Knowledge

Regular skew apeirohedron

Source 📝

2911: 2600: 2656: 1718: 1769: 2735: 2791: 1042: 2860: 1593: 1649: 1364: 3127: 457: 306: 3685: 3630: 3543: 3488: 3401: 3346: 3259: 3209: 3038: 2988: 2457: 2400: 2311: 2256: 2169: 2112: 2023: 1973: 1896: 1846: 3585: 3498: 3443: 3301: 3169: 2693: 2353: 2266: 1933: 1551: 450: 365: 299: 292: 3647: 3640: 3592: 3505: 3450: 3363: 3356: 3308: 3226: 3219: 3176: 3087: 3080: 3005: 2998: 2955: 2948: 2877: 2870: 2830: 2823: 2752: 2745: 2700: 2617: 2610: 2565: 2558: 2417: 2410: 2360: 2273: 2218: 2211: 2129: 2122: 2072: 2065: 1990: 1983: 1940: 1863: 1856: 1813: 1806: 1735: 1728: 1688: 1681: 1610: 1603: 1558: 402: 340: 1281: 1308: 769: 372: 1254: 1152: 487: 439: 354: 755: 707: 281: 20: 659: 642: 738: 690: 97:
generalized skew polyhedra to allow for skew faces as well. Grünbaum discovered an additional 23 skew apeirohedra in 3-dimensional Euclidean space and 3 in 2-dimensional space which are skew by virtue of their faces. 12 of Grünbaum's polyhedra were formed using the blending operation on 2-dimensional
82:
derived a third, the mutetrahedron, and proved that the these three were complete. Under Coxeter and Petrie's definition, requiring convex faces and allowing a skew vertex figure, the three were not only the only skew apeirohedra in 3-dimensional Euclidean space, but they were the only skew polyhedra
3747:
Polytopes produced as a non-trivial blend have a degree of freedom corresponding to the relative scaling of their components. For this reason some authors count these as infinite families rather than a single polytope. This article counts two polytopes as equal when there is an
520:
Alternatively they can be constructed using the apeir operation on regular polygons. While the Petrial is used the classical construction, it does not generalize well to higher ranks. In contrast, the apeir operation is used to construct higher rank skew honeycombs.
1182:
A polytope is considered pure if it cannot be expressed as a non-trivial blend of two polytopes. A blend is considered trivial if it contains the result as one of the components. Alternatively a pure polytope is one whose symmetry group contains no non-trivial
939:
Blended polyhedra in 3-dimensional space can be made by blending 2-dimensional polyhedra with 1-dimensional polytopes. The only 2-dimensional polyhedra are the 6 honeycombs (3 Euclidean tilings and 3
71:
are typically required to tile the 2-dimensional plane, Petrie considered cases where the faces were still convex but were not required to lie flat in the plane, they could have a skew polygon
3670: 3660: 2440: 2430: 2152: 2142: 3605: 3528: 3463: 3386: 3321: 3249: 3189: 3100: 3028: 2968: 2838: 2713: 2578: 2373: 2296: 2231: 2085: 2013: 1953: 1886: 1826: 1696: 1571: 465: 380: 2895: 2775: 2640: 1753: 1633: 324: 3675: 3655: 3620: 3615: 3600: 3573: 3568: 3558: 3553: 3533: 3518: 3513: 3478: 3473: 3458: 3431: 3426: 3416: 3411: 3391: 3376: 3371: 3336: 3331: 3316: 3289: 3284: 3274: 3269: 3239: 3234: 3199: 3184: 3152: 3142: 3137: 3115: 3110: 3095: 3068: 3063: 3053: 3048: 3018: 3013: 2978: 2963: 2936: 2926: 2921: 2885: 2801: 2765: 2760: 2708: 2671: 2666: 2630: 2625: 2573: 2536: 2531: 2445: 2425: 2388: 2383: 2368: 2341: 2336: 2326: 2321: 2301: 2286: 2281: 2246: 2241: 2226: 2199: 2194: 2184: 2179: 2157: 2137: 2100: 2095: 2080: 2053: 2048: 2038: 2033: 2003: 1998: 1963: 1948: 1921: 1911: 1906: 1876: 1871: 1836: 1821: 1794: 1784: 1779: 1743: 1659: 1623: 1618: 1566: 1529: 1524: 475: 422: 412: 314: 254: 2848: 2811: 2723: 2681: 2588: 2546: 1706: 1669: 1581: 1539: 1056: 390: 264: 3105: 3058: 3023: 2973: 2931: 2890: 2843: 2806: 2635: 2583: 2541: 1748: 1701: 1664: 385: 319: 259: 3665: 3610: 3563: 3523: 3468: 3421: 3381: 3326: 3279: 3244: 3194: 3147: 2770: 2718: 2676: 2435: 2378: 2331: 2291: 2236: 2189: 2147: 2090: 2043: 2008: 1958: 1916: 1881: 1831: 1789: 1628: 1576: 1534: 470: 417: 4249:(Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.) 3157: 1052: 105:
In 1985 Dress found an additional pure regular skew apeirohedron in 3-space, and proved that with this additional skew apeirohedron the list was complete.
1018:
Each pair between these produces a valid distinct regular skew apeirohedron in 3-dimensional Euclidean space, for a total of 12 blended skew apeirohedra.
1388:
These represent 14 compact and 17 paracompact regular skew polyhedra in hyperbolic space, constructed from the symmetry of a subset of linear and cyclic
1055: 2450: 2393: 1077: 1076: 1075: 1074: 1073: 2853: 1072: 1054: 1051: 2900: 1445: 1280: 1253: 1049: 2593: 1307: 1079: 2645: 1711: 1455:
vertex figure with the honeycomb, but only the zig-zag edge faces of the vertex figure are realized, while the other faces make holes.
2162: 2105: 1758: 1045: 2728: 1060: 1059: 102:
could not be formed by a non-trivial blend. Grünbaum conjectured that this new list was complete for the parameters considered.
2780: 510: 4202: 4157: 1071: 1070: 4197:, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, 137:, constructed by cubic cells, removing two opposite faces from each, and linking sets of six together around a faceless 1053: 1046: 3973: 4246: 4189: 4063: 1586: 4108:
Dress, Andreas (1985). "A combinatorial theory of Grünbaum's new regular polyhedra, Part II: Complete enumeration".
1050: 1638: 90:
with Petrie and Coxeters definition, discovering 31 regular skew apeirohedra with compact or paracompact symmetry.
3120: 1080: 1078: 1068: 1067: 1066: 1065: 1163: 1047: 122:
named them mucube, muoctahedron, and mutetrahedron respectively for multiple cube, octahedron, and tetrahedron.
1069: 1064: 1337:. Meaning that each can be constructed from any other by some combination of the Petrial and dual operations. 1063: 903:
For regular polytopes the last step is guaranteed to produce a unique result. This new polytope is called the
4050:, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge: Cambridge University Press, 395: 152: 3735:
twice giving a count of 18 paracompact cases and 32 total, but only listing 17 paracompact and 31 total.
329: 4081: 4205: 2910: 1062: 1061: 2599: 1382: 1191: 1139: 1058: 2655: 1717: 3704: 1768: 1057: 480: 166: 36: 4169: 1048: 4008: 2734: 2790: 170: 67:, polygons whose vertices are not all in the same plane, and extended it to polyhedra. While 538:, and uses them as the mirrors for the vertex figure of a polyhedron, the new vertex mirror 4073: 1375: 1345: 542:
is then a point located where the initial vertex of the polygon (or anywhere on the mirror
156: 118:
The three Euclidean solutions in 3-space are {4,6|4}, {6,4|4}, and {6,6|3}.
64: 60: 2859: 1081: 8: 4211: 1592: 1648: 4271: 4145: 4125: 4044: 3996: 3126: 119: 87: 4174:, Discrete & Computational Geometry September 2007, Volume 38, Issue 2, pp 355–387 3969: 599: 94: 4242: 4198: 4185: 4153: 4129: 4059: 4000: 3699: 1363: 1184: 947: 792: 695: 443: 358: 285: 130: 1247:
Three additional pure apeirohedra can be formed with finite skew polygons as faces:
371: 4117: 4096: 4051: 4023: 3988: 3958: 1334: 965: 881:
Similarly add faces to every set of vertices all incident on the same face in both
743: 456: 182: 3684: 3629: 3542: 3487: 3400: 3345: 3258: 3208: 3037: 2987: 2456: 2399: 2310: 2255: 2168: 2111: 2022: 1972: 1895: 1845: 305: 4069: 1424: = 2, this represents the Coxeter group . It generates regular skews {2 1104: 1022: 134: 78:
Petrie discovered two regular skew apeirohedra, the mucube and the muoctahedron.
44: 4165: 4035: 3584: 3497: 3442: 3300: 3168: 2692: 2352: 2265: 1932: 1550: 186: 79: 68: 4100: 3646: 3639: 3591: 3504: 3449: 3362: 3355: 3307: 3225: 3218: 3175: 3086: 3079: 3004: 2997: 2954: 2947: 2876: 2869: 2829: 2822: 2751: 2744: 2699: 2616: 2609: 2564: 2557: 2416: 2409: 2359: 2272: 2217: 2210: 2128: 2121: 2071: 2064: 1989: 1982: 1939: 1862: 1855: 1812: 1805: 1734: 1727: 1687: 1680: 1609: 1602: 1557: 1190:
There are 12 regular pure apeirohedra in 3 dimensions. Three of these are the
449: 401: 364: 298: 291: 4265: 4055: 2471: 1464: 1389: 1378: 956: 936:
in orthogonal spaces and taking composing their generating mirrors pairwise.
647: 339: 210: 72: 48: 768: 4039: 3962: 1314: 1260: 998: 173:
cells, removing triangle faces, and linking sets of four around a faceless
40: 486: 159:
with their square faces removed and linking hole pairs of holes together.)
1374:
In 1967, C. W. L. Garner identified 31 hyperbolic skew apeirohedra with
1287: 514: 438: 174: 1151: 1084:
Some relationships between the 12 pure apeirohedra in 3D Euclidean space
353: 4121: 4027: 3992: 3749: 556:). The new initial vertex is placed at the intersection of the mirrors 878:
has no edges then add a virtual edge connecting its vertex to itself.)
4136: 3753: 3709: 1452: 1008: 4209:(Paper 2) H.S.M. Coxeter, "The Regular Sponges, or Skew Polyhedra", 893:
has no faces then add a virtual face connecting its edge to itself.)
3949:
Garner (1967), "Regular Skew Polyhedra in Hyperbolic Three-Space",
1033:, are combinatrially equivalent to their non-blended counterparts. 748: 28: 280: 19: 4234: 4177: 1358: 1291: 1264: 1215: 1093: 754: 700: 524:
The apeir operation takes the generating mirrors of the polygon,
513:
of full rank, all three of these can be obtained by applying the
148: 706: 108: 1318: 731: 683: 658: 652: 635: 505:
There are 3 regular skew apeirohedra of full rank, also called
201:). The related honeycomb has the extended symmetry []. 83:
in 3-space as there Coxeter showed there were no finite cases.
737: 641: 517:
to planar polytopes, in this case the three regular tilings.
899:
From the resulting polytope, select one connected component.
689: 181:
Coxeter gives these regular skew apeirohedra {2q,2r|p} with
138: 4139: 509:, that is skew apeirohedra in 2-dimensions. As with the 86:
In 1967 Garner investigated regular skew apeirohedra in
787:, a new polytope can be made by the following process: 928:
Equivalently the blend can be obtained by positioning
4254:
Regular Skew Polyhedra in Three and Four Dimensions.
4142:, Isabel Hubard, Egon Schulte, Asia Ivic Weiss, 2005 165:: {6,6|3}: 6 hexagons about each vertex (related to 4195:Kaleidoscopes: Selected Writings of H.S.M. Coxeter 4043: 1444:}. All of these exist as a subset of faces of the 4263: 3777: 3775: 3773: 896:Repeat as such for all ranks of proper elements. 4034: 4006: 3922: 3878: 3781: 1420:}. For the special case of linear graph groups 1044: 1359:Regular skew apeirohedra in hyperbolic 3-space 185:[] which he says is isomorphic to his 3770: 3743: 3741: 1446:convex uniform honeycombs in hyperbolic space 775:with the edges of one face highlighted in red 109:Regular skew apeirohedra in Euclidean 3-space 1392:graphs of the form [], These define 570:. Thus the apeir polyhedron is generated by 1021:Since the skeleton of the square tiling is 495: 113: 3738: 3727: 3725: 23:The mucube is a regular skew apeirohedron. 3826:The Symmetry of Things, 2008, Chapter 23 98:apeirohedra, and the other 11 were pure, 4256:Proc. London Math. Soc. 43, 33–62, 1937. 4184:, Third edition, (1973), Dover edition, 4148:, Heidi Burgiel, Chaim Goodman-Strauss, 4079: 3968: 3911: 3900: 3889: 3856: 3804: 2466:17 Paracompact regular skew apeirohedra 1362: 1040: 767: 18: 4007:McMullen, Peter; Schulte, Egon (1997). 3722: 4264: 3948: 3933: 3793: 1451:The skew apeirohedron shares the same 993:The only 1-dimensional polytopes are: 763: 4239:The Beauty of Geometry: Twelve Essays 4227:Regular and Semi-Regular Polytopes II 4107: 4016:Discrete & Computational Geometry 4009:"Regular Polytopes in Ordinary Space" 3867: 3845:Regular and Semi-Regular Polytopes II 3815: 4220:Regular and Semi Regular Polytopes I 1459:14 Compact regular skew apeirohedra 1146: 940: 1036: 806:Add edges between any two vertices 13: 4171:Four-Dimensional Regular Polyhedra 500: 14: 4283: 3974:"Regular polyhedra - old and new" 1218:of the Petrie-Coxeter polyhedra: 549:other than its intersection with 205:Compact regular skew apeirohedra 4082:"Regular Polytopes of Full Rank" 3683: 3673: 3668: 3663: 3658: 3653: 3645: 3638: 3628: 3618: 3613: 3608: 3603: 3598: 3590: 3583: 3571: 3566: 3561: 3556: 3551: 3541: 3531: 3526: 3521: 3516: 3511: 3503: 3496: 3486: 3476: 3471: 3466: 3461: 3456: 3448: 3441: 3429: 3424: 3419: 3414: 3409: 3399: 3389: 3384: 3379: 3374: 3369: 3361: 3354: 3344: 3334: 3329: 3324: 3319: 3314: 3306: 3299: 3287: 3282: 3277: 3272: 3267: 3257: 3247: 3242: 3237: 3232: 3224: 3217: 3207: 3197: 3192: 3187: 3182: 3174: 3167: 3155: 3150: 3145: 3140: 3135: 3125: 3113: 3108: 3103: 3098: 3093: 3085: 3078: 3066: 3061: 3056: 3051: 3046: 3036: 3026: 3021: 3016: 3011: 3003: 2996: 2986: 2976: 2971: 2966: 2961: 2953: 2946: 2934: 2929: 2924: 2919: 2909: 2893: 2888: 2883: 2875: 2868: 2858: 2846: 2841: 2836: 2828: 2821: 2809: 2804: 2799: 2789: 2773: 2768: 2763: 2758: 2750: 2743: 2733: 2721: 2716: 2711: 2706: 2698: 2691: 2679: 2674: 2669: 2664: 2654: 2638: 2633: 2628: 2623: 2615: 2608: 2598: 2586: 2581: 2576: 2571: 2563: 2556: 2544: 2539: 2534: 2529: 2455: 2443: 2438: 2433: 2428: 2423: 2415: 2408: 2398: 2386: 2381: 2376: 2371: 2366: 2358: 2351: 2339: 2334: 2329: 2324: 2319: 2309: 2299: 2294: 2289: 2284: 2279: 2271: 2264: 2254: 2244: 2239: 2234: 2229: 2224: 2216: 2209: 2197: 2192: 2187: 2182: 2177: 2167: 2155: 2150: 2145: 2140: 2135: 2127: 2120: 2110: 2098: 2093: 2088: 2083: 2078: 2070: 2063: 2051: 2046: 2041: 2036: 2031: 2021: 2011: 2006: 2001: 1996: 1988: 1981: 1971: 1961: 1956: 1951: 1946: 1938: 1931: 1919: 1914: 1909: 1904: 1894: 1884: 1879: 1874: 1869: 1861: 1854: 1844: 1834: 1829: 1824: 1819: 1811: 1804: 1792: 1787: 1782: 1777: 1767: 1751: 1746: 1741: 1733: 1726: 1716: 1704: 1699: 1694: 1686: 1679: 1667: 1662: 1657: 1647: 1631: 1626: 1621: 1616: 1608: 1601: 1591: 1579: 1574: 1569: 1564: 1556: 1549: 1537: 1532: 1527: 1522: 1306: 1279: 1252: 1150: 753: 736: 705: 688: 657: 640: 485: 473: 468: 463: 455: 448: 437: 420: 415: 410: 400: 388: 383: 378: 370: 363: 352: 338: 322: 317: 312: 304: 297: 290: 279: 262: 257: 252: 16:Infinite regular skew polyhedron 4089:Discrete Computational Geometry 3951:Canadian Journal of Mathematics 3942: 3927: 3916: 3905: 3894: 3883: 3872: 3861: 1321:arrangement form the vertex of 1294:arrangement form the vertex of 1267:arrangement form the vertex of 1214:Three more are obtained as the 779:For any two regular polytopes, 99: 3850: 3837: 3820: 3809: 3798: 3787: 1367:The compact skew apeirohedron 151:about each vertex (related to 133:about each vertex (related to 80:Harold Scott MacDonald Coxeter 1: 4137:Petrie–Coxeter Maps Revisited 3923:McMullen & Schulte (2002) 3879:McMullen & Schulte (1997) 3828:Objects with Primary Symmetry 3763: 1333:These 3 are closed under the 838:iff there is an edge between 4241:, Dover Publications, 1999, 3782:McMullen & Schulte (1997 3548: 3406: 3264: 3132: 3043: 2916: 2796: 2661: 2526: 2316: 2174: 2028: 1901: 1774: 1654: 1519: 407: 345: 249: 7: 4225:(Paper 23) H.S.M. Coxeter, 4218:(Paper 22) H.S.M. Coxeter, 3832:Infinite Platonic Polyhedra 3693: 974:Petrial triangular tiling: 153:bitruncated cubic honeycomb 10: 4288: 4046:Abstract Regular Polytopes 2500: 986:Petrial hexagonal tiling: 54: 4101:10.1007/s00454-004-0848-5 3731:Garner mistakenly counts 1493: 1381:, found by extending the 666:Petrial triangular tiling 612: 598: 362: 296: 250: 243: 33:regular skew apeirohedron 4150:The Symmetries of Things 4110:Aequationes Mathematicae 4080:McMullen, Peter (2004). 4056:10.1017/CBO9780511546686 3981:Aequationes Mathematicae 3715: 1383:Petrie-Coxeter polyhedra 1192:Petrie-Coxeter polyhedra 714:Petrial hexagonal tiling 496:Grünbaum-Dress polyhedra 183:extended chiral symmetry 114:Petrie-Coxeter polyhedra 3705:Regular skew polyhedron 1239:{6,6 | 3} = {∞, 6} 1231:{6,4 | 4} = {∞, 6} 1223:{4,6 | 4} = {∞, 4} 1025:, two of these blends, 980:Petrial square tiling: 507:regular skew honeycombs 167:quarter cubic honeycomb 37:regular skew polyhedron 3963:10.4153/CJM-1967-106-9 1394:regular skew polyhedra 1371: 1144: 776: 63:took the concept of a 24: 1385:to hyperbolic space. 1366: 1083: 799:with the vertices of 771: 618:Petrial square tiling 511:finite skew polyhedra 171:truncated tetrahedron 65:regular skew polygons 22: 1376:regular skew polygon 1122:represents facetting 856:and an edge between 157:truncated octahedron 61:John Flinders Petrie 4212:Scripta Mathematica 2467: 1460: 915:and is represented 795:of the vertices of 764:Blended apeirohedra 206: 39:. They have either 4252:Coxeter, H. S. M. 4122:10.1007/BF02189831 4028:10.1007/PL00009304 3993:10.1007/BF01836414 2465: 1458: 1372: 1162:. You can help by 1145: 1130:represents skewing 1114:represents halving 777: 204: 88:hyperbolic 3-space 25: 4215:6 (1939) 240–244. 4203:978-0-471-01003-6 4182:Regular Polytopes 4158:978-1-56881-220-5 3700:Skew apeirohedron 3691: 3690: 2463: 2462: 1355:is self-Petrial. 1335:Wilson operations 1185:subrepresentation 1180: 1179: 948:Triangular tiling 793:Cartesian product 761: 760: 696:Triangular tiling 493: 492: 169:, constructed by 155:, constructed by 4279: 4133: 4104: 4086: 4076: 4049: 4031: 4013: 4003: 3978: 3970:Grünbaum, Branko 3965: 3936: 3931: 3925: 3920: 3914: 3909: 3903: 3898: 3892: 3887: 3881: 3876: 3870: 3865: 3859: 3854: 3848: 3841: 3835: 3824: 3818: 3813: 3807: 3802: 3796: 3791: 3785: 3779: 3757: 3745: 3736: 3734: 3729: 3687: 3678: 3677: 3676: 3672: 3671: 3667: 3666: 3662: 3661: 3657: 3656: 3649: 3642: 3632: 3623: 3622: 3621: 3617: 3616: 3612: 3611: 3607: 3606: 3602: 3601: 3594: 3587: 3576: 3575: 3574: 3570: 3569: 3565: 3564: 3560: 3559: 3555: 3554: 3545: 3536: 3535: 3534: 3530: 3529: 3525: 3524: 3520: 3519: 3515: 3514: 3507: 3500: 3490: 3481: 3480: 3479: 3475: 3474: 3470: 3469: 3465: 3464: 3460: 3459: 3452: 3445: 3434: 3433: 3432: 3428: 3427: 3423: 3422: 3418: 3417: 3413: 3412: 3403: 3394: 3393: 3392: 3388: 3387: 3383: 3382: 3378: 3377: 3373: 3372: 3365: 3358: 3348: 3339: 3338: 3337: 3333: 3332: 3328: 3327: 3323: 3322: 3318: 3317: 3310: 3303: 3292: 3291: 3290: 3286: 3285: 3281: 3280: 3276: 3275: 3271: 3270: 3261: 3252: 3251: 3250: 3246: 3245: 3241: 3240: 3236: 3235: 3228: 3221: 3211: 3202: 3201: 3200: 3196: 3195: 3191: 3190: 3186: 3185: 3178: 3171: 3160: 3159: 3158: 3154: 3153: 3149: 3148: 3144: 3143: 3139: 3138: 3129: 3118: 3117: 3116: 3112: 3111: 3107: 3106: 3102: 3101: 3097: 3096: 3089: 3082: 3071: 3070: 3069: 3065: 3064: 3060: 3059: 3055: 3054: 3050: 3049: 3040: 3031: 3030: 3029: 3025: 3024: 3020: 3019: 3015: 3014: 3007: 3000: 2990: 2981: 2980: 2979: 2975: 2974: 2970: 2969: 2965: 2964: 2957: 2950: 2939: 2938: 2937: 2933: 2932: 2928: 2927: 2923: 2922: 2913: 2898: 2897: 2896: 2892: 2891: 2887: 2886: 2879: 2872: 2862: 2851: 2850: 2849: 2845: 2844: 2840: 2839: 2832: 2825: 2814: 2813: 2812: 2808: 2807: 2803: 2802: 2793: 2778: 2777: 2776: 2772: 2771: 2767: 2766: 2762: 2761: 2754: 2747: 2737: 2726: 2725: 2724: 2720: 2719: 2715: 2714: 2710: 2709: 2702: 2695: 2684: 2683: 2682: 2678: 2677: 2673: 2672: 2668: 2667: 2658: 2643: 2642: 2641: 2637: 2636: 2632: 2631: 2627: 2626: 2619: 2612: 2602: 2591: 2590: 2589: 2585: 2584: 2580: 2579: 2575: 2574: 2567: 2560: 2549: 2548: 2547: 2543: 2542: 2538: 2537: 2533: 2532: 2468: 2464: 2459: 2448: 2447: 2446: 2442: 2441: 2437: 2436: 2432: 2431: 2427: 2426: 2419: 2412: 2402: 2391: 2390: 2389: 2385: 2384: 2380: 2379: 2375: 2374: 2370: 2369: 2362: 2355: 2344: 2343: 2342: 2338: 2337: 2333: 2332: 2328: 2327: 2323: 2322: 2313: 2304: 2303: 2302: 2298: 2297: 2293: 2292: 2288: 2287: 2283: 2282: 2275: 2268: 2258: 2249: 2248: 2247: 2243: 2242: 2238: 2237: 2233: 2232: 2228: 2227: 2220: 2213: 2202: 2201: 2200: 2196: 2195: 2191: 2190: 2186: 2185: 2181: 2180: 2171: 2160: 2159: 2158: 2154: 2153: 2149: 2148: 2144: 2143: 2139: 2138: 2131: 2124: 2114: 2103: 2102: 2101: 2097: 2096: 2092: 2091: 2087: 2086: 2082: 2081: 2074: 2067: 2056: 2055: 2054: 2050: 2049: 2045: 2044: 2040: 2039: 2035: 2034: 2025: 2016: 2015: 2014: 2010: 2009: 2005: 2004: 2000: 1999: 1992: 1985: 1975: 1966: 1965: 1964: 1960: 1959: 1955: 1954: 1950: 1949: 1942: 1935: 1924: 1923: 1922: 1918: 1917: 1913: 1912: 1908: 1907: 1898: 1889: 1888: 1887: 1883: 1882: 1878: 1877: 1873: 1872: 1865: 1858: 1848: 1839: 1838: 1837: 1833: 1832: 1828: 1827: 1823: 1822: 1815: 1808: 1797: 1796: 1795: 1791: 1790: 1786: 1785: 1781: 1780: 1771: 1756: 1755: 1754: 1750: 1749: 1745: 1744: 1737: 1730: 1720: 1709: 1708: 1707: 1703: 1702: 1698: 1697: 1690: 1683: 1672: 1671: 1670: 1666: 1665: 1661: 1660: 1651: 1636: 1635: 1634: 1630: 1629: 1625: 1624: 1620: 1619: 1612: 1605: 1595: 1584: 1583: 1582: 1578: 1577: 1573: 1572: 1568: 1567: 1560: 1553: 1542: 1541: 1540: 1536: 1535: 1531: 1530: 1526: 1525: 1461: 1457: 1370: 1354: 1343: 1327: 1310: 1300: 1283: 1273: 1256: 1243: 1235: 1227: 1210: 1205: 1200: 1175: 1172: 1154: 1147: 1137: 1136: 1129: 1128: 1121: 1120: 1113: 1112: 1102: 1101: 1091: 1090: 1043: 1037:Pure apeirohedra 1032: 1028: 1014: 1004: 989: 983: 977: 971: 966:Hexagonal tiling 962: 953: 935: 931: 924: 923: 919: 914: 910: 892: 888: 884: 877: 873: 866: 859: 855: 848: 841: 837: 833: 826: 821: 817: 810: 802: 798: 786: 782: 774: 757: 744:Hexagonal tiling 740: 727: 719: 709: 692: 679: 671: 661: 644: 631: 623: 593: 592: 589: 588: 586: 579: 569: 562: 555: 548: 541: 537: 530: 489: 478: 477: 476: 472: 471: 467: 466: 459: 452: 441: 425: 424: 423: 419: 418: 414: 413: 404: 393: 392: 391: 387: 386: 382: 381: 374: 367: 356: 342: 327: 326: 325: 321: 320: 316: 315: 308: 301: 294: 283: 267: 266: 265: 261: 260: 256: 255: 207: 203: 101: 47:or skew regular 4287: 4286: 4282: 4281: 4280: 4278: 4277: 4276: 4262: 4261: 4084: 4066: 4036:McMullen, Peter 4022:(47): 449–478. 4011: 3976: 3945: 3940: 3939: 3932: 3928: 3921: 3917: 3912:McMullen (2004) 3910: 3906: 3901:McMullen (2004) 3899: 3895: 3890:McMullen (2004) 3888: 3884: 3877: 3873: 3866: 3862: 3857:Grünbaum (1977) 3855: 3851: 3842: 3838: 3825: 3821: 3814: 3810: 3805:Grünbaum (1977) 3803: 3799: 3792: 3788: 3780: 3771: 3766: 3761: 3760: 3746: 3739: 3732: 3730: 3723: 3718: 3696: 3679: 3674: 3669: 3664: 3659: 3654: 3652: 3624: 3619: 3614: 3609: 3604: 3599: 3597: 3577: 3572: 3567: 3562: 3557: 3552: 3550: 3537: 3532: 3527: 3522: 3517: 3512: 3510: 3482: 3477: 3472: 3467: 3462: 3457: 3455: 3435: 3430: 3425: 3420: 3415: 3410: 3408: 3395: 3390: 3385: 3380: 3375: 3370: 3368: 3340: 3335: 3330: 3325: 3320: 3315: 3313: 3293: 3288: 3283: 3278: 3273: 3268: 3266: 3253: 3248: 3243: 3238: 3233: 3231: 3203: 3198: 3193: 3188: 3183: 3181: 3161: 3156: 3151: 3146: 3141: 3136: 3134: 3119: 3114: 3109: 3104: 3099: 3094: 3092: 3072: 3067: 3062: 3057: 3052: 3047: 3045: 3032: 3027: 3022: 3017: 3012: 3010: 2982: 2977: 2972: 2967: 2962: 2960: 2940: 2935: 2930: 2925: 2920: 2918: 2904: 2899: 2894: 2889: 2884: 2882: 2852: 2847: 2842: 2837: 2835: 2815: 2810: 2805: 2800: 2798: 2784: 2779: 2774: 2769: 2764: 2759: 2757: 2727: 2722: 2717: 2712: 2707: 2705: 2685: 2680: 2675: 2670: 2665: 2663: 2649: 2644: 2639: 2634: 2629: 2624: 2622: 2592: 2587: 2582: 2577: 2572: 2570: 2550: 2545: 2540: 2535: 2530: 2528: 2522: 2514: 2509: 2504: 2497: 2489: 2484: 2479: 2473: 2449: 2444: 2439: 2434: 2429: 2424: 2422: 2392: 2387: 2382: 2377: 2372: 2367: 2365: 2345: 2340: 2335: 2330: 2325: 2320: 2318: 2305: 2300: 2295: 2290: 2285: 2280: 2278: 2250: 2245: 2240: 2235: 2230: 2225: 2223: 2203: 2198: 2193: 2188: 2183: 2178: 2176: 2161: 2156: 2151: 2146: 2141: 2136: 2134: 2104: 2099: 2094: 2089: 2084: 2079: 2077: 2057: 2052: 2047: 2042: 2037: 2032: 2030: 2017: 2012: 2007: 2002: 1997: 1995: 1967: 1962: 1957: 1952: 1947: 1945: 1925: 1920: 1915: 1910: 1905: 1903: 1890: 1885: 1880: 1875: 1870: 1868: 1840: 1835: 1830: 1825: 1820: 1818: 1798: 1793: 1788: 1783: 1778: 1776: 1762: 1757: 1752: 1747: 1742: 1740: 1710: 1705: 1700: 1695: 1693: 1673: 1668: 1663: 1658: 1656: 1642: 1637: 1632: 1627: 1622: 1617: 1615: 1585: 1580: 1575: 1570: 1565: 1563: 1543: 1538: 1533: 1528: 1523: 1521: 1515: 1507: 1502: 1497: 1490: 1482: 1477: 1472: 1466: 1368: 1361: 1353: 1349: 1342: 1338: 1329: 1326: 1322: 1311: 1302: 1299: 1295: 1284: 1275: 1272: 1268: 1257: 1242: 1238: 1234: 1230: 1226: 1222: 1208: 1203: 1198: 1176: 1170: 1167: 1160:needs expansion 1134: 1133: 1126: 1125: 1118: 1117: 1110: 1109: 1103:represents the 1099: 1098: 1092:represents the 1088: 1087: 1082: 1041: 1039: 1030: 1026: 1012: 1002: 987: 981: 975: 969: 960: 951: 941:skew honeycombs 933: 929: 921: 917: 916: 912: 908: 890: 886: 882: 875: 871: 869: 864: 862: 857: 853: 851: 846: 844: 839: 836: 831: 829: 824: 823: 820: 815: 813: 808: 807: 800: 796: 791:Start with the 784: 780: 772: 766: 726: 722: 717: 678: 674: 669: 630: 626: 621: 600:Schläfli symbol 596:Skew honeycombs 585: 581: 578: 574: 572: 571: 568: 564: 561: 557: 554: 550: 547: 543: 539: 536: 532: 529: 525: 503: 501:Skew honeycombs 498: 479: 474: 469: 464: 462: 442: 433: 428: 426: 421: 416: 411: 409: 394: 389: 384: 379: 377: 357: 348: 333: 328: 323: 318: 313: 311: 284: 275: 270: 268: 263: 258: 253: 251: 245: 240: 231: 226: 218: 213: 135:cubic honeycomb 116: 111: 57: 35:is an infinite 17: 12: 11: 5: 4285: 4275: 4274: 4260: 4259: 4258: 4257: 4232: 4231: 4230: 4223: 4216: 4192: 4175: 4166:Peter McMullen 4163: 4146:John H. Conway 4143: 4134: 4105: 4077: 4064: 4032: 4004: 3966: 3944: 3941: 3938: 3937: 3926: 3915: 3904: 3893: 3882: 3871: 3860: 3849: 3836: 3819: 3808: 3797: 3786: 3768: 3767: 3765: 3762: 3759: 3758: 3737: 3720: 3719: 3717: 3714: 3713: 3712: 3707: 3702: 3695: 3692: 3689: 3688: 3681: 3650: 3643: 3636: 3633: 3626: 3595: 3588: 3581: 3580:{12,12|3} 3578: 3547: 3546: 3539: 3508: 3501: 3494: 3493:{10,12|3} 3491: 3484: 3453: 3446: 3439: 3438:{12,10|3} 3436: 3405: 3404: 3397: 3366: 3359: 3352: 3349: 3342: 3311: 3304: 3297: 3294: 3263: 3262: 3255: 3229: 3222: 3215: 3212: 3205: 3179: 3172: 3165: 3162: 3131: 3130: 3123: 3090: 3083: 3076: 3073: 3042: 3041: 3034: 3008: 3001: 2994: 2991: 2984: 2958: 2951: 2944: 2941: 2915: 2914: 2907: 2902: 2880: 2873: 2866: 2863: 2856: 2833: 2826: 2819: 2816: 2795: 2794: 2787: 2782: 2755: 2748: 2741: 2738: 2731: 2703: 2696: 2689: 2686: 2660: 2659: 2652: 2647: 2620: 2613: 2606: 2603: 2596: 2568: 2561: 2554: 2551: 2525: 2524: 2519: 2516: 2511: 2506: 2501: 2499: 2494: 2491: 2486: 2481: 2476: 2461: 2460: 2453: 2420: 2413: 2406: 2403: 2396: 2363: 2356: 2349: 2348:{10,10|3} 2346: 2315: 2314: 2307: 2276: 2269: 2262: 2259: 2252: 2221: 2214: 2207: 2204: 2173: 2172: 2165: 2132: 2125: 2118: 2115: 2108: 2075: 2068: 2061: 2058: 2027: 2026: 2019: 1993: 1986: 1979: 1976: 1969: 1943: 1936: 1929: 1926: 1900: 1899: 1892: 1866: 1859: 1852: 1849: 1842: 1816: 1809: 1802: 1799: 1773: 1772: 1765: 1760: 1738: 1731: 1724: 1721: 1714: 1691: 1684: 1677: 1674: 1653: 1652: 1645: 1640: 1613: 1606: 1599: 1596: 1589: 1561: 1554: 1547: 1544: 1518: 1517: 1512: 1509: 1504: 1499: 1494: 1492: 1487: 1484: 1479: 1474: 1469: 1390:Coxeter groups 1379:vertex figures 1369:{4,6 | 5} 1360: 1357: 1351: 1340: 1331: 1330: 1324: 1312: 1305: 1303: 1297: 1285: 1278: 1276: 1270: 1258: 1251: 1245: 1244: 1240: 1236: 1232: 1228: 1224: 1212: 1211: 1209:{6,6 | 3} 1206: 1204:{6,4 | 4} 1201: 1199:{4,6 | 4} 1178: 1177: 1157: 1155: 1143: 1142: 1131: 1123: 1115: 1107: 1096: 1038: 1035: 1016: 1015: 1005: 991: 990: 984: 978: 972: 963: 954: 901: 900: 897: 894: 879: 867: 860: 849: 842: 834: 827: 818: 811: 804: 765: 762: 759: 758: 751: 746: 741: 734: 728: 724: 720: 715: 711: 710: 703: 698: 693: 686: 680: 676: 672: 667: 663: 662: 655: 650: 645: 638: 632: 628: 624: 619: 615: 614: 611: 608: 605: 602: 597: 583: 576: 566: 559: 552: 545: 534: 527: 502: 499: 497: 494: 491: 490: 483: 460: 453: 446: 435: 430: 406: 405: 398: 375: 368: 361: 350: 344: 343: 336: 331: 309: 302: 295: 288: 277: 272: 248: 247: 242: 237: 228: 223: 220: 215: 187:abstract group 179: 178: 160: 142: 115: 112: 110: 107: 56: 53: 49:vertex figures 15: 9: 6: 4: 3: 2: 4284: 4273: 4270: 4269: 4267: 4255: 4251: 4250: 4248: 4247:0-486-40919-8 4244: 4240: 4236: 4233: 4228: 4224: 4221: 4217: 4214: 4213: 4208: 4207: 4206: 4204: 4200: 4196: 4193: 4191: 4190:0-486-61480-8 4187: 4183: 4179: 4176: 4173: 4172: 4167: 4164: 4162: 4159: 4155: 4151: 4147: 4144: 4141: 4138: 4135: 4131: 4127: 4123: 4119: 4115: 4111: 4106: 4102: 4098: 4094: 4090: 4083: 4078: 4075: 4071: 4067: 4065:0-521-81496-0 4061: 4057: 4053: 4048: 4047: 4041: 4040:Schulte, Egon 4037: 4033: 4029: 4025: 4021: 4017: 4010: 4005: 4002: 3998: 3994: 3990: 3987:(1–2): 1–20, 3986: 3982: 3975: 3971: 3967: 3964: 3960: 3957:: 1179–1186, 3956: 3952: 3947: 3946: 3935: 3934:Garner (1967) 3930: 3924: 3919: 3913: 3908: 3902: 3897: 3891: 3886: 3880: 3875: 3869: 3864: 3858: 3853: 3846: 3840: 3834:, pp. 333–335 3833: 3829: 3823: 3817: 3812: 3806: 3801: 3795: 3794:Garner (1967) 3790: 3783: 3778: 3776: 3774: 3769: 3756:between them. 3755: 3751: 3744: 3742: 3728: 3726: 3721: 3711: 3708: 3706: 3703: 3701: 3698: 3697: 3686: 3682: 3680:ct{(3,6,3,6)} 3651: 3648: 3644: 3641: 3637: 3634: 3631: 3627: 3625:ct{(6,3,6,3)} 3596: 3593: 3589: 3586: 3582: 3579: 3549: 3544: 3540: 3538:ct{(5,3,6,3)} 3509: 3506: 3502: 3499: 3495: 3492: 3489: 3485: 3483:ct{(6,3,5,3)} 3454: 3451: 3447: 3444: 3440: 3437: 3407: 3402: 3398: 3396:ct{(4,3,6,3)} 3367: 3364: 3360: 3357: 3353: 3351:{8,12|3} 3350: 3347: 3343: 3341:ct{(6,3,4,3)} 3312: 3309: 3305: 3302: 3298: 3296:{12,8|3} 3295: 3265: 3260: 3256: 3254:ct{(3,3,6,3)} 3230: 3227: 3223: 3220: 3216: 3214:{6,12|3} 3213: 3210: 3206: 3204:ct{(6,3,3,3)} 3180: 3177: 3173: 3170: 3166: 3164:{12,6|3} 3163: 3133: 3128: 3124: 3122: 3091: 3088: 3084: 3081: 3077: 3074: 3044: 3039: 3035: 3033:ct{(3,4,4,4)} 3009: 3006: 3002: 2999: 2995: 2992: 2989: 2985: 2983:ct{(4,4,3,4)} 2959: 2956: 2952: 2949: 2945: 2942: 2917: 2912: 2908: 2906: 2881: 2878: 2874: 2871: 2867: 2864: 2861: 2857: 2855: 2834: 2831: 2827: 2824: 2820: 2817: 2797: 2792: 2788: 2786: 2756: 2753: 2749: 2746: 2742: 2740:{4,12|3} 2739: 2736: 2732: 2730: 2704: 2701: 2697: 2694: 2690: 2688:{12,4|3} 2687: 2662: 2657: 2653: 2651: 2621: 2618: 2614: 2611: 2607: 2604: 2601: 2597: 2595: 2569: 2566: 2562: 2559: 2555: 2552: 2527: 2520: 2517: 2512: 2507: 2502: 2495: 2492: 2487: 2482: 2477: 2475: 2470: 2469: 2458: 2454: 2452: 2451:ct{(3,5,3,5)} 2421: 2418: 2414: 2411: 2407: 2404: 2401: 2397: 2395: 2394:ct{(5,3,5,3)} 2364: 2361: 2357: 2354: 2350: 2347: 2317: 2312: 2308: 2306:ct{(5,3,4,3)} 2277: 2274: 2270: 2267: 2263: 2261:{10,8|3} 2260: 2257: 2253: 2251:ct{(4,3,5,3)} 2222: 2219: 2215: 2212: 2208: 2206:{8,10|3} 2205: 2175: 2170: 2166: 2164: 2163:ct{(3,4,3,4)} 2133: 2130: 2126: 2123: 2119: 2116: 2113: 2109: 2107: 2106:ct{(4,3,4,3)} 2076: 2073: 2069: 2066: 2062: 2059: 2029: 2024: 2020: 2018:ct{(3,3,5,3)} 1994: 1991: 1987: 1984: 1980: 1978:{6,10|3} 1977: 1974: 1970: 1968:ct{(5,3,3,3)} 1944: 1941: 1937: 1934: 1930: 1928:{10,6|3} 1927: 1902: 1897: 1893: 1891:ct{(3,3,4,3)} 1867: 1864: 1860: 1857: 1853: 1850: 1847: 1843: 1841:ct{(4,3,3,3)} 1817: 1814: 1810: 1807: 1803: 1800: 1775: 1770: 1766: 1764: 1739: 1736: 1732: 1729: 1725: 1722: 1719: 1715: 1713: 1692: 1689: 1685: 1682: 1678: 1675: 1655: 1650: 1646: 1644: 1614: 1611: 1607: 1604: 1600: 1598:{4,10|3} 1597: 1594: 1590: 1588: 1562: 1559: 1555: 1552: 1548: 1546:{10,4|3} 1545: 1520: 1513: 1510: 1505: 1500: 1495: 1488: 1485: 1480: 1475: 1470: 1468: 1463: 1462: 1456: 1454: 1449: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1408:} and dual {2 1407: 1403: 1399: 1395: 1391: 1386: 1384: 1380: 1377: 1365: 1356: 1347: 1336: 1320: 1316: 1315:skew hexagons 1309: 1304: 1293: 1289: 1282: 1277: 1266: 1262: 1261:skew hexagons 1255: 1250: 1249: 1248: 1237: 1229: 1221: 1220: 1219: 1217: 1207: 1202: 1197: 1196: 1195: 1193: 1188: 1186: 1174: 1171:February 2024 1165: 1161: 1158:This section 1156: 1153: 1149: 1148: 1141: 1140:rectification 1132: 1124: 1116: 1108: 1106: 1097: 1095: 1086: 1085: 1034: 1024: 1019: 1010: 1006: 1000: 996: 995: 994: 985: 979: 973: 967: 964: 958: 957:Square tiling 955: 949: 946: 945: 944: 942: 937: 926: 906: 898: 895: 880: 805: 794: 790: 789: 788: 770: 756: 752: 750: 747: 745: 742: 739: 735: 733: 729: 721: 716: 713: 712: 708: 704: 702: 699: 697: 694: 691: 687: 685: 681: 673: 668: 665: 664: 660: 656: 654: 651: 649: 648:Square tiling 646: 643: 639: 637: 633: 625: 620: 617: 616: 609: 606: 603: 601: 595: 594: 591: 522: 518: 516: 512: 508: 488: 484: 482: 461: 458: 454: 451: 447: 445: 440: 436: 434:Mutetrahedron 431: 408: 403: 399: 397: 376: 373: 369: 366: 360: 355: 351: 346: 341: 337: 335: 310: 307: 303: 300: 293: 289: 287: 282: 278: 273: 238: 235: 229: 224: 221: 216: 212: 211:Coxeter group 209: 208: 202: 200: 196: 192: 188: 184: 176: 172: 168: 164: 163:Mutetrahedron 161: 158: 154: 150: 147:: {6,4|4}: 4 146: 143: 140: 136: 132: 129:: {4,6|4}: 6 128: 125: 124: 123: 121: 106: 103: 96: 91: 89: 84: 81: 76: 74: 73:vertex figure 70: 66: 62: 52: 50: 46: 42: 38: 34: 30: 21: 4253: 4238: 4226: 4219: 4210: 4194: 4181: 4170: 4161: 4149: 4113: 4109: 4092: 4088: 4045: 4019: 4015: 3984: 3980: 3954: 3950: 3943:Bibliography 3929: 3918: 3907: 3896: 3885: 3874: 3868:Dress (1985) 3863: 3852: 3844: 3839: 3831: 3827: 3822: 3816:Dress (1985) 3811: 3800: 3789: 3733:{8,8|4} 3635:{6,6|6} 3075:{8,8|4} 2993:{6,8|4} 2943:{8,6|4} 2865:{4,6|6} 2818:{6,4|6} 2605:{4,8|4} 2553:{8,4|4} 2505:{p,q|l} 2503:Apeirohedron 2480:{p,q|l} 2478:Apeirohedron 2405:{6,6|5} 2117:{6,6|4} 2060:{8,8|3} 1851:{6,8|3} 1801:{8,6|3} 1723:{4,6|5} 1676:{6,4|5} 1498:{p,q|l} 1496:Apeirohedron 1473:{p,q|l} 1471:Apeirohedron 1450: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1387: 1373: 1332: 1288:skew squares 1246: 1213: 1189: 1181: 1168: 1164:adding to it 1159: 1020: 1017: 999:line segment 992: 938: 927: 904: 902: 778: 523: 519: 506: 504: 432:{6,6|3} 349:Muoctahedron 347:{6,4|4} 274:{4,6|4} 233: 219:{p,q|l} 217:Apeirohedron 198: 194: 190: 180: 162: 145:Muoctahedron 144: 126: 117: 104: 92: 85: 77: 58: 32: 26: 4116:: 222–243. 1138:represents 610:Petrie dual 573:⟨w, 515:Petrie dual 271:[] 175:tetrahedron 120:John Conway 69:apeirohedra 3764:References 3750:affine map 1436:} and {4,2 429:[] 427:[] 269:[] 246:honeycomb 4272:Polyhedra 4130:121260389 4001:125049930 3843:Coxeter, 3784::449–450) 3754:full rank 3710:Tetrastix 2854:2t{6,3,6} 2729:2t{3,6,3} 2594:2t{4,4,4} 2518:Honeycomb 2493:Honeycomb 1712:2t{5,3,5} 1587:2t{3,5,3} 1511:Honeycomb 1486:Honeycomb 1453:antiprism 1346:self-dual 1292:hexagonal 1265:hexagonal 1031:{4, 4}#{} 1027:{4, 4}#{} 1023:bipartite 1009:apeirogon 613:Apeir of 444:animation 396:2t{4,3,4} 359:animation 286:animation 214:symmetry 4266:Category 4095:: 1–35. 4042:(2002), 3972:(1977), 3694:See also 3121:q{4,4,4} 1216:Petrials 773:{3,6}#{} 749:Triangle 587:⟩ 481:q{4,3,4} 149:hexagons 95:Grünbaum 93:In 1977 59:In 1926 43:regular 29:geometry 4235:Coxeter 4178:Coxeter 4074:1965665 2905:{6,3,6} 2785:{3,6,3} 2650:{4,4,4} 2523:figure 2472:Coxeter 1763:{5,3,5} 1643:{3,5,3} 1516:figure 1465:Coxeter 1094:Petrial 732:zigzags 701:Hexagon 684:zigzags 636:zigzags 334:{4,3,4} 244:Related 131:squares 55:History 4245:  4201:  4188:  4156:  4152:2008, 4128:  4072:  4062:  3999:  2521:Vertex 2498:figure 2496:Vertex 1514:Vertex 1491:figure 1489:Vertex 1319:square 988:{6, 3} 982:{4, 4} 976:{3, 6} 970:{6, 3} 961:{4, 4} 952:{3, 6} 889:. (If 874:. (If 653:Square 582:ρ 575:ρ 565:ρ 558:ρ 551:ρ 544:ρ 533:ρ 526:ρ 276:Mucube 241:figure 239:Vertex 127:Mucube 4126:S2CID 4085:(PDF) 4012:(PDF) 3997:S2CID 3977:(PDF) 3847:2.34) 3716:Notes 2474:group 1467:group 1350:{6,4} 1339:{6,6} 1323:{6,4} 1317:in a 1296:{4,6} 1290:in a 1269:{6,6} 1263:in a 905:blend 723:{∞,3} 718:{6,3} 675:{∞,6} 670:{3,6} 627:{∞,4} 622:{4,4} 607:Image 604:Faces 222:Image 45:faces 4243:ISBN 4199:ISBN 4186:ISBN 4154:ISBN 4060:ISBN 2513:Hole 2508:Face 2488:Hole 2483:Face 1506:Hole 1501:Face 1481:Hole 1476:Face 1348:and 1105:dual 1029:and 1007:The 997:The 932:and 911:and 885:and 863:and 845:and 822:and 783:and 563:and 531:and 230:Hole 225:Face 139:cube 100:i.e. 41:skew 31:, a 4140:PDF 4118:doi 4097:doi 4052:doi 4024:doi 3989:doi 3959:doi 3752:of 2903:0,3 2783:0,3 2648:0,3 2515:{l} 2510:{p} 2490:{l} 2485:{p} 1761:0,3 1641:0,3 1508:{l} 1503:{p} 1483:{l} 1478:{p} 1344:is 1241:6,3 1233:4,4 1225:6,4 1166:. 1013:{∞} 943:): 907:of 870:in 852:in 332:0,3 227:{p} 197:|2, 27:In 4268:: 4237:, 4229:, 4222:, 4180:, 4168:, 4124:. 4114:29 4112:. 4093:32 4091:. 4087:. 4070:MR 4068:, 4058:, 4038:; 4020:17 4018:. 4014:. 3995:, 3985:16 3983:, 3979:, 3955:19 3953:, 3830:, 3772:^ 3740:^ 3724:^ 1448:. 1412:,2 1400:,2 1396:{2 1313:4 1286:6 1259:6 1194:: 1187:. 1011:: 1003:{} 1001:: 968:: 959:: 950:: 925:. 830:× 814:× 730:∞ 682:∞ 634:∞ 590:. 580:, 193:,2 189:(2 177:.) 141:.) 75:. 51:. 4160:, 4132:. 4120:: 4103:. 4099:: 4054:: 4030:. 4026:: 3991:: 3961:: 2901:t 2781:t 2646:t 1759:t 1639:t 1442:p 1440:| 1438:q 1434:p 1432:| 1430:4 1428:, 1426:q 1422:r 1418:p 1416:| 1414:q 1410:r 1406:p 1404:| 1402:r 1398:q 1352:6 1341:4 1328:. 1325:6 1301:. 1298:6 1274:. 1271:4 1173:) 1169:( 1135:r 1127:σ 1119:φ 1111:η 1100:δ 1089:π 934:Q 930:P 922:Q 920:# 918:P 913:Q 909:P 891:Q 887:Q 883:P 876:Q 872:Q 868:1 865:q 861:0 858:q 854:P 850:1 847:p 843:0 840:p 835:1 832:q 828:1 825:p 819:0 816:q 812:0 809:p 803:. 801:Q 797:P 785:Q 781:P 725:6 677:3 629:4 584:0 577:0 567:1 560:0 553:0 546:1 540:w 535:1 528:0 330:t 236:} 234:l 232:{ 199:p 195:r 191:q

Index


geometry
regular skew polyhedron
skew
faces
vertex figures
John Flinders Petrie
regular skew polygons
apeirohedra
vertex figure
Harold Scott MacDonald Coxeter
hyperbolic 3-space
Grünbaum
John Conway
squares
cubic honeycomb
cube
hexagons
bitruncated cubic honeycomb
truncated octahedron
quarter cubic honeycomb
truncated tetrahedron
tetrahedron
extended chiral symmetry
abstract group
Coxeter group

animation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.