Knowledge

Reversible process (thermodynamics)

Source đź“ť

1698:). The process must occur slowly enough that after some small change in a thermodynamic parameter, the physical processes in the system have enough time for the other parameters to self-adjust to match the new, changed parameter value. For example, if a container of water has sat in a room long enough to match the steady temperature of the surrounding air, for a small change in the air temperature to be reversible, the whole system of air, water, and container must wait long enough for the container and air to settle into a new, matching temperature before the next small change can occur. While processes in 1967: 38: 1608: 2048:
thermodynamically "slow" might sometimes seem "fast" in human terms: In the example of the container and room air, if the container is just a porcelain coffee cup, heat can flow fairly quickly between the small object and the larger room. In a different version of the same process where the container is a 40 gallon metal tank of water, one might intuitively expect rematching of temperatures (
2092:
Although standard practice is to ignore as much detail as possible, an ignored process might in fact be the slowest process in the system, and hence set the standard for what "slow" is for a quasistatic change. Physicists and engineers tend to be defensively vague about how long one must wait, and in
1760:
performed by or on the system would be maximized. The incomplete conversion of heat to work in a cyclic process, however, applies to both reversible and irreversible cycles. The dependence of work on the path of the thermodynamic process is also unrelated to reversibility, since expansion work, which
2078:
could speed up its equilibration even more, compared to an almost-sealed tank with only an open, narrow spigot. If the spigot is closed so the tank is sealed, how "springy" its walls are for adapting to consequent pressure change affects the speed of equilibration. Further issues involve whether the
2098:
A experimenter wanting to proceed as quickly as possible can determine the settling time empirically, by placing accurate thermometers throughout the whole system: Equilibration is complete once every one of the thermometers in the system resumes reading the same value as all the others, and the
2047:
The absolute standard for "fast" and "slow" thermodynamic change is the maximum amount of time required for a temperature change (and the consequential changes in pressure, etc.) to travel across each of the parts of the whole system. However, depending on the system or the process considered,
1736:
whose change depends only on the initial and final states of the system, not on how the process occurred. Therefore, the entropy and internal-energy change in a real process can be calculated quite easily by analyzing a reversible process connecting the real initial and final system states. In
2229: 2069:
consider can become either tedious or overwhelming: The metal skin of the tank will conduct heat more quickly than the porcelain, so that speeds up equilibration, but the much larger mass of water – whose surface is actually
1765:
as the area beneath the equilibrium curve, is different for different reversible expansion processes (e.g. adiabatic, then isothermal; vs. isothermal, then adiabatic) connecting the same initial and final states.
2079:
room air is stagnant or has forced air circulation (a fan); if the tank nearly fills the room, the smaller amount of heat in the air relative to the heat in the tank may speed up the temperatures settling out;
1931: 1717:
Additionally, the system must be in (quasistatic) equilibrium with the surroundings at all time, and there must be no dissipative effects, such as friction, for a process to be considered reversible.
2019:. However, this phrase is no longer in conventional use. The principle stated that some systems could be reversed and operated in a complementary manner. It was developed during Tesla's research in 1327: 1689:
in pressure and temperature equilibrium with its surroundings. This prevents unbalanced forces and acceleration of moving system boundaries, which in turn avoids friction and other dissipation.
1862: 1819: 1952:
demonstrates that the state of the surroundings may change in a reversible process as the system returns to its initial state. Reversible processes define the boundaries of how
1162: 1107: 1052: 859: 812: 727: 680: 592: 545: 763: 631: 997: 1982:. Reversible processes are always quasistatic, but the converse is not always true. For example, an infinitesimal compression of a gas in a cylinder where there is 1994:
process. Although the system has been driven from its equilibrium state by only an infinitesimal amount, energy has been irreversibly lost to waste heat, due to
496: 835: 788: 703: 656: 568: 521: 1778:, finite changes are made; therefore the system is not at equilibrium throughout the process. In a cyclic process, the difference between the reversible work 1732:, which usually define the maximum efficiency attainable in corresponding real processes. Other applications exploit that entropy and internal energy are 2027:, the disks revolved and machinery fastened to the shaft was operated by the engine. If the turbine's operation was reversed, the disks acted as a 1637: 2056:) of the coffee cup to only require a few minutes, which is fast by comparison to the hours one could expect for a 40 gallon tank of water. 1338: 2267: 1226: 2061:
Each different physical aspect of a system either increases or reduces the amount of time required for the whole system to re-establish its
460: 2191:
This is the hallmark of a reversible process: An infinitesimal change in the external conditions reverses the direction of the change.
1974:: The state on the left can be reached from the state on the right as well as vice versa without exchanging heat with the environment. 1316: 1349: 1867: 2315: 919: 1753: 1630: 1217: 886: 453: 331: 2280: 1401: 1375: 896: 350: 2381: 2065:
after a small disturbance, and hence changes the time required for a "quasistatic" change. The number of aspects one
302: 1998:, and cannot be recovered by simply moving the piston in the opposite direction by the infinitesimally same amount. 1959:
can be in thermodynamics and engineering: a reversible process is one where the machine has maximum efficiency (see
2400: 1706:
processes can be reversible or irreversible. Reversible processes are hypothetical or idealized but central to the
1675: 1454: 925: 324: 1623: 2074:
in proportion to its volume – will slow down the restoration of equilibrium. If the coffee cup has no lid, then
1554: 86: 20: 1449: 1944:
of the system and its surroundings is zero. (The entropy of the system alone is conserved only in reversible
1824: 1781: 1529: 1302: 279: 1703: 1940:
Simple reversible processes change the state of a system in such a way that the net change in the combined
1707: 914: 117: 107: 2174: 1762: 122: 112: 1667: 1720:
Reversible processes are useful in thermodynamics because they are so idealized that the equations for
1406: 1370: 148: 82: 1444: 2062: 2051: 1682: 1199: 947: 393: 206: 196: 1756:
thermodynamically reversible process is free of dissipative losses and therefore the magnitude of
2376: 2355: 1611: 1439: 1236: 1117: 1062: 1007: 939: 878: 414: 403: 69: 841: 794: 709: 662: 574: 527: 16:
Thermodynamic process whose direction can be reversed to return the system to its original state
1544: 1261: 345: 99: 74: 2251:
Zumdahl, Steven S. (2005). "§ 10.2 The isothermal expansion and compression of an ideal gas".
1464: 745: 610: 2023:
where the current's magnitude and direction varied cyclically. During a demonstration of the
1979: 1953: 1757: 1749: 1725: 1659: 1479: 1056: 369: 215: 64: 967: 2143: 1775: 1738: 1663: 1559: 1484: 1474: 274: 136: 8: 2075: 2020: 1693: 1504: 1266: 288: 254: 249: 162: 1499: 478: 2148: 2123: 2113: 1671: 1593: 1256: 1251: 1204: 820: 773: 688: 641: 553: 506: 436: 420: 307: 259: 244: 234: 43: 37: 2311: 2276: 2080: 1971: 1945: 1588: 1549: 1539: 1111: 909: 737: 239: 229: 171: 2346: 1966: 2015:
was used to describe (among other things) certain reversible processes invented by
1710:. Melting or freezing of ice in water is an example of a realistic process that is 1509: 1494: 1434: 1429: 1246: 1241: 891: 359: 224: 2153: 2138: 1699: 1459: 1307: 961: 602: 425: 186: 153: 2133: 1733: 1651: 1514: 1284: 384: 264: 201: 191: 59: 29: 2359:(low-res. text photo). January 1919. p. 615 – via teslasociety.com. 2394: 2024: 1721: 1583: 901: 470: 431: 143: 2128: 2118: 2016: 1960: 1956: 1949: 1729: 1534: 1519: 1469: 952: 2370: 1978:
In some cases, it may be important to distinguish between reversible and
1489: 297: 2093:
practice allow ample or excessive time for equilibrium to re-establish.
1578: 1524: 2275:(5th ed.). Boston, Massachusetts: Tata McGraw-Hill. p. 299. 1752:
can be carried out in one of two ways: reversibly or irreversibly. An
176: 2006: 1995: 1983: 1292: 1209: 1001: 409: 181: 1692:
To maintain equilibrium, reversible processes are extremely slow (
1941: 398: 1737:
addition, reversibility defines the thermodynamic condition for
2305: 2208:
Thermodynamics, Kinetic Theory, and Statistical Thermodynamics
2301: 2299: 2099:
system is then ready for the next small temperature change.
2028: 374: 2333:
Physics for Scientists and Engineers (with Modern Physics)
1681:
Throughout an entire reversible process, the system is in
2296: 2205: 1926:{\displaystyle \;I=W_{\mathsf {rev}}-W_{\mathsf {act}}~.} 1678:
of the surroundings, such as pressure or temperature.
2201: 2199: 1870: 1827: 1784: 1120: 1065: 1010: 970: 844: 823: 797: 776: 748: 712: 691: 665: 644: 613: 577: 556: 530: 509: 481: 2363: 2230:"Spontaneous reversible and irreversible processes" 2380:. Tesla Engine Builders Association. 15 Oct 1911. 2250: 2196: 2166: 2041: 1925: 1864:for a process as shown in the following equation: 1856: 1813: 1156: 1101: 1046: 991: 853: 829: 806: 782: 757: 721: 697: 674: 650: 625: 586: 562: 539: 515: 490: 2339: 2392: 2266:Çengel, Yunus; Boles, Michael (1 January 2006). 2330: 1631: 2324: 2306:Atkins, P.; Jones, L.; Laverman, L. (2016). 2223: 2221: 2219: 2217: 2265: 2244: 1871: 1638: 1624: 36: 2227: 2214: 2206:Sears, F.W. & Salinger, G.L. (1986). 2179:PHYS20352 Thermal and Statistical Physics 1986:between the piston and the cylinder is a 1850: 1831: 1807: 1788: 1728:are simple. This enables the analysis of 2384:from the original on September 28, 2011. 2172: 2001: 1965: 1935: 2269:Thermodynamics, An Engineering Approach 1857:{\displaystyle (\,W_{\mathsf {act}}\,)} 1814:{\displaystyle (\,W_{\mathsf {rev}}\,)} 2393: 1911: 1908: 1905: 1890: 1887: 1884: 1844: 1841: 1838: 1801: 1798: 1795: 19:For other forms of reversibility, see 13: 2173:McGovern, Judith (17 March 2020). 1769: 1685:, both physical and chemical, and 845: 798: 713: 666: 578: 531: 351:Intensive and extensive properties 14: 2412: 2371:"Tesla's new monarch of machines" 2255:(5th ed.). Houghton Mifflin. 1674:by infinitesimal changes in some 1607: 1606: 926:Table of thermodynamic equations 2210:(3rd ed.). Addison-Wesley. 1402:Maxwell's thermodynamic surface 2335:(3rd ed.). Prentice-Hall. 2259: 1948:processes.) Nevertheless, the 1851: 1828: 1808: 1785: 1136: 1124: 1081: 1069: 1026: 1014: 986: 974: 21:reversibility (disambiguation) 1: 2160: 1303:Mechanical equivalent of heat 2234:Thermodynamics and Chemistry 2034: 1708:second law of thermodynamics 915:Onsager reciprocal relations 7: 2106: 1744: 1407:Entropy as energy dispersal 1218:"Perpetual motion" machines 1157:{\displaystyle G(T,p)=H-TS} 1102:{\displaystyle A(T,V)=U-TS} 1047:{\displaystyle H(S,p)=U+pV} 10: 2417: 2181:. University of Manchester 2083:rates depend even on what 1726:expansion/compression work 854:{\displaystyle \partial T} 807:{\displaystyle \partial V} 722:{\displaystyle \partial p} 675:{\displaystyle \partial V} 587:{\displaystyle \partial T} 540:{\displaystyle \partial S} 18: 2310:(7th ed.). Freeman. 2063:thermodynamic equilibrium 1683:thermodynamic equilibrium 1670:, whose direction can be 1328:An Inquiry Concerning the 2349:[no title cited] 2087:the tank is; and so on. 1341:Heterogeneous Substances 758:{\displaystyle \alpha =} 626:{\displaystyle \beta =-} 2401:Thermodynamic processes 2377:New York Herald Tribune 2356:Electrical Experimenter 2331:Giancoli, D.C. (2000). 1763:pressure–volume diagram 1761:can be visualized on a 1750:Thermodynamic processes 2175:"Reversible processes" 1975: 1927: 1858: 1815: 1702:are never reversible, 1158: 1103: 1048: 993: 992:{\displaystyle U(S,V)} 855: 831: 808: 784: 759: 723: 699: 676: 652: 627: 588: 564: 541: 517: 492: 471:Specific heat capacity 75:Quantum thermodynamics 2002:Engineering archaisms 1980:quasistatic processes 1969: 1936:Boundaries and states 1928: 1859: 1816: 1339:On the Equilibrium of 1159: 1104: 1057:Helmholtz free energy 1049: 994: 856: 832: 809: 785: 760: 724: 700: 677: 653: 628: 589: 565: 542: 518: 493: 2144:Reversible computing 2021:alternating currents 1868: 1825: 1821:and the actual work 1782: 1776:irreversible process 1739:chemical equilibrium 1352:Motive Power of Fire 1118: 1063: 1008: 968: 920:Bridgman's equations 897:Fundamental relation 842: 821: 795: 774: 746: 710: 689: 663: 642: 611: 575: 554: 528: 507: 479: 2308:Chemical Principles 2253:Chemical Principles 2238:chem.libretexts.org 2076:evaporative cooling 1330:Source ... Friction 1262:Loschmidt's paradox 454:Material properties 332:Conjugate variables 2228:DeVoe, H. (2020). 2124:Entropy production 2114:Time reversibility 1976: 1923: 1854: 1811: 1656:reversible process 1594:Order and disorder 1350:Reflections on the 1257:Heat death paradox 1154: 1099: 1044: 989: 851: 827: 804: 780: 755: 719: 695: 672: 648: 623: 584: 560: 537: 513: 491:{\displaystyle c=} 488: 461:Property databases 437:Reduced properties 421:Chemical potential 385:Functions of state 308:Thermal efficiency 44:Carnot heat engine 2317:978-1-4641-8395-9 2081:radiative cooling 1972:adiabatic process 1919: 1648: 1647: 1589:Self-organization 1414: 1413: 1112:Gibbs free energy 910:Maxwell relations 868: 867: 864: 863: 830:{\displaystyle V} 783:{\displaystyle 1} 738:Thermal expansion 732: 731: 698:{\displaystyle V} 651:{\displaystyle 1} 597: 596: 563:{\displaystyle N} 516:{\displaystyle T} 444: 443: 360:Process functions 346:Property diagrams 325:System properties 315: 314: 280:Endoreversibility 172:Equation of state 2408: 2386: 2385: 2367: 2361: 2360: 2350: 2343: 2337: 2336: 2328: 2322: 2321: 2303: 2294: 2293: 2291: 2289: 2274: 2263: 2257: 2256: 2248: 2242: 2241: 2225: 2212: 2211: 2203: 2194: 2193: 2188: 2186: 2170: 2100: 2045: 1932: 1930: 1929: 1924: 1917: 1916: 1915: 1914: 1895: 1894: 1893: 1863: 1861: 1860: 1855: 1849: 1848: 1847: 1820: 1818: 1817: 1812: 1806: 1805: 1804: 1700:isolated systems 1640: 1633: 1626: 1610: 1609: 1317:Key publications 1298: 1297:("living force") 1247:Brownian ratchet 1242:Entropy and life 1237:Entropy and time 1188: 1187: 1163: 1161: 1160: 1155: 1108: 1106: 1105: 1100: 1053: 1051: 1050: 1045: 998: 996: 995: 990: 892:Clausius theorem 887:Carnot's theorem 860: 858: 857: 852: 836: 834: 833: 828: 813: 811: 810: 805: 789: 787: 786: 781: 768: 767: 764: 762: 761: 756: 728: 726: 725: 720: 704: 702: 701: 696: 681: 679: 678: 673: 657: 655: 654: 649: 636: 635: 632: 630: 629: 624: 593: 591: 590: 585: 569: 567: 566: 561: 546: 544: 543: 538: 522: 520: 519: 514: 501: 500: 497: 495: 494: 489: 467: 466: 340: 339: 159: 158: 40: 26: 25: 2416: 2415: 2411: 2410: 2409: 2407: 2406: 2405: 2391: 2390: 2389: 2369: 2368: 2364: 2348: 2345: 2344: 2340: 2329: 2325: 2318: 2304: 2297: 2287: 2285: 2283: 2272: 2264: 2260: 2249: 2245: 2226: 2215: 2204: 2197: 2184: 2182: 2171: 2167: 2163: 2158: 2154:Stirling engine 2149:Maxwell's demon 2139:Quantum circuit 2109: 2104: 2103: 2046: 2042: 2037: 2012:Tesla principle 2004: 1938: 1904: 1903: 1899: 1883: 1882: 1878: 1869: 1866: 1865: 1837: 1836: 1832: 1826: 1823: 1822: 1794: 1793: 1789: 1783: 1780: 1779: 1772: 1770:Irreversibility 1747: 1734:state functions 1730:model processes 1644: 1599: 1598: 1574: 1566: 1565: 1564: 1424: 1416: 1415: 1394: 1380: 1355: 1351: 1344: 1340: 1333: 1329: 1296: 1289: 1271: 1252:Maxwell's demon 1214: 1185: 1184: 1168: 1167: 1166: 1119: 1116: 1115: 1114: 1064: 1061: 1060: 1059: 1009: 1006: 1005: 1004: 969: 966: 965: 964: 962:Internal energy 957: 942: 932: 931: 906: 881: 871: 870: 869: 843: 840: 839: 822: 819: 818: 796: 793: 792: 775: 772: 771: 747: 744: 743: 711: 708: 707: 690: 687: 686: 664: 661: 660: 643: 640: 639: 612: 609: 608: 603:Compressibility 576: 573: 572: 555: 552: 551: 529: 526: 525: 508: 505: 504: 480: 477: 476: 456: 446: 445: 426:Particle number 379: 338: 327: 317: 316: 275:Irreversibility 187:State of matter 154:Isolated system 139: 129: 128: 127: 102: 92: 91: 87:Non-equilibrium 79: 54: 46: 24: 17: 12: 11: 5: 2414: 2404: 2403: 2388: 2387: 2362: 2338: 2323: 2316: 2295: 2282:978-0070606593 2281: 2258: 2243: 2240:. Bookshelves. 2213: 2195: 2164: 2162: 2159: 2157: 2156: 2151: 2146: 2141: 2136: 2134:Time evolution 2131: 2126: 2121: 2116: 2110: 2108: 2105: 2102: 2101: 2097: 2096: 2091: 2090: 2060: 2059: 2039: 2038: 2036: 2033: 2003: 2000: 1992:not reversible 1937: 1934: 1922: 1913: 1910: 1907: 1902: 1898: 1892: 1889: 1886: 1881: 1877: 1874: 1853: 1846: 1843: 1840: 1835: 1830: 1810: 1803: 1800: 1797: 1792: 1787: 1771: 1768: 1746: 1743: 1662:, involving a 1652:thermodynamics 1646: 1645: 1643: 1642: 1635: 1628: 1620: 1617: 1616: 1615: 1614: 1601: 1600: 1597: 1596: 1591: 1586: 1581: 1575: 1572: 1571: 1568: 1567: 1563: 1562: 1557: 1552: 1547: 1542: 1537: 1532: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1452: 1447: 1442: 1437: 1432: 1426: 1425: 1422: 1421: 1418: 1417: 1412: 1411: 1410: 1409: 1404: 1396: 1395: 1393: 1392: 1389: 1385: 1382: 1381: 1379: 1378: 1373: 1371:Thermodynamics 1367: 1364: 1363: 1359: 1358: 1357: 1356: 1347: 1345: 1336: 1334: 1325: 1320: 1319: 1313: 1312: 1311: 1310: 1305: 1300: 1288: 1287: 1285:Caloric theory 1281: 1278: 1277: 1273: 1272: 1270: 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1233: 1230: 1229: 1223: 1222: 1221: 1220: 1213: 1212: 1207: 1202: 1196: 1193: 1192: 1186: 1183: 1182: 1179: 1175: 1174: 1173: 1170: 1169: 1165: 1164: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1109: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1054: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 999: 988: 985: 982: 979: 976: 973: 958: 956: 955: 950: 944: 943: 938: 937: 934: 933: 930: 929: 922: 917: 912: 905: 904: 899: 894: 889: 883: 882: 877: 876: 873: 872: 866: 865: 862: 861: 850: 847: 837: 826: 815: 814: 803: 800: 790: 779: 765: 754: 751: 741: 734: 733: 730: 729: 718: 715: 705: 694: 683: 682: 671: 668: 658: 647: 633: 622: 619: 616: 606: 599: 598: 595: 594: 583: 580: 570: 559: 548: 547: 536: 533: 523: 512: 498: 487: 484: 474: 465: 464: 463: 457: 452: 451: 448: 447: 442: 441: 440: 439: 434: 429: 418: 407: 388: 387: 381: 380: 378: 377: 372: 366: 363: 362: 356: 355: 354: 353: 348: 329: 328: 323: 322: 319: 318: 313: 312: 311: 310: 305: 300: 292: 291: 285: 284: 283: 282: 277: 272: 267: 265:Free expansion 262: 257: 252: 247: 242: 237: 232: 227: 219: 218: 212: 211: 210: 209: 204: 202:Control volume 199: 194: 192:Phase (matter) 189: 184: 179: 174: 166: 165: 157: 156: 151: 146: 140: 135: 134: 131: 130: 126: 125: 120: 115: 110: 104: 103: 98: 97: 94: 93: 90: 89: 78: 77: 72: 67: 62: 56: 55: 52: 51: 48: 47: 42:The classical 41: 33: 32: 30:Thermodynamics 15: 9: 6: 4: 3: 2: 2413: 2402: 2399: 2398: 2396: 2383: 2379: 2378: 2372: 2366: 2358: 2357: 2352: 2342: 2334: 2327: 2319: 2313: 2309: 2302: 2300: 2284: 2278: 2271: 2270: 2262: 2254: 2247: 2239: 2235: 2231: 2224: 2222: 2220: 2218: 2209: 2202: 2200: 2192: 2180: 2176: 2169: 2165: 2155: 2152: 2150: 2147: 2145: 2142: 2140: 2137: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2111: 2095: 2094: 2089: 2088: 2086: 2082: 2077: 2073: 2068: 2064: 2058: 2057: 2055: 2053: 2052:equilibration 2044: 2040: 2032: 2030: 2026: 2025:Tesla turbine 2022: 2018: 2014: 2013: 2008: 1999: 1997: 1993: 1989: 1985: 1981: 1973: 1968: 1964: 1962: 1958: 1955: 1951: 1947: 1943: 1933: 1920: 1900: 1896: 1879: 1875: 1872: 1833: 1790: 1777: 1767: 1764: 1759: 1755: 1751: 1742: 1740: 1735: 1731: 1727: 1723: 1718: 1715: 1714:reversible. 1713: 1709: 1705: 1701: 1697: 1696: 1690: 1688: 1684: 1679: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1641: 1636: 1634: 1629: 1627: 1622: 1621: 1619: 1618: 1613: 1605: 1604: 1603: 1602: 1595: 1592: 1590: 1587: 1585: 1584:Self-assembly 1582: 1580: 1577: 1576: 1570: 1569: 1561: 1558: 1556: 1555:van der Waals 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1480:von Helmholtz 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1427: 1420: 1419: 1408: 1405: 1403: 1400: 1399: 1398: 1397: 1390: 1387: 1386: 1384: 1383: 1377: 1374: 1372: 1369: 1368: 1366: 1365: 1361: 1360: 1354: 1353: 1346: 1343: 1342: 1335: 1332: 1331: 1324: 1323: 1322: 1321: 1318: 1315: 1314: 1309: 1306: 1304: 1301: 1299: 1295: 1291: 1290: 1286: 1283: 1282: 1280: 1279: 1275: 1274: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1234: 1232: 1231: 1228: 1225: 1224: 1219: 1216: 1215: 1211: 1208: 1206: 1203: 1201: 1198: 1197: 1195: 1194: 1190: 1189: 1180: 1177: 1176: 1172: 1171: 1151: 1148: 1145: 1142: 1139: 1133: 1130: 1127: 1121: 1113: 1110: 1096: 1093: 1090: 1087: 1084: 1078: 1075: 1072: 1066: 1058: 1055: 1041: 1038: 1035: 1032: 1029: 1023: 1020: 1017: 1011: 1003: 1000: 983: 980: 977: 971: 963: 960: 959: 954: 951: 949: 946: 945: 941: 936: 935: 928: 927: 923: 921: 918: 916: 913: 911: 908: 907: 903: 902:Ideal gas law 900: 898: 895: 893: 890: 888: 885: 884: 880: 875: 874: 848: 838: 824: 817: 816: 801: 791: 777: 770: 769: 766: 752: 749: 742: 739: 736: 735: 716: 706: 692: 685: 684: 669: 659: 645: 638: 637: 634: 620: 617: 614: 607: 604: 601: 600: 581: 571: 557: 550: 549: 534: 524: 510: 503: 502: 499: 485: 482: 475: 472: 469: 468: 462: 459: 458: 455: 450: 449: 438: 435: 433: 432:Vapor quality 430: 428: 427: 422: 419: 417: 416: 411: 408: 405: 401: 400: 395: 392: 391: 390: 389: 386: 383: 382: 376: 373: 371: 368: 367: 365: 364: 361: 358: 357: 352: 349: 347: 344: 343: 342: 341: 337: 333: 326: 321: 320: 309: 306: 304: 301: 299: 296: 295: 294: 293: 290: 287: 286: 281: 278: 276: 273: 271: 270:Reversibility 268: 266: 263: 261: 258: 256: 253: 251: 248: 246: 243: 241: 238: 236: 233: 231: 228: 226: 223: 222: 221: 220: 217: 214: 213: 208: 205: 203: 200: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 169: 168: 167: 164: 161: 160: 155: 152: 150: 147: 145: 144:Closed system 142: 141: 138: 133: 132: 124: 121: 119: 116: 114: 111: 109: 106: 105: 101: 96: 95: 88: 84: 81: 80: 76: 73: 71: 68: 66: 63: 61: 58: 57: 50: 49: 45: 39: 35: 34: 31: 28: 27: 22: 2374: 2365: 2354: 2341: 2332: 2326: 2307: 2286:. Retrieved 2268: 2261: 2252: 2246: 2237: 2233: 2207: 2190: 2183:. Retrieved 2178: 2168: 2129:Toffoli gate 2119:Carnot cycle 2084: 2071: 2066: 2049: 2043: 2017:Nikola Tesla 2011: 2010: 2007:Historically 2005: 1991: 1987: 1977: 1961:Carnot cycle 1957:heat engines 1950:Carnot cycle 1939: 1773: 1748: 1719: 1716: 1711: 1694: 1691: 1686: 1680: 1668:surroundings 1655: 1649: 1445:CarathĂ©odory 1376:Heat engines 1348: 1337: 1326: 1308:Motive power 1293: 953:Free entropy 924: 424: 423: / 413: 412: / 404:introduction 397: 396: / 335: 298:Heat engines 269: 85: / 2009:, the term 1988:quasistatic 1970:Reversible 1695:quasistatic 1267:Synergetics 948:Free energy 394:Temperature 255:Quasistatic 250:Isenthalpic 207:Instruments 197:Equilibrium 149:Open system 83:Equilibrium 65:Statistical 2288:8 November 2185:2 November 2161:References 1676:properties 1579:Nucleation 1423:Scientists 1227:Philosophy 940:Potentials 303:Heat pumps 260:Polytropic 245:Isentropic 235:Isothermal 2035:Footnotes 1954:efficient 1946:adiabatic 1897:− 1560:Waterston 1510:von Mayer 1465:de Donder 1455:Clapeyron 1435:Boltzmann 1430:Bernoulli 1391:Education 1362:Timelines 1146:− 1091:− 879:Equations 846:∂ 799:∂ 750:α 714:∂ 667:∂ 621:− 615:β 579:∂ 532:∂ 240:Adiabatic 230:Isochoric 216:Processes 177:Ideal gas 60:Classical 2395:Category 2382:Archived 2107:See also 1996:friction 1984:friction 1745:Overview 1704:cyclical 1672:reversed 1666:and its 1612:Category 1550:Thompson 1460:Clausius 1440:Bridgman 1294:Vis viva 1276:Theories 1210:Gas laws 1002:Enthalpy 410:Pressure 225:Isobaric 182:Real gas 70:Chemical 53:Branches 2072:smaller 1942:entropy 1660:process 1535:Smeaton 1530:Rankine 1520:Onsager 1505:Maxwell 1500:Massieu 1205:Entropy 1200:General 1191:History 1181:Culture 1178:History 402: ( 399:Entropy 336:italics 137:Systems 2314:  2279:  1990:, but 1918:  1774:In an 1712:nearly 1687:nearly 1664:system 1525:Planck 1515:Nernst 1490:Kelvin 1450:Carnot 740:  605:  473:  415:Volume 330:Note: 289:Cycles 118:Second 108:Zeroth 2273:(PDF) 2085:color 2067:might 1754:ideal 1658:is a 1573:Other 1540:Stahl 1495:Lewis 1485:Joule 1475:Gibbs 1470:Duhem 163:State 123:Third 113:First 2375:The 2312:ISBN 2290:2022 2277:ISBN 2187:2020 2029:pump 1963:). 1758:work 1724:and 1722:heat 1654:, a 1545:Tait 375:Heat 370:Work 100:Laws 1741:. 1650:In 1388:Art 334:in 2397:: 2373:. 2353:. 2298:^ 2236:. 2232:. 2216:^ 2198:^ 2189:. 2177:. 2031:. 2351:" 2347:" 2320:. 2292:. 2054:" 2050:" 1921:. 1912:t 1909:c 1906:a 1901:W 1891:v 1888:e 1885:r 1880:W 1876:= 1873:I 1852:) 1845:t 1842:c 1839:a 1834:W 1829:( 1809:) 1802:v 1799:e 1796:r 1791:W 1786:( 1639:e 1632:t 1625:v 1152:S 1149:T 1143:H 1140:= 1137:) 1134:p 1131:, 1128:T 1125:( 1122:G 1097:S 1094:T 1088:U 1085:= 1082:) 1079:V 1076:, 1073:T 1070:( 1067:A 1042:V 1039:p 1036:+ 1033:U 1030:= 1027:) 1024:p 1021:, 1018:S 1015:( 1012:H 987:) 984:V 981:, 978:S 975:( 972:U 849:T 825:V 802:V 778:1 753:= 717:p 693:V 670:V 646:1 618:= 582:T 558:N 535:S 511:T 486:= 483:c 406:) 23:.

Index

reversibility (disambiguation)
Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑