2 9231:i 9224:e 9212:i 9208:e 9201:= 9170:2 9161:i 9154:e 9150:+ 9142:i 9138:e 9131:= 9095:, 9090:] 9034:[ 9022:x 9015:) 9011:R 9007:, 9004:2 9001:( 8984:C 8966:C 8945:, 8937:i 8933:e 8915:C 8904:R 8897:2 8893:/ 8888:R 8858:. 8849:2 8842:1 8835:x 8828:x 8822:= 8819:b 8797:2 8791:1 8784:x 8780:+ 8777:x 8771:= 8768:a 8741:, 8736:] 8730:a 8725:b 8715:b 8710:a 8704:[ 8692:x 8685:) 8680:q 8675:F 8670:, 8667:2 8664:( 8656:+ 8640:T 8620:q 8616:F 8611:T 8605:q 8601:F 8596:g 8575:, 8570:k 8567:) 8564:1 8558:q 8555:( 8551:g 8540:k 8533:T 8522:Z 8518:) 8515:1 8512:+ 8509:q 8506:( 8502:/ 8497:Z 8464:q 8460:F 8451:g 8446:g 8439:q 8432:- 8428:q 8426:( 8412:b 8406:+ 8403:a 8397:) 8394:b 8391:, 8388:a 8385:( 8375:x 8369:x 8354:, 8349:q 8345:x 8341:= 8336:1 8329:x 8325:= 8322:y 8304:y 8300:x 8296:) 8294:q 8290:n 8281:q 8275:q 8271:F 8266:) 8264:q 8260:n 8249:q 8245:F 8235:a 8231:b 8227:a 8225:( 8208:. 8205:) 8200:2 8196:b 8189:+ 8184:2 8180:a 8176:( 8173:) 8168:1 8164:b 8157:+ 8152:1 8148:a 8144:( 8141:= 8138:b 8132:+ 8129:a 8115:2 8112:a 8109:1 8106:b 8102:2 8099:b 8096:1 8093:a 8089:b 8083:2 8080:b 8077:1 8070:2 8067:a 8064:1 8061:a 8057:a 8042:, 8037:] 8031:a 8026:b 8016:b 8011:a 8005:[ 7980:. 7975:] 7967:1 7963:a 7957:1 7953:a 7949:+ 7944:2 7940:b 7934:1 7930:b 7919:2 7915:b 7909:1 7905:a 7898:+ 7893:2 7889:a 7883:1 7879:b 7866:2 7862:a 7856:1 7852:b 7848:+ 7843:2 7839:b 7833:1 7829:a 7821:2 7817:b 7811:1 7807:b 7800:+ 7795:2 7791:a 7785:1 7781:a 7774:[ 7769:= 7764:2 7760:A 7754:1 7750:A 7724:] 7716:2 7712:a 7704:2 7700:b 7687:2 7683:b 7675:2 7671:a 7664:[ 7659:= 7654:2 7650:A 7627:] 7619:1 7615:a 7607:1 7603:b 7590:1 7586:b 7578:1 7574:a 7567:[ 7562:= 7557:1 7553:A 7529:. 7520:2 7515:y 7509:x 7503:= 7500:b 7494:2 7490:y 7487:+ 7484:x 7478:= 7475:a 7471:, 7468:1 7465:= 7462:y 7459:x 7441:a 7437:y 7427:a 7423:x 7416:q 7412:F 7407:) 7405:q 7397:q 7393:F 7388:ω 7384:α 7377:ε 7371:ε 7360:a 7342:, 7337:] 7331:a 7323:b 7310:b 7305:a 7299:[ 7282:ε 7272:d 7262:c 7255:q 7251:F 7246:ε 7242:b 7238:a 7233:ω 7225:c 7203:a 7179:] 7173:d 7168:c 7161:b 7156:a 7150:[ 7145:= 7142:A 7122:, 7117:] 7103:0 7096:0 7091:1 7085:[ 7080:= 7077:Q 7067:) 7065:q 7050:ε 7045:) 7043:ε 7039:q 7029:) 7027:q 7018:) 7016:q 7012:n 7006:) 7004:q 7000:n 6994:W 6990:V 6969:, 6964:] 6953:0 6946:0 6941:1 6935:[ 6922:W 6918:Q 6914:q 6906:W 6902:I 6897:I 6895:– 6891:I 6887:W 6883:Q 6879:q 6871:W 6864:q 6860:) 6858:q 6854:n 6833:, 6828:] 6816:[ 6790:] 6784:1 6778:[ 6765:W 6761:V 6754:W 6739:W 6735:w 6729:w 6727:( 6725:Q 6716:W 6712:Q 6695:] 6689:0 6684:1 6677:1 6672:0 6666:[ 6652:i 6650:L 6646:Q 6637:i 6635:L 6618:, 6615:W 6607:m 6603:L 6588:2 6584:L 6575:1 6571:L 6567:= 6564:V 6551:Q 6510:Z 6505:) 6503:C 6493:) 6491:C 6487:n 6475:n 6470:) 6468:C 6464:n 6456:n 6450:R 6444:C 6437:n 6435:( 6433:n 6428:) 6426:C 6422:n 6416:) 6414:C 6410:n 6401:) 6399:C 6395:n 6389:) 6387:C 6383:n 6377:1 6373:) 6371:C 6367:n 6354:) 6352:C 6348:n 6342:n 6332:n 6328:x 6324:1 6321:x 6316:n 6303:C 6290:1 6286:3 6267:) 6265:q 6261:p 6254:) 6252:q 6248:p 6242:) 6240:q 6236:p 6230:) 6228:q 6224:p 6215:q 6211:p 6207:) 6205:n 6201:n 6197:n 6188:) 6186:p 6182:q 6178:q 6174:p 6168:) 6166:q 6162:p 6149:) 6147:q 6143:p 6141:( 6133:q 6129:1 6125:p 6116:n 6112:q 6108:p 6103:q 6099:p 6095:n 6065:O 6063:( 6061:7 6058:π 6046:O 6044:( 6042:3 6039:π 6027:O 6025:( 6023:1 6020:π 6016:O 6008:O 6006:( 6004:0 6001:π 5964:) 5961:n 5958:( 5952:O 5946:) 5943:n 5940:( 5928:) 5925:n 5922:( 5910:) 5907:n 5904:( 5892:) 5889:n 5886:( 5847:K 5845:( 5839:1 5837:π 5831:K 5819:1 5817:π 5808:Z 5804:K 5802:( 5800:8 5796:K 5794:( 5792:0 5790:π 5776:K 5774:( 5772:8 5770:π 5762:K 5760:( 5758:4 5756:π 5748:K 5746:( 5744:2 5742:π 5734:K 5732:( 5730:1 5728:π 5720:S 5716:O 5710:S 5706:H 5700:S 5696:P 5694:C 5687:S 5683:P 5681:R 5675:P 5673:R 5659:R 5657:L 5650:O 5642:H 5635:C 5629:R 5620:R 5613:. 5606:Z 5602:K 5600:( 5598:4 5596:π 5586:Z 5582:Z 5578:K 5576:( 5574:2 5572:π 5562:Z 5558:Z 5554:K 5552:( 5550:1 5548:π 5538:Z 5534:K 5532:( 5530:0 5528:π 5508:Z 5504:B 5500:K 5494:Z 5490:B 5486:K 5479:O 5473:O 5468:0 5463:O 5440:Z 5435:K 5433:( 5431:0 5429:π 5424:S 5413:K 5411:( 5409:0 5407:π 5397:) 5391:( 5386:) 5382:( 5378:. 5368:. 5333:) 5331:G 5329:( 5327:3 5325:π 5321:) 5319:G 5317:( 5315:2 5313:π 5294:2 5292:π 5286:2 5282:O 5280:( 5278:2 5276:π 5272:. 5270:) 5268:Z 5264:Z 5260:S 5256:R 5245:Z 5241:Z 5237:1 5233:O 5231:( 5229:1 5227:π 5212:Z 5208:Z 5204:0 5200:O 5198:( 5196:0 5194:π 5160:0 5157:= 5150:) 5147:O 5144:K 5141:( 5136:7 5124:0 5121:= 5114:) 5111:O 5108:K 5105:( 5100:6 5088:0 5085:= 5078:) 5075:O 5072:K 5069:( 5064:5 5051:Z 5047:= 5040:) 5037:O 5034:K 5031:( 5026:4 5014:0 5011:= 5004:) 5001:O 4998:K 4995:( 4990:3 4977:Z 4973:2 4969:/ 4964:Z 4960:= 4953:) 4950:O 4947:K 4944:( 4939:2 4926:Z 4922:2 4918:/ 4913:Z 4909:= 4902:) 4899:O 4896:K 4893:( 4888:1 4875:Z 4871:= 4864:) 4861:O 4858:K 4855:( 4850:0 4827:0 4825:π 4820:Z 4816:O 4812:Z 4799:) 4795:( 4791:k 4786:O 4784:( 4781:k 4778:π 4769:O 4737:Z 4733:= 4726:) 4723:O 4720:( 4715:7 4703:0 4700:= 4693:) 4690:O 4687:( 4682:6 4670:0 4667:= 4660:) 4657:O 4654:( 4649:5 4637:0 4634:= 4627:) 4624:O 4621:( 4616:4 4603:Z 4599:= 4592:) 4589:O 4586:( 4581:3 4569:0 4566:= 4559:) 4556:O 4553:( 4548:2 4535:Z 4531:2 4527:/ 4522:Z 4518:= 4511:) 4508:O 4505:( 4500:1 4487:Z 4483:2 4479:/ 4474:Z 4470:= 4463:) 4460:O 4457:( 4452:0 4430:) 4428:O 4426:( 4423:k 4418:O 4416:( 4412:k 4409:π 4404:O 4398:O 4394:O 4392:Ω 4379:k 4375:n 4368:n 4363:k 4358:n 4353:k 4350:π 4342:n 4340:( 4333:n 4329:n 4310:S 4299:n 4280:, 4275:n 4271:S 4264:) 4261:1 4258:+ 4255:n 4252:( 4246:O 4240:) 4237:n 4234:( 4228:O 4209:n 4197:S 4174:) 4171:k 4168:( 4162:O 4152:0 4149:= 4146:k 4138:= 4135:O 4123:) 4120:2 4117:( 4111:O 4105:) 4102:1 4099:( 4093:O 4087:) 4084:0 4081:( 4075:O 4054:) 4052:O 4050:( 4047:k 4044:π 4011:n 4002:) 4000:n 3987:) 3985:R 3981:n 3969:n 3953:. 3950:S 3945:S 3925:P 3923:R 3908:S 3883:S 3858:) 3852:( 3847:) 3843:( 3829:. 3803:) 3797:( 3792:) 3788:( 3784:. 3743:) 3741:n 3719:] 3713:0 3708:1 3701:1 3696:0 3690:[ 3676:n 3668:n 3664:n 3658:) 3656:n 3650:) 3648:n 3638:n 3634:H 3617:n 3604:1 3592:) 3586:n 3578:, 3572:, 3567:1 3558:( 3535:n 3531:H 3524:n 3506:n 3502:S 3493:n 3489:} 3485:1 3479:{ 3471:n 3467:S 3458:1 3452:n 3448:H 3437:) 3435:n 3426:1 3405:, 3400:] 3394:0 3389:1 3382:1 3377:0 3371:[ 3357:] 3351:1 3346:0 3339:0 3334:1 3328:[ 3309:1 3303:n 3301:S 3294:n 3286:T 3275:n 3273:S 3262:T 3226:n 3222:S 3213:n 3209:} 3205:1 3199:{ 3184:n 3171:1 3165:n 3157:n 3145:j 3141:R 3123:, 3118:] 3110:n 3106:R 3099:0 3083:0 3075:1 3071:R 3064:[ 3045:) 3043:n 3037:) 3035:n 3024:T 3019:k 3014:T 3009:G 2990:) 2988:n 2980:A 2972:n 2970:( 2968:n 2957:A 2949:A 2943:) 2941:n 2923:) 2921:n 2902:, 2897:2 2893:) 2890:1 2887:+ 2884:n 2881:( 2878:n 2867:2 2863:n 2859:= 2854:2 2850:) 2847:1 2841:n 2838:( 2835:n 2815:) 2813:n 2802:n 2800:( 2798:n 2788:I 2784:A 2781:A 2776:A 2772:) 2770:n 2748:) 2746:n 2736:) 2734:n 2726:n 2724:( 2722:n 2707:) 2705:n 2699:) 2697:n 2679:) 2677:n 2671:n 2663:) 2661:n 2642:. 2637:] 2631:) 2625:( 2614:) 2608:( 2595:) 2589:( 2575:) 2569:( 2557:[ 2542:1 2534:) 2532:φ 2528:i 2524:φ 2520:i 2517:φ 2505:U 2467:n 2458:n 2456:( 2447:) 2445:n 2430:n 2425:) 2423:n 2416:v 2412:v 2393:) 2391:n 2384:n 2374:θ 2368:θ 2346:n 2342:n 2340:( 2336:I 2319:, 2314:] 2308:I 2303:0 2296:0 2291:1 2282:[ 2267:) 2265:n 2234:n 2226:0 2218:π 2206:) 2204:n 2195:1 2174:b 2170:a 2152:, 2147:] 2141:a 2136:b 2126:b 2121:a 2115:[ 2098:k 2094:R 2090:1 2087:R 2069:, 2064:] 2054:1 2031:1 2019:0 2012:0 2001:k 1997:R 1974:1 1970:R 1959:[ 1944:) 1942:n 1920:k 1913:k 1905:k 1901:C 1891:n 1886:) 1884:n 1867:} 1865:I 1859:) 1857:n 1847:) 1845:n 1838:n 1833:) 1831:n 1824:n 1819:) 1817:n 1803:I 1799:} 1797:I 1784:) 1782:n 1764:) 1762:n 1756:) 1754:n 1742:) 1740:n 1730:) 1728:n 1718:1 1710:1 1706:Q 1702:1 1698:Q 1677:. 1674:I 1671:= 1665:T 1660:Q 1656:Q 1627:) 1625:n 1619:) 1617:n 1604:) 1602:n 1592:) 1590:n 1579:p 1560:g 1537:, 1534:) 1531:x 1528:( 1525:g 1519:) 1516:y 1513:( 1510:g 1507:= 1504:) 1501:x 1495:y 1492:( 1489:) 1486:g 1483:( 1480:p 1467:) 1465:n 1459:) 1457:n 1450:p 1439:) 1437:n 1430:x 1426:x 1424:( 1422:g 1417:) 1415:n 1411:g 1405:S 1401:x 1387:n 1381:S 1369:) 1367:n 1349:. 1343:x 1337:= 1331:) 1328:x 1325:( 1322:g 1308:g 1295:) 1293:R 1289:n 1280:) 1278:n 1259:E 1253:E 1242:( 1232:) 1230:n 1223:n 1217:E 1154:. 1150:} 1146:I 1143:= 1137:T 1132:Q 1128:Q 1125:= 1122:Q 1116:T 1111:Q 1104:) 1101:F 1098:, 1095:n 1092:( 1080:Q 1076:{ 1072:= 1069:) 1066:F 1063:, 1060:n 1057:( 1051:O 1041:) 1039:F 1035:n 1026:) 1024:F 1020:n 1013:n 1009:n 1003:F 994:F 988:n 984:n 978:F 936:) 934:n 911:n 871:n 867:n 849:n 832:) 830:n 823:n 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

SO(n)
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.