Knowledge

Rotating black hole

Source 📝

56: 1263: 312: 2093: 2103: 303:, in the volume outside its event horizon. In some cases of energy extraction, a rotating black hole may gradually reduce to a Schwarzschild black hole, the minimum configuration from which no further energy can be extracted, although the Kerr black hole's rotation velocity will never quite reach zero. 138: 348:
around the black hole. Hence, when we observe a distant background galaxy (or some other celestial body), we may be lucky to see the same image of the galaxy multiple times, albeit more and more distorted. A complete mathematical description for how light bends around the equatorial plane of a Kerr
236:
Note that astrophysical black holes are expected to have non-zero angular momentum, due to their formation via collapse of rotating stellar objects, but effectively zero charge, since any net charge will quickly attract the opposite charge and neutralize. For this reason the term "astrophysical"
169:
These numbers represent the conserved attributes of an object which can be determined from a distance by examining its electromagnetic and gravitational fields. All other variations in the black hole will either escape to infinity or be swallowed up by the black hole. This is because anything
158: 257:
and realistic collisions have non-zero angular momentum, it is expected that all black holes in nature are rotating black holes. Since observed astronomical objects do not possess an appreciable net electric charge, only the Kerr solution has astrophysical relevance.
59:
The boundaries of a Kerr black hole relevant to astrophysics. Note that there are no physical "surfaces" as such. The boundaries are mathematical surfaces, or sets of points in spacetime, relevant to analysis of the black hole's properties and
157: 504: 1988: 137: 1090:
Brahma, Suddhasattwa; Chen, Che-Yu; Yeom, Dong-han (2021). "Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes".
643:
Cromb, Marion; Gibson, Graham M.; Toninelli, Ermes; Padgett, Miles J.; Wright, Ewan M.; Faccio, Daniele (2020). "Amplification of waves from a rotating body".
77:. Two of those rotate: the Kerr and Kerr–Newman black holes. It is generally believed that every black hole decays rapidly to a stable black hole; and, by the 1012: 697: 711:
Williams, R. K. (1995). "Extracting X rays, Ύ rays, and relativistic ee pairs from supermassive Kerr black holes using the Penrose mechanism".
253:
or from the collapse or collision of a collection of compact objects, stars, or gas with a total non-zero angular momentum. As all known stars
1344: 820: 344:
In the vicinity of a black hole, space curves so much that light rays are deflected, and very nearby light can be deflected so much that it
1349: 149:, approaching zero velocity at the horizon relative to a stationary probe on site while being whirled around forever by the black hole's 2068: 1725: 395:. These are, however, magnified greatly for the purpose of story telling. Kerr black holes are also key to the "Swan Song" project by 141:
While from an infalling observer's perspective the plunge into a rotating black hole occurs in a finite proper time and with very high
525: 1663: 1489: 1389: 81:, that (except for quantum fluctuations) stable black holes can be completely described at any moment in time by these 11 numbers: 315:
Rotating black hole from the perspective of the distant observer. The different frames show the black hole from different angles.
295:
A rotating black hole can produce large amounts of energy at the expense of its rotational energy. This can happen through the
1166: 594: 1705: 55: 1794: 619: 1789: 1674: 223: 1710: 1506: 1932: 1613: 1252: 1700: 1575: 2106: 1618: 1521: 1309: 330: 1628: 1922: 1887: 1877: 911: 368:
Rotating black holes have two temperature states they can exist in: heating (losing energy) and cooling.
146: 85: 479: 341:, which are believed to be representative of all rotating black hole solutions, in the exterior region. 1608: 1560: 1543: 1242: 441: 2063: 1565: 1479: 1227: 1159: 419: 263: 162: 1740: 70: 1917: 1453: 1416: 1319: 1314: 1232: 1040: 384: 1947: 1835: 1820: 1679: 1372: 1186: 338: 324: 246: 228: 1825: 1638: 1382: 1237: 2127: 2096: 1804: 1776: 1659: 1587: 1555: 1399: 1207: 1152: 1109: 951: 858: 777: 720: 662: 204: 433:– solution representing interior geometry of black holes formed by gravitational collapse. 8: 1927: 1902: 1872: 1830: 1784: 1421: 1287: 1282: 942:(1989). "Thermodynamic phase transitions of Kerr-Newman black holes in de Sitter space". 915: 756:"Energy Extraction from a Rotating Black Hole by Magnetic Reconnection in the Ergosphere" 483: 401: 388: 360:
and thus black holes—which were the solution to Einstein's equation of 1915—were stable.
1113: 955: 862: 781: 724: 666: 1761: 1633: 1538: 1329: 1297: 1262: 1222: 1217: 1133: 1099: 1060: 967: 919: 887: 846: 801: 767: 678: 652: 600: 572: 547: 456: 396: 173:
In terms of these properties, the four types of black holes can be defined as follows:
74: 698:"After 50 Years, Experiment Finally Shows Energy Could Be Extracted From a Black Hole" 2132: 1907: 1897: 1892: 1592: 1580: 1533: 1474: 1443: 1433: 1367: 1137: 1125: 971: 963: 892: 874: 793: 736: 682: 624: 604: 590: 116: 1013:"Meet the man trying to send a warning about history's worst tragedies back to 1935" 805: 2058: 2018: 1766: 1715: 1570: 1484: 1277: 1247: 1121: 1117: 959: 882: 866: 785: 728: 670: 582: 526:"It is said that most black holes likely have spin. What exactly is it that spins?" 451: 357: 254: 105: 30: 2078: 2028: 2003: 1799: 1643: 1550: 1516: 1428: 446: 430: 414: 392: 296: 284: 261:
In late 2006, astronomers reported estimates of the spin rates of black holes in
127: 94: 78: 1031:"Đ›Đ”Ń‚ĐœŃŃ шĐșĐŸĐ»Đ° ĐșĐŸŃĐŒĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ ОсĐșусстĐČĐ°. Summer School of Space Art with Joe Davis" 1993: 1978: 1745: 1684: 1528: 1202: 870: 586: 150: 1030: 674: 271:, may rotate 1,150 times per second, approaching the theoretical upper limit. 2121: 2053: 1973: 1501: 1496: 878: 797: 732: 345: 268: 170:
happening inside the black hole horizon cannot affect events outside of it.
2008: 1882: 1850: 1458: 1377: 1129: 1078: 896: 740: 500: 377: 352:
In 2022, it was mathematically demonstrated that the equilibrium found by
2048: 1998: 1952: 1855: 1730: 1669: 1394: 1302: 939: 629: 543: 380: 334: 320: 209: 311: 2038: 1968: 1937: 1912: 1865: 1860: 1845: 1511: 1448: 1438: 1339: 1175: 910:
Giorgi, Elena; Klainerman, Sergiu; Szeftel, Jeremie (19 October 2022).
436: 300: 145:(left), from the perspective of a coordinate observer at infinity they 26: 821:"Danish Student solves how the Universe is reflected near black holes" 2073: 1720: 1623: 1411: 1406: 425: 280: 755: 1983: 1942: 1840: 1104: 924: 789: 657: 577: 353: 142: 49: 772: 552: 2023: 1035: 37: 847:"Divergent reflections around the photon sphere of a black hole" 505:"This Is Why Black Holes Must Spin At Almost The Speed Of Light" 2043: 2033: 2013: 1735: 1334: 1324: 546:(15 January 2008). "The Kerr spacetime: A brief introduction". 509: 33:. In particular, it rotates about one of its axes of symmetry. 1144: 41: 642: 290: 250: 161:
Prograde bound orbit around a black hole rotating with a
69:
There are four known, exact, black hole solutions to the
45: 985: 237:
black hole is usually reserved for the Kerr black hole.
909: 567:
Capelo, Pedro R. (2019). "Astrophysical black holes".
376:
Kerr black holes are featured extensively in the 2009
1058:
Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973).
1057: 912:A Researcher Shores Up Einstein's Theory With Math 306: 274: 2119: 399:. They are also a key element in the 2014 film 1089: 695: 474: 472: 1160: 818: 495: 493: 283:is thought to be observed as the emission of 523: 499: 279:The formation of a rotating black hole by a 469: 333:. There are two known exact solutions, the 16:Black hole which possesses angular momentum 1726:Magnetospheric eternally collapsing object 1167: 1153: 754:Koide, Shinji; Arai, Kenzo (August 2008). 490: 1103: 923: 886: 819:Communication, N. B. I. (9 August 2021). 771: 753: 656: 576: 551: 1010: 710: 310: 291:Conversion to a Schwarzschild black hole 156: 136: 54: 844: 329:A rotating black hole is a solution of 245:Rotating black holes are formed in the 64: 2120: 1068: 1043:from the original on 22 December 2021. 986:"æƒłćźšç§‘ć­Šă€ŽSteins;Gate(ă‚·ăƒ„ă‚żă‚€ăƒłă‚șă‚ČăƒŒăƒˆ)ă€ć…ŹćŒWebă‚”ă‚€ăƒˆ" 938: 566: 542: 1148: 1077: 617: 371: 2102: 1083:The Galactic Supermassive Black Hole 363: 13: 1051: 618:Hayes, Jacqui (24 November 2006). 569:Formation of the First Black Holes 349:black hole was published in 2021. 14: 2144: 267:. A black hole in the Milky Way, 2101: 2092: 2091: 1390:Tolman–Oppenheimer–Volkoff limit 1261: 480:"Why and how do planets rotate?" 1507:Innermost stable circular orbit 1174: 1023: 1004: 978: 932: 903: 845:Sneppen, Albert (9 July 2021). 838: 812: 747: 696:Michelle Starr (25 June 2020). 620:"Black hole spins at the limit" 307:Kerr metric, Kerr–Newman metric 1933:Timeline of black hole physics 1122:10.1103/PhysRevLett.126.181301 1064:(2nd ed.). W. H. Freeman. 704: 689: 636: 611: 560: 536: 517: 391:), for their possibilities in 275:Relation with gamma ray bursts 1: 1701:Nonsingular black hole models 944:Classical and Quantum Gravity 524:Robert Walty (22 July 2019). 462: 442:Kerr black holes as wormholes 240: 73:, which describe gravity in 7: 1923:Rossi X-ray Timing Explorer 1888:Hypercompact stellar system 1878:Gamma-ray burst progenitors 408: 10: 2149: 1609:Black hole complementarity 1576:Bousso's holographic bound 1561:Quasi-periodic oscillation 1259: 1253:Malament–Hogarth spacetime 964:10.1088/0264-9381/6/12/018 871:10.1038/s41598-021-93595-w 587:10.1142/9789813227958_0001 318: 2087: 1961: 1813: 1775: 1754: 1693: 1652: 1601: 1480:Gravitational singularity 1467: 1360: 1270: 1195: 1182: 1011:Mark Hay (23 July 2020). 760:The Astrophysical Journal 675:10.1038/s41567-020-0944-3 420:Black hole spin parameter 331:Einstein's field equation 264:The Astrophysical Journal 2064:PSO J030947.49+271757.31 1989:SDSS J150243.09+111557.3 1522:Blandford–Znajek process 1069:Macvey, John W. (1990). 733:10.1103/PhysRevD.51.5387 299:inside the black hole's 71:Einstein field equations 36:All celestial objects – 1320:Active galactic nucleus 1092:Physical Review Letters 1948:Tidal disruption event 1918:Supermassive dark star 1836:Black holes in fiction 1821:Outline of black holes 1454:Supermassive dark star 1373:Gravitational collapse 316: 249:of a massive spinning 247:gravitational collapse 166: 154: 61: 52:, black holes – spin. 1826:Black Hole Initiative 1639:Holographic principle 346:travels several times 319:Further information: 314: 160: 140: 58: 1629:Final parsec problem 1588:Schwarzschild radius 1085:. Princeton U Press. 1073:. Scarborough House. 65:Types of black holes 1928:Superluminal motion 1903:Population III star 1873:Gravitational waves 1831:Black hole starship 1614:Information paradox 1114:2021PhRvL.126r1301B 956:1989CQGra...6.1909D 916:Columbia University 863:2021NatSR..1114247S 782:2008ApJ...682.1124K 725:1995PhRvD..51.5387W 667:2020NatPh..16.1069C 484:Scientific American 457:Stellar black holes 192: > 0) 124:(three components), 113:(three components), 102:(three components), 23:rotating black hole 1762:Optical black hole 1675:Reissner–Nordström 1634:Firewall (physics) 1539:Gravitational lens 1039:. 10 August 2020. 940:Davies, Paul C. W. 851:Scientific Reports 372:In popular culture 339:Kerr–Newman metric 325:Kerr–Newman metric 317: 224:Reissner–Nordström 167: 155: 75:general relativity 62: 2115: 2114: 1908:Supermassive star 1898:Naked singularity 1893:Membrane paradigm 1619:Cosmic censorship 1593:Spaghettification 1581:Immirzi parameter 1534:Hawking radiation 1475:Astrophysical jet 1444:Supermassive star 1434:Binary black hole 1368:Stellar evolution 1310:Intermediate-mass 950:(12): 1909–1914. 719:(10): 5387–5427. 713:Physical Review D 651:(10): 1069–1073. 596:978-981-322-794-1 571:. pp. 1–22. 503:(1 August 2019). 234: 233: 2140: 2105: 2104: 2095: 2094: 1767:Sonic black hole 1716:Dark-energy star 1571:Bekenstein bound 1556:M–sigma relation 1485:Ring singularity 1265: 1169: 1162: 1155: 1146: 1145: 1141: 1107: 1086: 1074: 1065: 1045: 1044: 1027: 1021: 1020: 1008: 1002: 1001: 999: 997: 982: 976: 975: 936: 930: 929: 927: 907: 901: 900: 890: 842: 836: 835: 833: 831: 816: 810: 809: 775: 751: 745: 744: 708: 702: 701: 693: 687: 686: 660: 640: 634: 633: 628:. Archived from 615: 609: 608: 580: 564: 558: 557: 555: 540: 534: 533: 521: 515: 514: 497: 488: 487: 486:. 14 April 2003. 476: 452:Ring singularity 364:State transition 285:gamma ray bursts 220: â‰  0) 201: = 0) 185: = 0) 176: 175: 106:angular momentum 31:angular momentum 2148: 2147: 2143: 2142: 2141: 2139: 2138: 2137: 2118: 2117: 2116: 2111: 2083: 2059:ULAS J1342+0928 2019:SDSS J0849+1114 2004:Phoenix Cluster 1957: 1809: 1771: 1750: 1689: 1648: 1644:No-hair theorem 1597: 1551:Bondi accretion 1517:Penrose process 1463: 1429:Gamma-ray burst 1356: 1266: 1257: 1243:Direct collapse 1191: 1178: 1173: 1054: 1052:Further reading 1049: 1048: 1029: 1028: 1024: 1009: 1005: 995: 993: 984: 983: 979: 937: 933: 908: 904: 843: 839: 829: 827: 817: 813: 752: 748: 709: 705: 694: 690: 641: 637: 625:Cosmos magazine 616: 612: 597: 565: 561: 541: 537: 522: 518: 498: 491: 478: 477: 470: 465: 447:Penrose process 431:BKL singularity 415:Black hole bomb 411: 393:time travelling 374: 366: 327: 309: 297:Penrose process 293: 277: 243: 153:effect (right). 128:electric charge 95:linear momentum 79:no-hair theorem 67: 29:that possesses 17: 12: 11: 5: 2146: 2136: 2135: 2130: 2113: 2112: 2110: 2109: 2099: 2088: 2085: 2084: 2082: 2081: 2079:Swift J1644+57 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2029:MS 0735.6+7421 2026: 2021: 2016: 2011: 2006: 2001: 1996: 1994:Sagittarius A* 1991: 1986: 1981: 1976: 1971: 1965: 1963: 1959: 1958: 1956: 1955: 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1880: 1875: 1870: 1869: 1868: 1863: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1817: 1815: 1811: 1810: 1808: 1807: 1802: 1797: 1792: 1787: 1781: 1779: 1773: 1772: 1770: 1769: 1764: 1758: 1756: 1752: 1751: 1749: 1748: 1743: 1738: 1733: 1728: 1723: 1718: 1713: 1708: 1703: 1697: 1695: 1691: 1690: 1688: 1687: 1682: 1677: 1672: 1667: 1656: 1654: 1650: 1649: 1647: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1605: 1603: 1599: 1598: 1596: 1595: 1590: 1585: 1584: 1583: 1573: 1568: 1566:Thermodynamics 1563: 1558: 1553: 1548: 1547: 1546: 1536: 1531: 1529:Accretion disk 1526: 1525: 1524: 1519: 1509: 1504: 1499: 1494: 1493: 1492: 1487: 1477: 1471: 1469: 1465: 1464: 1462: 1461: 1456: 1451: 1446: 1441: 1436: 1431: 1426: 1425: 1424: 1419: 1414: 1404: 1403: 1402: 1392: 1387: 1386: 1385: 1375: 1370: 1364: 1362: 1358: 1357: 1355: 1354: 1353: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1312: 1307: 1306: 1305: 1295: 1294: 1293: 1290: 1285: 1274: 1272: 1268: 1267: 1260: 1258: 1256: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1210: 1205: 1203:BTZ black hole 1199: 1197: 1193: 1192: 1190: 1189: 1183: 1180: 1179: 1172: 1171: 1164: 1157: 1149: 1143: 1142: 1098:(18): 181301. 1087: 1075: 1066: 1053: 1050: 1047: 1046: 1022: 1003: 977: 931: 902: 837: 811: 790:10.1086/589497 746: 703: 688: 645:Nature Physics 635: 632:on 7 May 2012. 610: 595: 559: 535: 516: 489: 467: 466: 464: 461: 460: 459: 454: 449: 444: 439: 434: 428: 422: 417: 410: 407: 373: 370: 365: 362: 308: 305: 292: 289: 276: 273: 242: 239: 232: 231: 226: 221: 213: 212: 207: 202: 194: 193: 186: 181:Non-rotating ( 179: 163:spin parameter 151:frame-dragging 135: 134: 125: 114: 103: 92: 66: 63: 15: 9: 6: 4: 3: 2: 2145: 2134: 2131: 2129: 2126: 2125: 2123: 2108: 2100: 2098: 2090: 2089: 2086: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2054:Markarian 501 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1979:XTE J1118+480 1977: 1975: 1974:XTE J1650-500 1972: 1970: 1967: 1966: 1964: 1960: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1867: 1864: 1862: 1859: 1858: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1818: 1816: 1812: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1782: 1780: 1778: 1774: 1768: 1765: 1763: 1760: 1759: 1757: 1753: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1698: 1696: 1692: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1665: 1661: 1660:Schwarzschild 1658: 1657: 1655: 1651: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1606: 1604: 1600: 1594: 1591: 1589: 1586: 1582: 1579: 1578: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1557: 1554: 1552: 1549: 1545: 1542: 1541: 1540: 1537: 1535: 1532: 1530: 1527: 1523: 1520: 1518: 1515: 1514: 1513: 1510: 1508: 1505: 1503: 1502:Photon sphere 1500: 1498: 1497:Event horizon 1495: 1491: 1488: 1486: 1483: 1482: 1481: 1478: 1476: 1473: 1472: 1470: 1466: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1430: 1427: 1423: 1422:Related links 1420: 1418: 1415: 1413: 1410: 1409: 1408: 1405: 1401: 1400:Related links 1398: 1397: 1396: 1393: 1391: 1388: 1384: 1383:Related links 1381: 1380: 1379: 1376: 1374: 1371: 1369: 1366: 1365: 1363: 1359: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1317: 1316: 1313: 1311: 1308: 1304: 1301: 1300: 1299: 1296: 1291: 1289: 1286: 1284: 1281: 1280: 1279: 1276: 1275: 1273: 1269: 1264: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1208:Schwarzschild 1206: 1204: 1201: 1200: 1198: 1194: 1188: 1185: 1184: 1181: 1177: 1170: 1165: 1163: 1158: 1156: 1151: 1150: 1147: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1106: 1101: 1097: 1093: 1088: 1084: 1080: 1079:Melia, Fulvio 1076: 1072: 1067: 1063: 1062: 1056: 1055: 1042: 1038: 1037: 1032: 1026: 1018: 1014: 1007: 992:(in Japanese) 991: 990:steinsgate.jp 987: 981: 973: 969: 965: 961: 957: 953: 949: 945: 941: 935: 926: 921: 917: 914:(Monograph). 913: 906: 898: 894: 889: 884: 880: 876: 872: 868: 864: 860: 856: 852: 848: 841: 826: 822: 815: 807: 803: 799: 795: 791: 787: 783: 779: 774: 769: 765: 761: 757: 750: 742: 738: 734: 730: 726: 722: 718: 714: 707: 699: 692: 684: 680: 676: 672: 668: 664: 659: 654: 650: 646: 639: 631: 627: 626: 621: 614: 606: 602: 598: 592: 588: 584: 579: 574: 570: 563: 554: 549: 545: 539: 531: 530:astronomy.com 527: 520: 512: 511: 506: 502: 496: 494: 485: 481: 475: 473: 468: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 432: 429: 427: 423: 421: 418: 416: 413: 412: 406: 404: 403: 398: 394: 390: 386: 382: 379: 369: 361: 359: 355: 350: 347: 342: 340: 336: 332: 326: 322: 313: 304: 302: 298: 288: 286: 282: 272: 270: 266: 265: 259: 256: 252: 248: 238: 230: 227: 225: 222: 219: 215: 214: 211: 208: 206: 205:Schwarzschild 203: 200: 196: 195: 191: 187: 184: 180: 178: 177: 174: 171: 164: 159: 152: 148: 144: 139: 132: 129: 126: 123: 122: 118: 115: 112: 111: 107: 104: 101: 100: 96: 93: 90: 87: 84: 83: 82: 80: 76: 72: 60:interactions. 57: 53: 51: 47: 43: 39: 34: 32: 28: 24: 19: 2009:PKS 1302-102 1883:Gravity well 1851:Compact star 1805:Microquasars 1790:Most massive 1694:Alternatives 1459:X-ray binary 1378:Neutron star 1315:Supermassive 1292:Hawking star 1233:Supermassive 1212: 1095: 1091: 1082: 1070: 1059: 1034: 1025: 1016: 1006: 994:. Retrieved 989: 980: 947: 943: 934: 905: 857:(1): 14247. 854: 850: 840: 828:. Retrieved 824: 814: 763: 759: 749: 716: 712: 706: 691: 648: 644: 638: 630:the original 623: 613: 568: 562: 544:Visser, Matt 538: 529: 519: 508: 501:Ethan Siegel 402:Interstellar 400: 378:visual novel 375: 367: 356:in 1963 was 351: 343: 328: 294: 278: 269:GRS 1915+105 262: 260: 244: 235: 217: 198: 189: 182: 172: 168: 130: 120: 119: 109: 108: 98: 97: 88: 68: 35: 22: 20: 18: 2128:Black holes 1999:Centaurus A 1953:Planet Nine 1856:Exotic star 1785:Black holes 1731:Planck star 1680:Kerr–Newman 1395:White dwarf 1345:Radio-Quiet 1303:Microquasar 1176:Black holes 1071:Time Travel 1061:Gravitation 766:(2): 1124. 424:Black hole 381:Steins;Gate 335:Kerr metric 321:Kerr metric 229:Kerr–Newman 197:Uncharged ( 165:of a/M=0.9. 86:mass–energy 2122:Categories 2049:Q0906+6930 2039:Hercules A 1969:Cygnus X-1 1938:White hole 1913:Quasi-star 1866:Preon star 1861:Quark star 1846:Big Bounce 1706:Black star 1664:Derivation 1512:Ergosphere 1468:Properties 1449:Quasi-star 1439:Quark star 1350:Radio-Loud 1238:Primordial 1228:Kugelblitz 1105:2012.08785 925:2205.14808 658:2005.03760 578:1807.06014 463:References 437:Ergosphere 301:ergosphere 188:Rotating ( 27:black hole 2074:AT2018hyz 1721:Gravastar 1711:Dark star 1544:Microlens 1417:Hypernova 1412:Micronova 1407:Supernova 1361:Formation 1138:229188123 972:250876065 879:2045-2322 825:nbi.ku.dk 798:0004-637X 773:0805.0044 683:218571203 605:119383808 553:0706.0622 426:spin-flip 397:Joe Davis 281:collapsar 241:Formation 216:Charged ( 147:slow down 2133:Rotation 2097:Category 1984:A0620-00 1943:Wormhole 1841:Big Bang 1741:Fuzzball 1624:ER = EPR 1490:Theorems 1288:Electron 1283:Extremal 1213:Rotating 1130:34018784 1081:(2007). 1041:Archived 996:29 April 897:34244573 806:16509742 741:10018300 409:See also 354:Roy Kerr 337:and the 143:rapidity 117:position 50:galaxies 2107:Commons 2069:P172+18 2024:TON 618 1962:Notable 1814:Related 1800:Quasars 1795:Nearest 1755:Analogs 1685:Hayward 1653:Metrics 1298:Stellar 1223:Virtual 1218:Charged 1187:Outline 1110:Bibcode 1036:YouTube 952:Bibcode 888:8270963 859:Bibcode 830:23 July 778:Bibcode 721:Bibcode 663:Bibcode 38:planets 2044:3C 273 2034:NeVe 1 2014:OJ 287 1736:Q star 1602:Issues 1335:Blazar 1325:Quasar 1136:  1128:  970:  895:  885:  877:  804:  796:  739:  681:  603:  593:  510:Forbes 383:(also 358:stable 255:rotate 1777:Lists 1278:Micro 1248:Rogue 1196:Types 1134:S2CID 1100:arXiv 968:S2CID 920:arXiv 802:S2CID 768:arXiv 679:S2CID 653:arXiv 601:S2CID 573:arXiv 548:arXiv 389:manga 42:stars 25:is a 1746:Geon 1670:Kerr 1271:Size 1126:PMID 998:2020 893:PMID 875:ISSN 832:2022 794:ISSN 737:PMID 591:ISBN 323:and 251:star 210:Kerr 1340:OVV 1330:LQG 1118:doi 1096:126 1017:Mic 960:doi 883:PMC 867:doi 786:doi 764:682 729:doi 671:doi 583:doi 48:), 46:Sun 2124:: 1132:. 1124:. 1116:. 1108:. 1094:. 1033:. 1015:. 988:. 966:. 958:. 946:. 918:. 891:. 881:. 873:. 865:. 855:11 853:. 849:. 823:. 800:. 792:. 784:. 776:. 762:. 758:. 735:. 727:. 717:51 715:. 677:. 669:. 661:. 649:16 647:. 622:. 599:. 589:. 581:. 528:. 507:. 492:^ 482:. 471:^ 405:. 387:/ 385:TV 287:. 40:, 21:A 1666:) 1662:( 1168:e 1161:t 1154:v 1140:. 1120:: 1112:: 1102:: 1019:. 1000:. 974:. 962:: 954:: 948:6 928:. 922:: 899:. 869:: 861:: 834:. 808:. 788:: 780:: 770:: 743:. 731:: 723:: 700:. 685:. 673:: 665:: 655:: 607:. 585:: 575:: 556:. 550:: 532:. 513:. 218:Q 199:Q 190:J 183:J 133:. 131:Q 121:X 110:J 99:P 91:, 89:M 44:(

Index

black hole
angular momentum
planets
stars
Sun
galaxies

Einstein field equations
general relativity
no-hair theorem
mass–energy
linear momentum
angular momentum
position
electric charge

rapidity
slow down
frame-dragging

spin parameter
Schwarzschild
Kerr
Reissner–Nordström
Kerr–Newman
gravitational collapse
star
rotate
The Astrophysical Journal
GRS 1915+105

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑