Knowledge

Regular semigroup

Source 📝

1248: 1170: 1090: 867: 825: 783: 1368: 1344: 1014: 982: 931: 907: 417: 109: 698:= Ø. This remark holds more generally in any semigroup with zero. Furthermore, if every element has a unique pseudoinverse, then the semigroup is a 666:
The existence of a unique pseudoinverse implies the existence of a unique inverse, but the opposite is not true. For example, in the
57:. Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via 1838: 1812: 1639: 1590: 1856: 1606: 1976: 1804: 1520: 1491: 1221: 1143: 1063: 840: 798: 756: 667: 70: 98: 388:(idempotent semigroup) is regular in the sense of this article, though this is not what is meant by a 1971: 1476: 389: 93:. According to a footnote in Green 1951, the suggestion that the notion of regularity be applied to 1349: 1325: 995: 963: 912: 888: 403: 73:
in his influential 1951 paper "On the structure of semigroups"; this was also the paper in which
316:). Thus, another way of expressing definition (2) above is to say that in a regular semigroup, 1629: 1580: 1482:
All inverse semigroups are orthodox and locally inverse. The converse statements do not hold.
1822: 410: 1922: 747: 90: 74: 58: 8: 1530: 731: 699: 378: 1926: 1945: 1910: 1890: 1790: 1472: 1408: 396: 385: 82: 1950: 1852: 1834: 1808: 1635: 1586: 1525: 1496: 1319: 660: 430: 89:. It was Green's study of regular semigroups which led him to define his celebrated 1631:
Power Algebras over Semirings: With Applications in Mathematics and Computer Science
1582:
Mathematics across the Iron Curtain: A History of the Algebraic Theory of Semigroups
1940: 1930: 1880: 1872: 746:
automatically belongs to these ideals, without recourse to adjoining an identity.
86: 1830: 1798: 1479:
of the class of locally inverse semigroups and the class of orthodox semigroups.
711: 108:(French: demi-groupe inversif) was historically used as synonym in the papers of 670:, the empty transformation Ø does not have a unique pseudoinverse, because Ø = Ø 1794: 702:, and the unique pseudoinverse of an element coincides with the group inverse. 1885: 1965: 1515: 1849:
Monoids, Acts and Categories with Applications to Wreath Products and Graphs
441:
be a regular semigroup in which idempotents commute. Then every element of
1954: 1935: 1903:
Proceedings of the International Conference on Algebra and Its Applications
113: 1851:, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, 429:
A regular semigroup in which idempotents commute (with idempotents) is an
1894: 1614: 1453: 1439: 1421: 1398: 934: 349: 302: 124:
There are two equivalent ways in which to define a regular semigroup
94: 21: 1876: 194:
To see the equivalence of these definitions, first suppose that
750:
can therefore be redefined for regular semigroups as follows:
659:
is shown to be unique. Conversely, it can be shown that any
424: 81:
in a semigroup was adapted from an analogous condition for
1915:
Proceedings of the National Academy of Sciences of the USA
1373: 678:. The inverse of Ø is unique however, because only one 297:
The set of inverses (in the above sense) of an element
1863:
J. A. Green (1951). "On the structure of semigroups".
1634:. Springer Science & Business Media. p. 104. 1352: 1328: 1224: 1146: 1066: 998: 966: 915: 891: 843: 801: 759: 663:
is a regular semigroup in which idempotents commute.
1578: 1901:J. M. Howie, Semigroups, past, present and future, 730:belongs to the principal right, left and two-sided 116:) in the 1950s, and it is still used occasionally. 1362: 1338: 1242: 1164: 1084: 1008: 976: 925: 901: 861: 819: 777: 1627: 371: 1963: 1378:Some special classes of regular semigroups are: 1789: 1738: 1687: 1663: 1908: 1585:. American Mathematical Society. p. 181. 734:which it generates. In a regular semigroup 1862: 1572: 639:So, by commuting the pairs of idempotents 1944: 1934: 1884: 1475:of generalised inverse semigroups is the 1236: 1228: 1158: 1150: 1078: 1070: 855: 847: 813: 805: 771: 763: 682:satisfies the additional constraint that 425:Unique inverses and unique pseudoinverses 1621: 445:has at least one inverse. Suppose that 433:, or equivalently, every element has a 1964: 1654:Klip, Knauer and Mikhalev : p. 33 69:Regular semigroups were introduced by 1821: 1774: 1762: 1750: 1726: 1714: 1710: 1708: 1699: 1675: 1579:Christopher Hollings (16 July 2014). 1548: 1374:Special classes of regular semigroups 1243:{\displaystyle a\,{\mathcal {H}}\,b} 1165:{\displaystyle a\,{\mathcal {R}}\,b} 1085:{\displaystyle a\,{\mathcal {L}}\,b} 862:{\displaystyle a\,{\mathcal {J}}\,b} 820:{\displaystyle a\,{\mathcal {R}}\,b} 778:{\displaystyle a\,{\mathcal {L}}\,b} 726:; this is to ensure that an element 705: 1847:M. Kilp, U. Knauer, A.V. Mikhalev, 13: 1800:The algebraic theory of semigroups 1705: 1485: 1397:is an inverse semigroup, for each 1355: 1331: 1231: 1153: 1073: 1001: 969: 918: 894: 850: 808: 766: 420:of a regular semigroup is regular. 14: 1988: 77:were introduced. The concept of 1827:Fundamentals of Semigroup Theory 724:semigroup with identity adjoined 1768: 1756: 1744: 1732: 1720: 1693: 1681: 1669: 1657: 1648: 1599: 1563: 1554: 1542: 1428:Generalised inverse semigroups 1363:{\displaystyle {\mathcal {R}}} 1339:{\displaystyle {\mathcal {L}}} 1322:, then the idempotent in each 1049:denote the set of inverses of 1009:{\displaystyle {\mathcal {R}}} 977:{\displaystyle {\mathcal {L}}} 926:{\displaystyle {\mathcal {R}}} 902:{\displaystyle {\mathcal {L}}} 372:Examples of regular semigroups 332:. The product of any element 1: 1805:American Mathematical Society 1536: 1521:Special classes of semigroups 1436:generalised inverse semigroup 933:-class contains at least one 404:full transformation semigroup 119: 1791:Clifford, Alfred Hoblitzelle 1492:eventually regular semigroup 1033:be a regular semigroup; let 7: 1739:Clifford & Preston 2010 1688:Clifford & Preston 2010 1664:Clifford & Preston 2010 1509: 668:symmetric inverse semigroup 437:inverse. To see this, let 10: 1993: 1783: 1628:Jonathan S. Golan (1999). 1442:form a normal band, i.e., 1383:Locally inverse semigroups 64: 27:in which every element is 674:Ø for any transformation 512:are idempotents as above. 324:) is nonempty, for every 198:is defined by (2). Then 31:, i.e., for each element 718:are defined in terms of 210:is defined by (1), then 206:in (1). Conversely, if 85:, already considered by 39:there exists an element 1909:J. von Neumann (1936). 1795:Preston, Gordon Bamford 881:In a regular semigroup 381:is a regular semigroup. 202:serves as the required 1936:10.1073/pnas.22.12.707 1823:Howie, John Mackintosh 1430:: a regular semigroup 1412:: a regular semigroup 1385:: a regular semigroup 1364: 1340: 1244: 1166: 1086: 1010: 978: 927: 903: 863: 821: 779: 738:, however, an element 1865:Annals of Mathematics 1504:-inversive) semigroup 1424:forms a subsemigroup. 1365: 1341: 1245: 1167: 1087: 1011: 979: 928: 904: 864: 822: 780: 411:Rees matrix semigroup 1977:Algebraic structures 1350: 1326: 1222: 1144: 1064: 996: 964: 913: 889: 841: 799: 757: 174:, in the sense that 148:, which is called a 1927:1936PNAS...22..707V 1531:Generalized inverse 1409:Orthodox semigroups 952:is any inverse for 106:inversive semigroup 1911:"On regular rings" 1886:10338.dmlcz/100067 1370:-class is unique. 1360: 1336: 1240: 1162: 1082: 1006: 974: 941:is any element of 923: 899: 859: 817: 775: 397:bicyclic semigroup 214:is an inverse for 163:(2) every element 97:was first made by 16:In mathematics, a 1867:. Second Series. 1840:978-0-19-851194-6 1814:978-0-8218-0272-4 1753:Proposition 2.4.1 1641:978-0-7923-5834-3 1592:978-1-4704-1493-1 1569:von Neumann 1936. 1526:Nambooripad order 1420:if its subset of 1320:inverse semigroup 869:if, and only if, 827:if, and only if, 785:if, and only if, 748:Green's relations 706:Green's relations 661:inverse semigroup 655:, the inverse of 453:has two inverses 431:inverse semigroup 418:homomorphic image 167:has at least one 75:Green's relations 59:Green's relations 18:regular semigroup 1984: 1972:Semigroup theory 1958: 1948: 1938: 1898: 1888: 1844: 1829:(1st ed.). 1818: 1778: 1772: 1766: 1760: 1754: 1748: 1742: 1736: 1730: 1724: 1718: 1712: 1703: 1697: 1691: 1685: 1679: 1673: 1667: 1661: 1655: 1652: 1646: 1645: 1625: 1619: 1618: 1613:. Archived from 1603: 1597: 1596: 1576: 1570: 1567: 1561: 1558: 1552: 1546: 1451: 1369: 1367: 1366: 1361: 1359: 1358: 1345: 1343: 1342: 1337: 1335: 1334: 1308: 1301: 1293: 1285: 1270: 1255: 1250:iff there exist 1249: 1247: 1246: 1241: 1235: 1234: 1214: 1207: 1192: 1177: 1172:iff there exist 1171: 1169: 1168: 1163: 1157: 1156: 1135: 1127: 1112: 1097: 1092:iff there exist 1091: 1089: 1088: 1083: 1077: 1076: 1021: 1015: 1013: 1012: 1007: 1005: 1004: 989: 983: 981: 980: 975: 973: 972: 950: 932: 930: 929: 924: 922: 921: 908: 906: 905: 900: 898: 897: 868: 866: 865: 860: 854: 853: 826: 824: 823: 818: 812: 811: 784: 782: 781: 776: 770: 769: 712:principal ideals 710:Recall that the 301:in an arbitrary 110:Gabriel Thierrin 87:John von Neumann 56: 1992: 1991: 1987: 1986: 1985: 1983: 1982: 1981: 1962: 1961: 1921:(12): 707–713. 1877:10.2307/1969317 1841: 1831:Clarendon Press 1815: 1803:. Vol. 2. 1786: 1781: 1773: 1769: 1761: 1757: 1749: 1745: 1737: 1733: 1725: 1721: 1713: 1706: 1698: 1694: 1686: 1682: 1674: 1670: 1662: 1658: 1653: 1649: 1642: 1626: 1622: 1605: 1604: 1600: 1593: 1577: 1573: 1568: 1564: 1559: 1555: 1547: 1543: 1539: 1512: 1488: 1486:Generalizations 1443: 1391:locally inverse 1376: 1354: 1353: 1351: 1348: 1347: 1330: 1329: 1327: 1324: 1323: 1306: 1299: 1291: 1283: 1268: 1253: 1230: 1229: 1223: 1220: 1219: 1212: 1205: 1190: 1175: 1152: 1151: 1145: 1142: 1141: 1133: 1125: 1110: 1095: 1072: 1071: 1065: 1062: 1061: 1041:be elements of 1019: 1000: 999: 997: 994: 993: 987: 968: 967: 965: 962: 961: 948: 917: 916: 914: 911: 910: 893: 892: 890: 887: 886: 849: 848: 842: 839: 838: 807: 806: 800: 797: 796: 765: 764: 758: 755: 754: 714:of a semigroup 708: 427: 374: 122: 67: 48: 12: 11: 5: 1990: 1980: 1979: 1974: 1960: 1959: 1906: 1899: 1871:(1): 163–172. 1860: 1845: 1839: 1819: 1813: 1785: 1782: 1780: 1779: 1767: 1755: 1743: 1731: 1719: 1704: 1692: 1680: 1668: 1656: 1647: 1640: 1620: 1617:on 1999-11-04. 1611:www.csd.uwo.ca 1607:"Publications" 1598: 1591: 1571: 1562: 1553: 1540: 1538: 1535: 1534: 1533: 1528: 1523: 1518: 1511: 1508: 1507: 1506: 1494: 1487: 1484: 1469: 1468: 1425: 1405: 1375: 1372: 1357: 1333: 1312: 1311: 1239: 1233: 1227: 1217: 1161: 1155: 1149: 1139: 1081: 1075: 1069: 1003: 971: 920: 896: 879: 878: 858: 852: 846: 836: 816: 810: 804: 794: 774: 768: 762: 707: 704: 637: 636: 514: 513: 426: 423: 422: 421: 414: 407: 400: 393: 382: 373: 370: 308:is denoted by 192: 191: 161: 140:, there is an 121: 118: 112:(a student of 66: 63: 9: 6: 4: 3: 2: 1989: 1978: 1975: 1973: 1970: 1969: 1967: 1956: 1952: 1947: 1942: 1937: 1932: 1928: 1924: 1920: 1916: 1912: 1907: 1905:, 2002, 6–20. 1904: 1900: 1896: 1892: 1887: 1882: 1878: 1874: 1870: 1866: 1861: 1858: 1857:3-11-015248-7 1854: 1850: 1846: 1842: 1836: 1832: 1828: 1824: 1820: 1816: 1810: 1806: 1802: 1801: 1796: 1792: 1788: 1787: 1776: 1771: 1764: 1759: 1752: 1747: 1740: 1735: 1728: 1723: 1717:Theorem 5.1.1 1716: 1711: 1709: 1701: 1696: 1689: 1684: 1677: 1672: 1665: 1660: 1651: 1643: 1637: 1633: 1632: 1624: 1616: 1612: 1608: 1602: 1594: 1588: 1584: 1583: 1575: 1566: 1557: 1550: 1545: 1541: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1516:Biordered set 1514: 1513: 1505: 1503: 1499: 1495: 1493: 1490: 1489: 1483: 1480: 1478: 1474: 1466: 1462: 1458: 1455: 1450: 1446: 1441: 1437: 1433: 1429: 1426: 1423: 1419: 1415: 1411: 1410: 1406: 1403: 1400: 1396: 1392: 1388: 1384: 1381: 1380: 1379: 1371: 1321: 1317: 1309: 1302: 1295: 1287: 1279: 1275: 1271: 1264: 1260: 1256: 1237: 1225: 1218: 1215: 1208: 1201: 1197: 1193: 1186: 1182: 1178: 1159: 1147: 1140: 1137: 1129: 1121: 1117: 1113: 1106: 1102: 1098: 1079: 1067: 1060: 1059: 1058: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1022: 991: 959: 955: 951: 944: 940: 936: 884: 876: 872: 856: 844: 837: 834: 830: 814: 802: 795: 792: 788: 772: 760: 753: 752: 751: 749: 745: 741: 737: 733: 729: 725: 721: 717: 713: 703: 701: 697: 693: 689: 685: 681: 677: 673: 669: 664: 662: 658: 654: 650: 646: 642: 634: 630: 626: 622: 618: 614: 610: 606: 602: 598: 594: 590: 586: 582: 578: 574: 570: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 526: 522: 519: 518: 517: 511: 507: 503: 499: 495: 491: 487: 483: 479: 475: 471: 467: 464: 463: 462: 460: 456: 452: 448: 444: 440: 436: 432: 419: 415: 412: 408: 405: 401: 398: 394: 391: 387: 383: 380: 376: 375: 369: 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 307: 304: 300: 295: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 253: 249: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 189: 185: 181: 177: 173: 170: 166: 162: 159: 155: 151: 150:pseudoinverse 147: 143: 139: 135: 132:(1) for each 131: 130: 129: 127: 117: 115: 111: 107: 102: 100: 96: 92: 88: 84: 80: 76: 72: 62: 60: 55: 51: 46: 42: 38: 34: 30: 26: 23: 19: 1918: 1914: 1902: 1868: 1864: 1848: 1826: 1799: 1770: 1765:ch. 6, § 2.4 1758: 1746: 1734: 1722: 1695: 1683: 1671: 1659: 1650: 1630: 1623: 1615:the original 1610: 1601: 1581: 1574: 1565: 1556: 1544: 1501: 1500:-dense (aka 1497: 1481: 1477:intersection 1470: 1464: 1460: 1456: 1448: 1444: 1435: 1434:is called a 1431: 1427: 1417: 1413: 1407: 1401: 1394: 1390: 1386: 1382: 1377: 1315: 1313: 1304: 1297: 1289: 1281: 1280:) such that 1277: 1273: 1266: 1262: 1258: 1251: 1210: 1203: 1202:) such that 1199: 1195: 1188: 1184: 1180: 1173: 1131: 1123: 1122:) such that 1119: 1115: 1108: 1104: 1100: 1093: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1025: 1017: 1016:-related to 985: 984:-related to 957: 953: 946: 942: 938: 882: 880: 874: 870: 832: 828: 790: 786: 743: 739: 735: 727: 723: 719: 715: 709: 695: 691: 687: 683: 679: 675: 671: 665: 656: 652: 648: 644: 640: 638: 632: 628: 624: 620: 616: 612: 608: 604: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 560: 556: 552: 548: 544: 540: 536: 532: 528: 524: 520: 515: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 469: 465: 458: 454: 450: 446: 442: 438: 434: 428: 390:regular band 365: 361: 357: 353: 348:) is always 345: 341: 337: 333: 329: 325: 321: 317: 313: 309: 305: 298: 296: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 203: 199: 195: 193: 187: 183: 179: 175: 171: 168: 164: 157: 153: 149: 145: 141: 137: 133: 125: 123: 114:Paul Dubreil 105: 103: 78: 68: 53: 49: 44: 40: 36: 32: 28: 24: 17: 15: 1702:Lemma 2.4.4 1666:Lemma 1.14. 1560:Howie 2002. 1454:idempotents 1440:idempotents 1422:idempotents 413:is regular. 406:is regular. 399:is regular. 71:J. A. Green 1966:Categories 1775:Howie 1995 1763:Howie 1995 1751:Howie 1995 1741:Lemma 1.13 1727:Howie 1995 1715:Howie 1995 1700:Howie 1995 1676:Howie 1995 1549:Howie 1995 1537:References 1399:idempotent 1045:, and let 935:idempotent 350:idempotent 120:The basics 99:David Rees 95:semigroups 79:regularity 47:such that 1797:(2010) . 694:, namely 336:with any 303:semigroup 104:The term 91:relations 22:semigroup 1955:16577757 1825:(1995). 1510:See also 1452:for all 1418:orthodox 1057:. Then 1027:Theorem. 885:, every 461:, i.e., 360:, since 218:, since 1946:1076849 1923:Bibcode 1895:1969317 1784:Sources 1438:if its 956:, then 496:. Also 169:inverse 152:, with 65:History 29:regular 1953:  1943:  1893:  1855:  1837:  1811:  1777:p. 222 1638:  1589:  1346:- and 1318:is an 1265:) and 1187:) and 1107:) and 937:. If 909:- and 732:ideals 722:, the 651:& 643:& 435:unique 384:Every 377:Every 1891:JSTOR 1729:p. 55 1690:p. 26 1678:p. 52 1551:p. 54 1473:class 700:group 625:cabac 516:Then 379:group 246:and ( 83:rings 20:is a 1951:PMID 1853:ISBN 1835:ISBN 1809:ISBN 1636:ISBN 1587:ISBN 1471:The 1449:xzyx 1445:xyzx 1296:and 1047:V(x) 1037:and 1029:Let 992:and 945:and 647:and 587:) = 575:) = 508:and 488:and 457:and 416:The 402:Any 395:The 386:band 354:abab 278:) = 270:) = 258:) = 238:) = 182:and 1941:PMC 1931:doi 1881:hdl 1873:doi 1416:is 1395:eSe 1393:if 1389:is 1314:If 1272:in 1257:in 1194:in 1179:in 1114:in 1099:in 1053:in 960:is 875:SbS 871:SaS 744:axa 629:cac 621:bac 617:aba 609:bac 597:bac 577:bac 565:bac 557:aca 553:bac 541:bac 533:aca 525:bab 490:cac 482:aca 474:bab 466:aba 449:in 362:aba 340:in 328:in 292:xax 284:axa 276:xax 268:xax 264:axa 256:xax 248:xax 240:axa 232:axa 224:xax 212:xax 184:bab 176:aba 154:axa 144:in 136:in 50:axa 43:in 35:in 1968:: 1949:. 1939:. 1929:. 1919:22 1917:. 1913:. 1889:. 1879:. 1869:54 1833:. 1807:. 1793:; 1707:^ 1609:. 1463:, 1459:, 1447:= 1305:bb 1303:= 1298:aa 1288:= 1211:bb 1209:= 1204:aa 1130:= 1023:. 1018:aa 873:= 833:bS 831:= 829:aS 791:Sb 789:= 787:Sa 742:= 686:= 653:ca 649:ba 645:ac 641:ab 631:= 627:= 623:= 611:= 605:ba 601:ca 599:= 593:ca 589:ba 585:ac 583:)( 581:ab 573:ab 571:)( 569:ac 563:= 551:= 539:= 527:= 523:= 510:ca 506:ac 504:, 502:ba 500:, 498:ab 492:= 484:= 480:, 476:= 472:, 468:= 409:A 368:. 364:= 358:ab 356:= 352:: 294:. 290:= 272:xa 266:)( 242:= 236:xa 230:= 186:= 178:= 156:= 128:: 101:. 61:. 52:= 1957:. 1933:: 1925:: 1897:. 1883:: 1875:: 1859:. 1843:. 1817:. 1644:. 1595:. 1502:E 1498:E 1467:. 1465:z 1461:y 1457:x 1432:S 1414:S 1404:. 1402:e 1387:S 1356:R 1332:L 1316:S 1310:. 1307:′ 1300:′ 1294:b 1292:′ 1290:b 1286:a 1284:′ 1282:a 1278:b 1276:( 1274:V 1269:′ 1267:b 1263:a 1261:( 1259:V 1254:′ 1252:a 1238:b 1232:H 1226:a 1216:, 1213:′ 1206:′ 1200:b 1198:( 1196:V 1191:′ 1189:b 1185:a 1183:( 1181:V 1176:′ 1174:a 1160:b 1154:R 1148:a 1138:; 1136:b 1134:′ 1132:b 1128:a 1126:′ 1124:a 1120:b 1118:( 1116:V 1111:′ 1109:b 1105:a 1103:( 1101:V 1096:′ 1094:a 1080:b 1074:L 1068:a 1055:S 1051:x 1043:S 1039:b 1035:a 1031:S 1020:′ 1002:R 990:a 988:′ 986:a 970:L 958:a 954:a 949:′ 947:a 943:S 939:a 919:R 895:L 883:S 877:. 857:b 851:J 845:a 835:; 815:b 809:R 803:a 793:; 773:b 767:L 761:a 740:a 736:S 728:a 720:S 716:S 696:f 692:f 690:Ø 688:f 684:f 680:f 676:f 672:f 657:a 635:. 633:c 619:) 615:( 613:c 607:) 603:( 595:) 591:( 579:( 567:( 561:b 559:) 555:( 549:b 547:) 545:a 543:( 537:b 535:) 531:( 529:b 521:b 494:c 486:a 478:b 470:a 459:c 455:b 451:S 447:a 443:S 439:S 392:. 366:a 346:a 344:( 342:V 338:b 334:a 330:S 326:a 322:a 320:( 318:V 314:a 312:( 310:V 306:S 299:a 288:x 286:) 282:( 280:x 274:( 262:( 260:x 254:( 252:a 250:) 244:a 234:( 228:a 226:) 222:( 220:a 216:a 208:S 204:x 200:b 196:S 190:. 188:b 180:a 172:b 165:a 160:; 158:a 146:S 142:x 138:S 134:a 126:S 54:a 45:S 41:x 37:S 33:a 25:S

Index

semigroup
Green's relations
J. A. Green
Green's relations
rings
John von Neumann
relations
semigroups
David Rees
Gabriel Thierrin
Paul Dubreil
semigroup
idempotent
group
band
regular band
bicyclic semigroup
full transformation semigroup
Rees matrix semigroup
homomorphic image
inverse semigroup
inverse semigroup
symmetric inverse semigroup
group
principal ideals
ideals
Green's relations
idempotent
inverse semigroup
idempotent

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.