Knowledge

Relativistic runaway electron avalanche

Source 📝

128:
avalanche will wander back to where the avalanche began and can produce new seeds for a second generation of avalanches. If the electric field region is large enough, the number of second-generation avalanches will exceed the number of first-generation avalanches and the number of avalanches itself grows exponentially. This avalanche of avalanches can produce extremely large populations of energetic electrons. This process eventually leads to the decay of the electric field below the level at which feedback is possible and therefore acts as a limit to the large-scale electric field strength.
72: 17: 102:
As runaway electrons gain energy from an electric field, they occasionally collide with atoms in the material, knocking off secondary electrons. If the secondary electrons also have high enough energy to run away, they too accelerate to high energies, produce further secondary electrons, etc. As
127:
RREA avalanches generally move opposite the direction of the electric field. As such, after the avalanches leave the electric field region, frictional forces dominate, the electrons lose energy, and the process stops. There is the possibility, however, that photons or positrons produced by the
366:
Dwyer, J. R., Smith, D. M., Uman, M. A., Saleh, Z., Grefenstette, B. W, Hazelton, B. J, et al. (2010). Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft. Journal of Geophysical Research, 115(D9), D09206.
106:
The dynamic friction function, shown in the Figure, takes into account only energy losses due to inelastic collisions and has a minimum of ~216 keV/cm at electron energy of ~1.23 MeV. More useful thresholds, however, must include also the effects due to electron momentum loss due to elastic
107:
collisions. In that case, an analytical estimate gives the runaway threshold of ~282 keV/cm, which occurs at the electron energy of ~7 MeV. This result approximately agrees with numbers obtained from Monte Carlo simulations, of ~284 keV/cm and 10 MeV, respectively.
206:
Lehtinen, N. G., Bell, T. F., & Inan, U. S. (1999). Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes. Journal of Geophysical Research, 104(A11), 24699-24712.
119:. In very strong electric fields, stronger than the maximum frictional force experienced by electrons, even low-energy ("cold" or "thermal") electrons can accelerate to relativistic energies, a process dubbed "thermal runaway." 411: 348:
Colman, J. J., Roussel-Dupré, R. a, & Triplett, L. (2010). Temporally self-similar electron distribution functions in atmospheric breakdown: The thermal runaway regime. Journal of Geophysical Research, 115, 1-17.
98:
of the electron rises. These higher-energy electrons thus see less frictional force as their velocity increases. In the presence of the same electric field, these electrons will continue accelerating, "running away".
115:
The RREA mechanism above only describes the growth of the avalanche. An initial energetic electron is needed to start the process. In ambient air, such energetic electrons typically come from
331:
Carlson, B. E., Lehtinen, N. G., & Inan, U. S. (2008). Runaway relativistic electron avalanche seeding in the Earth's atmosphere. Journal of Geophysical Research, 113(A10), A10307.
297:
Babich, L. P.; Donskoy, E. N.; Il'Kaev, R. I.; Kutsyk, I. M.; Roussel-Dupre, R. A. (2004). "Fundamental parameters of a relativistic runaway electron avalanche in air".
83:. For low-energy electrons, faster drift velocities result in more interactions with surrounding particles. These interactions create a form of 144:. Large RREA events in thunderstorms may also contribute rare but large radiation doses to commercial airline flights. The American physicist 224:
Betz, H. D., Schumann, U., & Laroche, P. (Eds.). (2009). Lightning: Principles, Instruments and Applications. Springer Verlag, ch. 15.
136:
The large population of energetic electrons produced in RREA will produce a correspondingly large population of energetic photons by
79:
When an electric field is applied to a material, free electrons will drift slowly through the material as described by the
75:
Dynamic friction of free electrons in air compared to an applied electric field showing the runaway electron energy range
168:
Gurevich, A. V., & Zybin, K. P. (2005). Runaway Breakdown and the Mysteries of Lightning. Physics Today, 58(5), 37.
447: 279:
Dwyer, J. R. (2003). A fundamental limit on electric fields in air. Geophysical Research Letters, 30(20), 2055.
187:
A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations
452: 141: 48: 43:
driven through a material (typically air) by an electric field. RREA has been hypothesized to be related to
385: 87:
that slow the electrons down. Thus, for low-energy cases, the electron velocities tend to stabilize.
59:
development. RREA is unique as it can occur at electric fields an order of magnitude lower than the
145: 37: 306: 71: 8: 60: 310: 442: 52: 33: 457: 80: 368: 350: 332: 314: 280: 257: 247: 208: 190: 169: 103:
such, the total number of energetic electrons grows exponentially in an avalanche.
412:"Thunderstorms contain 'dark lightning,' invisible pulses of powerful radiation" 186: 149: 137: 95: 56: 20:
RREA simulation showing electrons (black), photons (blue), and positrons (red)
16: 436: 91: 252: 235: 372: 354: 336: 284: 262: 212: 194: 116: 389: 318: 173: 236:"X-ray emissions in a multiscale fluid model of a streamer discharge" 44: 84: 40: 152:" for this phenomenon, which is still the subject of research. 296: 94:, these collisional events become less common as the 227: 434: 233: 189:. Geophysical Research Letters, 32(22), L22804. 140:. These photons are proposed as the source of 234:Lehtinen, Nikolai; Østgaard, Nikolai (2021). 275: 273: 200: 162: 325: 290: 360: 342: 261: 251: 185:Dwyer, J. R., & Smith, D. M. (2005). 270: 179: 70: 15: 26:relativistic runaway electron avalanche 435: 90:At higher energies, above about 100 218: 13: 131: 14: 469: 409: 403: 378: 1: 155: 142:terrestrial gamma-ray flashes 49:terrestrial gamma-ray flashes 66: 7: 122: 10: 474: 110: 448:Atmospheric electricity 299:Plasma Physics Reports 76: 21: 253:10.3390/atmos12121664 74: 19: 453:Electrical phenomena 373:10.1029/2009JD012039 355:10.1029/2009JA014509 337:10.1029/2008JA013210 285:10.1029/2003GL017781 213:10.1029/1999JA900335 195:10.1029/2005GL023848 311:2004PlPhR..30..616B 61:dielectric strength 36:of a population of 77: 22: 319:10.1134/1.1778437 246:(12): 6935–6953. 174:10.1063/1.1995746 148:coined the term " 81:electron mobility 63:of the material. 465: 427: 426: 424: 422: 407: 401: 400: 398: 396: 386:"Dark Lightning" 382: 376: 364: 358: 346: 340: 329: 323: 322: 294: 288: 277: 268: 267: 265: 255: 231: 225: 222: 216: 204: 198: 183: 177: 166: 53:sprite lightning 34:avalanche growth 473: 472: 468: 467: 466: 464: 463: 462: 433: 432: 431: 430: 420: 418: 416:Washington Post 408: 404: 394: 392: 384: 383: 379: 365: 361: 347: 343: 330: 326: 295: 291: 278: 271: 232: 228: 223: 219: 205: 201: 184: 180: 167: 163: 158: 134: 132:Effects of RREA 125: 113: 69: 12: 11: 5: 471: 461: 460: 455: 450: 445: 429: 428: 402: 377: 359: 341: 324: 305:(7): 616–624. 289: 269: 226: 217: 199: 178: 160: 159: 157: 154: 150:dark lightning 138:bremsstrahlung 133: 130: 124: 121: 112: 109: 96:mean free path 68: 65: 9: 6: 4: 3: 2: 470: 459: 456: 454: 451: 449: 446: 444: 441: 440: 438: 417: 413: 410:Amato, Ivan. 406: 391: 387: 381: 374: 370: 363: 356: 352: 345: 338: 334: 328: 320: 316: 312: 308: 304: 300: 293: 286: 282: 276: 274: 264: 263:11250/2977612 259: 254: 249: 245: 241: 237: 230: 221: 214: 210: 203: 196: 192: 188: 182: 175: 171: 165: 161: 153: 151: 147: 143: 139: 129: 120: 118: 108: 104: 100: 97: 93: 88: 86: 82: 73: 64: 62: 58: 54: 50: 46: 42: 39: 35: 31: 27: 18: 419:. Retrieved 415: 405: 393:. Retrieved 380: 362: 344: 327: 302: 298: 292: 243: 239: 229: 220: 202: 181: 164: 146:Joseph Dwyer 135: 126: 114: 105: 101: 89: 78: 47:initiation, 38:relativistic 29: 25: 23: 117:cosmic rays 437:Categories 390:Current TV 240:Atmosphere 156:References 443:Lightning 67:Mechanism 45:lightning 41:electrons 458:Electron 421:April 9, 395:April 9, 123:Feedback 85:friction 32:) is an 307:Bibcode 111:Seeding 55:, and 57:spark 423:2012 397:2012 30:RREA 369:doi 351:doi 333:doi 315:doi 281:doi 258:hdl 248:doi 244:123 209:doi 191:doi 170:doi 92:keV 439:: 414:. 388:. 313:. 303:30 301:. 272:^ 256:. 242:. 238:. 51:, 24:A 425:. 399:. 375:. 371:: 357:. 353:: 339:. 335:: 321:. 317:: 309:: 287:. 283:: 266:. 260:: 250:: 215:. 211:: 197:. 193:: 176:. 172:: 28:(

Index


avalanche growth
relativistic
electrons
lightning
terrestrial gamma-ray flashes
sprite lightning
spark
dielectric strength

electron mobility
friction
keV
mean free path
cosmic rays
bremsstrahlung
terrestrial gamma-ray flashes
Joseph Dwyer
dark lightning
doi
10.1063/1.1995746
A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations
doi
10.1029/2005GL023848
doi
10.1029/1999JA900335
"X-ray emissions in a multiscale fluid model of a streamer discharge"
doi
10.3390/atmos12121664
hdl

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.