Knowledge

Bicyclic semigroup

Source 📝

1196:. Encyclopedia of Mathematics and Its Applications. Vol. 90. With preface by Jean Berstel and Dominique Perrin (Reprint of the 2002 hardback ed.). Cambridge University Press. p. 459. 110: 1143:
under min and max operations), another set with appropriate properties could appear instead, and the "+", "−" and "max" operations modified accordingly.
61: 1135:
The bicyclic semigroup is the "simplest" example of a bisimple inverse semigroup with identity; there are many others. Where the definition of
84:
There are at least three standard ways of constructing the bicyclic semigroup, and various notations for referring to it. Lyapin called it
533:
uses two appropriately-chosen functions to yield the bicyclic semigroup as a monoid of transformations of the natural numbers. Let
1201: 1139:
from ordered pairs used the class of natural numbers (which is not only an additive semigroup, but also a commutative
1124:
appear down the diagonal, in accordance with the fact that in a regular semigroup with commuting idempotents, each
1157: 428:
It is not entirely obvious that this should be the case – perhaps the hardest task is understanding that
150:. Thus, each semigroup element is a string of those two letters, with the proviso that the subsequence " 73: 1293: 1240:, A. H. Clifford and G. B. Preston. American Mathematical Society, 1961 (volume 1), 1967 (volume 2). 91: 546: 529:
Note that the two definitions given above both satisfy these properties. A third way of deriving
709:). In practice, this means that the bicyclic semigroup can be found in many different contexts. 1030:
are infinitely many copies of the trivial group, each corresponding to one of the idempotents.
32:, it is usually referred to as simply a semigroup. It is perhaps most easily understood as the 824: 1152: 1034: 917: 1211: 159:" does not appear. The semigroup operation is concatenation of strings, which is clearly 8: 137: 49: 1272: 65: 599:
These three functions have the required properties, so the semigroup they generate is
1197: 773: 1207: 627: 313:
originally, with the empty string as the monoid identity, this new construction of
33: 1140: 1026:-related if and only if they are identical. Consequently, the only subgroups of 1250:
Canonical form of elements of an associative system given by defining relations
973: 177: 76:, discovered it independently (without publication) at some point before 1943. 69: 241:
is the semigroup of pairs of natural numbers (including zero), with operation
1287: 1263:
Hollings, C.D. (2007). "Some First Tantalizing Steps into Semigroup Theory".
41: 37: 612: 1189: 358: 160: 125: 45: 17: 1276: 40:
of balanced pairs of parentheses. Thus, it finds common applications in
713: 522:
which is not allowed – so there are infinitely many distinct powers of
301:
so that it is the same object as in the original construction. Just as
25: 221:
The way in which these exponents are constrained suggests that the "
736:
is any natural number (using the ordered pair characterisation of
29: 611:
The bicyclic semigroup has the property that the image of any
229:
structure" can be discarded, leaving only operations on the "
24:
is an algebraic object important for the structure theory of
60:
The first published description of this object was given by
526:. The full proof is given in Clifford and Preston's book. 1170: 831:
is principal: the left and right principal ideals of
701:; otherwise, it is the cyclic semigroup generated by 116:. This article will use the modern style throughout. 94: 1246:, Pierre Antoine Grillet. Marcel Dekker, Inc., 1995. 666:
is a homomorphism) with the possible exception that
1244:
Semigroups: an introduction to the structure theory
1041:is infinitely large; the upper left corner begins: 909:Each of these contains infinitely many others, so 662:will always satisfy the conditions above (because 104: 1285: 1271:. Mathematical Association of America: 331–344. 124:The bicyclic semigroup is the quotient of the 163:. It can then be shown that all elements of 1132:-class must contain exactly one idempotent. 913:does not have minimal left or right ideals. 432:must be infinite. To see this, suppose that 112:; and most recent papers have tended to use 187:. The composition operation simplifies to 1262: 1188: 1176: 119: 436:(say) does not have infinite order, so 357:that satisfies the statements below is 1286: 1182: 788:, in the "weak" semigroup sense that 216: 72:claim that one of them, working with 1254:Leningrad Gos. Ped. Inst. Uch. Zap. 1022:This implies that two elements are 13: 1238:The algebraic theory of semigroups 1108:Each entry represents a singleton 97: 14: 1305: 630:, or it is an isomorphic copy of 332: 1194:Algebraic combinatorics on words 1045: 776:. (This means that each element 772:), the bicyclic semigroup is an 79: 1218: 549:on the natural numbers, where 105:{\displaystyle {\mathcal {C}}} 1: 1252:, Evgenii Sergeevich Lyapin, 1231: 1158:Special classes of semigroups 1120:-classes. The idempotents of 1116:-classes and the columns are 689:). If this is not true, then 606: 297:This is sufficient to define 740:). Since these commute, and 88:; Clifford and Preston used 7: 1146: 361:to the bicyclic semigroup. 28:. Although it is in fact a 10: 1310: 932:), and hence has only one 140:generated by the relation 55: 1112:-class; the rows are the 1163: 547:transformation semigroup 948:relations are given by 685:might turn out to be φ( 345:generated by elements 167:in fact have the form 106: 1259:(1953), pages 45–54 . 1153:Four-spiral semigroup 784:has a unique inverse 622:to another semigroup 337:It can be shown that 120:From a free semigroup 107: 44:, such as describing 1265:Mathematics Magazine 595:− 1 otherwise. 92: 50:associative algebras 697:) is isomorphic to 545:be elements of the 217:From ordered pairs 128:on two generators 102: 66:Alfred H. Clifford 22:bicyclic semigroup 1203:978-0-521-18071-9 1104: 1103: 1008:) if and only if 918:Green's relations 774:inverse semigroup 1301: 1294:Semigroup theory 1280: 1225: 1222: 1216: 1215: 1186: 1180: 1174: 1128:-class and each 1046: 1017: 984: 842: 819: 803: 771: 731: 684: 463: 445: 328: 325:, with identity 324: 320: 175: 158: 149: 111: 109: 108: 103: 101: 100: 34:syntactic monoid 1309: 1308: 1304: 1303: 1302: 1300: 1299: 1298: 1284: 1283: 1234: 1229: 1228: 1223: 1219: 1204: 1187: 1183: 1177:Hollings (2007) 1175: 1171: 1166: 1149: 1035:egg-box diagram 1009: 976: 832: 805: 789: 757: 721: 667: 634:. The elements 609: 455: 437: 335: 326: 322: 318: 317:has generators 219: 178:natural numbers 168: 151: 141: 122: 96: 95: 93: 90: 89: 82: 58: 36:describing the 12: 11: 5: 1307: 1297: 1296: 1282: 1281: 1260: 1247: 1241: 1233: 1230: 1227: 1226: 1217: 1202: 1181: 1168: 1167: 1165: 1162: 1161: 1160: 1155: 1148: 1145: 1106: 1105: 1102: 1101: 1098: 1095: 1092: 1088: 1087: 1084: 1081: 1078: 1074: 1073: 1070: 1067: 1064: 1060: 1059: 1056: 1053: 1050: 1020: 1019: 986: 974:if and only if 936:-class (it is 928:-class (it is 907: 906: 876: 720:are all pairs 608: 605: 597: 596: 578: 564: 520: 519: 498: 497: 426: 425: 413: 401: 382: 334: 333:From functions 331: 295: 294: 218: 215: 214: 213: 121: 118: 99: 81: 78: 70:Gordon Preston 62:Evgenii Lyapin 57: 54: 9: 6: 4: 3: 2: 1306: 1295: 1292: 1291: 1289: 1278: 1274: 1270: 1266: 1261: 1258: 1255: 1251: 1248: 1245: 1242: 1239: 1236: 1235: 1221: 1213: 1209: 1205: 1199: 1195: 1191: 1185: 1179:, p. 332 1178: 1173: 1169: 1159: 1156: 1154: 1151: 1150: 1144: 1142: 1138: 1133: 1131: 1127: 1123: 1119: 1115: 1111: 1099: 1096: 1093: 1090: 1089: 1085: 1082: 1079: 1076: 1075: 1071: 1068: 1065: 1062: 1061: 1057: 1054: 1051: 1048: 1047: 1044: 1043: 1042: 1040: 1036: 1031: 1029: 1025: 1016: 1012: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 967: 963: 959: 955: 951: 950: 949: 947: 943: 939: 935: 931: 927: 924:has only one 923: 919: 914: 912: 904: 900: 896: 892: 888: 884: 880: 877: 874: 870: 866: 862: 858: 854: 850: 846: 845: 844: 840: 836: 830: 826: 821: 818: 814: 811: 808: 802: 798: 795: 792: 787: 783: 779: 775: 770: 766: 763: 760: 755: 751: 747: 743: 739: 735: 729: 725: 719: 715: 710: 708: 704: 700: 696: 692: 688: 682: 678: 674: 670: 665: 661: 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 617: 614: 604: 602: 594: 590: 586: 582: 579: 576: 572: 568: 565: 563: 559: 555: 552: 551: 550: 548: 544: 540: 536: 532: 527: 525: 517: 513: 509: 506: 503: 502: 501: 495: 491: 488: 484: 481: 477: 474: 470: 467: 466: 465: 462: 458: 453: 449: 444: 440: 435: 431: 424: 420: 417: 414: 412: 408: 405: 402: 400: 396: 393: 389: 386: 383: 381: 377: 374: 370: 367: 364: 363: 362: 360: 356: 352: 348: 344: 340: 330: 316: 312: 308: 304: 300: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 243: 242: 240: 236: 232: 228: 224: 211: 208: 204: 201: 197: 194: 190: 189: 188: 186: 182: 179: 174: 171: 166: 162: 157: 154: 147: 144: 139: 135: 131: 127: 117: 115: 87: 77: 75: 71: 67: 63: 53: 51: 47: 43: 42:combinatorics 39: 38:Dyck language 35: 31: 27: 23: 19: 1268: 1264: 1256: 1253: 1249: 1243: 1237: 1220: 1193: 1190:Lothaire, M. 1184: 1172: 1136: 1134: 1129: 1125: 1121: 1117: 1113: 1109: 1107: 1038: 1032: 1027: 1023: 1021: 1014: 1010: 1005: 1001: 997: 993: 989: 981: 977: 969: 965: 961: 957: 953: 945: 941: 937: 933: 929: 925: 921: 916:In terms of 915: 910: 908: 902: 898: 894: 890: 886: 882: 878: 872: 868: 864: 860: 856: 852: 848: 838: 834: 828: 822: 816: 812: 809: 806: 800: 796: 793: 790: 785: 781: 777: 768: 764: 761: 758: 753: 749: 745: 741: 737: 733: 727: 723: 717: 711: 706: 702: 698: 694: 690: 686: 680: 676: 672: 668: 663: 659: 655: 651: 647: 643: 639: 635: 631: 623: 619: 615: 613:homomorphism 610: 600: 598: 592: 588: 584: 580: 574: 570: 566: 561: 557: 553: 542: 538: 534: 530: 528: 523: 521: 515: 511: 507: 504: 499: 493: 489: 486: 482: 479: 475: 472: 468: 460: 456: 451: 447: 442: 438: 433: 429: 427: 422: 418: 415: 410: 406: 403: 398: 394: 391: 387: 384: 379: 375: 372: 368: 365: 354: 350: 346: 342: 338: 336: 314: 310: 306: 302: 298: 296: 290: 286: 285:− min{ 282: 278: 274: 270: 269:− min{ 266: 262: 258: 254: 250: 246: 238: 237:" part. So 234: 230: 226: 222: 220: 209: 206: 202: 199: 195: 192: 184: 180: 172: 169: 164: 155: 152: 145: 142: 133: 129: 123: 113: 85: 83: 80:Construction 59: 46:binary trees 21: 15: 1224:Howie p. 60 752:there is a 748:(for every 714:idempotents 176:, for some 161:associative 126:free monoid 18:mathematics 1232:References 1212:1221.68183 756:such that 626:is either 607:Properties 359:isomorphic 341:semigroup 309:generated 138:congruence 74:David Rees 26:semigroups 897:) : 867:) : 591:= 0, and 587:) = 0 if 446:for some 64:in 1953. 1288:Category 1277:27643058 1192:(2011). 1147:See also 930:bisimple 732:, where 1141:lattice 940:). The 746:regular 454:. Then 136:by the 56:History 1275:  1210:  1200:  1083:(2, 2) 1080:(1, 2) 1077:(0, 2) 1069:(2, 1) 1066:(1, 1) 1063:(0, 1) 1055:(2, 0) 1052:(1, 0) 1049:(0, 0) 938:simple 889:) = {( 823:Every 650:) and 628:cyclic 541:, and 464:, and 353:, and 327:(0, 0) 323:(0, 1) 319:(1, 0) 30:monoid 20:, the 1273:JSTOR 1164:Notes 985:; and 875:} and 825:ideal 658:) of 618:from 261:) = ( 1198:ISBN 1100:... 1086:... 1072:... 1058:... 1037:for 1033:The 944:and 859:= {( 843:are 804:and 712:The 573:) = 560:) = 500:so 450:and 321:and 305:and 233:and 225:and 205:) = 183:and 132:and 68:and 48:and 1208:Zbl 1097:... 1094:... 1091:... 827:of 820:.) 780:of 744:is 716:of 642:), 577:+ 1 339:any 293:}). 277:}, 253:) ( 198:) ( 148:= 1 16:In 1290:: 1269:80 1267:. 1257:89 1206:. 1013:= 1004:, 996:) 992:, 980:= 972:) 968:, 960:) 956:, 920:, 905:}. 901:≥ 893:, 885:, 871:≥ 863:, 855:) 851:, 837:, 815:= 799:= 767:= 726:, 675:) 603:. 537:, 514:= 510:= 492:= 485:= 478:= 471:= 459:= 441:= 421:≠ 409:= 397:= 390:= 378:= 371:= 349:, 329:. 289:, 281:+ 273:, 265:+ 257:, 249:, 52:. 1279:. 1214:. 1137:B 1130:R 1126:L 1122:B 1118:L 1114:R 1110:H 1039:B 1028:B 1024:H 1018:. 1015:d 1011:b 1006:d 1002:c 1000:( 998:L 994:b 990:a 988:( 982:c 978:a 970:d 966:c 964:( 962:R 958:b 954:a 952:( 946:R 942:L 934:J 926:D 922:B 911:B 903:n 899:t 895:t 891:s 887:n 883:m 881:( 879:B 873:m 869:s 865:t 861:s 857:B 853:n 849:m 847:( 841:) 839:n 835:m 833:( 829:B 817:y 813:y 810:x 807:y 801:x 797:x 794:y 791:x 786:y 782:B 778:x 769:x 765:x 762:y 759:x 754:y 750:x 742:B 738:B 734:x 730:) 728:x 724:x 722:( 718:B 707:a 705:( 703:φ 699:B 695:B 693:( 691:φ 687:e 683:) 681:a 679:( 677:φ 673:b 671:( 669:φ 664:φ 660:S 656:e 654:( 652:φ 648:b 646:( 644:φ 640:a 638:( 636:φ 632:B 624:S 620:B 616:φ 601:B 593:n 589:n 585:n 583:( 581:β 575:n 571:n 569:( 567:α 562:n 558:n 556:( 554:ι 543:ι 539:β 535:α 531:B 524:a 518:, 516:e 512:a 508:a 505:b 496:, 494:a 490:e 487:a 483:b 480:a 476:b 473:e 469:b 461:e 457:a 452:k 448:h 443:a 439:a 434:a 430:S 423:e 419:a 416:b 411:e 407:b 404:a 399:b 395:b 392:e 388:e 385:b 380:a 376:a 373:e 369:e 366:a 355:b 351:a 347:e 343:S 315:B 311:B 307:q 303:p 299:B 291:c 287:b 283:b 279:d 275:c 271:b 267:c 263:a 259:d 255:c 251:b 247:a 245:( 239:B 235:b 231:a 227:q 223:p 212:. 210:p 207:q 203:p 200:q 196:p 193:q 191:( 185:b 181:a 173:p 170:q 165:B 156:q 153:p 146:q 143:p 134:q 130:p 114:B 98:C 86:P

Index

mathematics
semigroups
monoid
syntactic monoid
Dyck language
combinatorics
binary trees
associative algebras
Evgenii Lyapin
Alfred H. Clifford
Gordon Preston
David Rees
free monoid
congruence
associative
natural numbers
isomorphic
transformation semigroup
homomorphism
cyclic
idempotents
inverse semigroup
ideal
Green's relations
if and only if
egg-box diagram
lattice
Four-spiral semigroup
Special classes of semigroups
Hollings (2007)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.