Knowledge

Rationalizable strategy

Source đź“ť

297: 357:). When player 2 plays left, then the payoff for player 1 playing the mixed strategy of up and down is 1, when player 2 plays right, the payoff for player 1 playing the mixed strategy is 0.5. Thus regardless of whether player 2 chooses left or right, player 1 gets more from playing this mixed strategy between up and down than if the player were to play the middle strategy. In this case, we should eliminate the middle strategy for player 1 since it's been dominated by the mixed strategy of playing up and down with probability ( 404: 1003:. Consider the game on the right with payoffs of the column player omitted for simplicity. Notice that "b" is not strictly dominated by either "t" or "m" in the pure strategy sense, but it is still dominated by a strategy that would mix "t" and "m" with probability of each equal to 1/2. This is due to the fact that given any belief about the action of the column player, the mixed strategy will always yield higher expected payoff. This implies that "b" is not rationalizable. 204: 251: 199: 194: 209: 266: 186: 166:
removing dominated strategies. In the first step, at most one dominated strategy is removed from the strategy space of each of the players since no rational player would ever play these strategies. This results in a new, smaller game. Some strategies—that were not dominated before—may be dominated in
174:
There are two versions of this process. One version involves only eliminating strictly dominated strategies. If, after completing this process, there is only one strategy for each player remaining, that strategy set is the unique Nash equilibrium. Moreover, iterated elimination of strictly dominated
1010:
to either "L" or "R" or any mix of the two. This is because an action that is not rationalizable can never be a best response to any opponent's strategy (pure or mixed). This would imply another version of the previous method of finding rationalizable strategies as those that survive the iterated
291:
There are instances when there is no pure strategy that dominates another pure strategy, but a mixture of two or more pure strategies can dominate another strategy. This is called Strictly Dominant Mixed Strategies. Some authors allow for elimination of strategies dominated by a mixed strategy in
113:. Both require players to respond optimally to some belief about their opponents' actions, but Nash equilibrium requires these beliefs to be correct, while rationalizability does not. Rationalizability was first defined, independently, by Bernheim (1984) and Pearce (1984). 1014:
In games with more than two players, however, there may be strategies that are not strictly dominated, but which can never be the best response. By the iterated elimination of all such strategies one can find the rationalizable strategies for a multiplayer game.
1023:
It can be easily proved that a Nash equilibrium is a rationalizable equilibrium; however, the converse is not true. Some rationalizable equilibria are not Nash equilibria. This makes the rationalizability concept a generalization of Nash equilibrium concept.
167:
the smaller game. The first step is repeated, creating a new even smaller game, and so on. The process stops when no dominated strategy is found for any player. This process is valid since it is assumed that rationality among players is
171:, that is, each player knows that the rest of the players are rational, and each player knows that the rest of the players know that he knows that the rest of the players are rational, and so on ad infinitum (see Aumann, 1976). 998:
Conversely, for two-player games, the set of all rationalizable strategies can be found by iterated elimination of strictly dominated strategies. For this method to hold however, one also needs to consider strict domination by
235:. However, unlike the first process, elimination of weakly dominated strategies may eliminate some Nash equilibria. As a result, the Nash equilibrium found by eliminating weakly dominated strategies may not be the 175:
strategies is path independent. That is, if at any point in the process there are multiple strictly dominated strategies, then it doesn't matter for the end result which strategies we remove first.
400:
We can demonstrate the same methods on a more complex game and solve for the rational strategies. In this scenario, the blue coloring represents the dominating numbers in the particular strategy.
136:, i.e. strategies that "never make sense" (are never a best reply to any belief about the opponents' actions). The motivation for this step is no rational player would ever choose such actions. 231:
Another version involves eliminating both strictly and weakly dominated strategies. If, at the end of the process, there is a single strategy for each player, this strategy set is also a
106:. A strategy is rationalizable if there exists some possible set of beliefs both players could have about each other's actions, that would still result in the strategy being played. 162:
The iterated elimination (or deletion, or removal) of dominated strategies (also denominated as IESDS, or IDSDS, or IRSDS) is one common technique for solving games that involves
218:
Of the remaining strategies (see IESDS Figure 2), Z is strictly dominated by Y and X for Player 2. Therefore, Player 2 will never play strategy Z. Player 1 knows this.
309:
In this scenario, for player 1, there is no pure strategy that dominates another pure strategy. Let's define the probability of player 1 playing up as p, and let p =
154:
In a game with finitely many actions, this process always terminates and leaves a non-empty set of actions for each player. These are the rationalizable actions.
224:
Of the remaining strategies (see IESDS Figure 4), Y is strictly dominated by X for Player 2. Therefore, Player 2 will never play Y. Player 1 knows this.
221:
Of the remaining strategies (see IESDS Figure 3), B is strictly dominated by A for Player 1. Therefore, Player 1 will never play B. Player 2 knows this.
239:
Nash equilibrium. (In some games, if we remove weakly dominated strategies in a different order, we may end up with a different Nash equilibrium.)
528:
as tester values. The argument for mixed strategy dominance can be made if there is at least one mixed strategy that allows for dominance.
279:
In any case, if by iterated elimination of dominated strategies there is only one strategy left for each player, the game is called a
227:
Only one rationalizable strategy is left {A,X} which results in a payoff of (10,4). This is the single Nash Equilibrium for this game.
272:
O is strictly dominated by N for Player 1. Therefore, Player 1 will never play strategy O. Player 2 knows this. (see IESDS Figure 6)
257:
O is strictly dominated by N for Player 1. Therefore, Player 1 will never play strategy O. Player 2 knows this. (see IESDS Figure 5)
215:
C is strictly dominated by A for Player 1. Therefore, Player 1 will never play strategy C. Player 2 knows this. (see IESDS Figure 1)
1307: 2206: 640:
Set up the inequality to determine whether the mixed strategy will dominate the pure strategy based on expected payoffs.
2023: 1558: 1356: 722:
Z will dominate pure strategy X for Player 2, and thus X can be eliminated from the rationalizable strategies for P2.
1842: 1661: 1189: 1463: 1932: 1802: 1473: 1641: 1983: 1401: 1376: 1135:(beginning the cycle again). This provides an infinite set of consistent beliefs that results in row playing 46: 2333: 1759: 1513: 1503: 1438: 1553: 1533: 1160: 2267: 2018: 1988: 1646: 1488: 1483: 98:. It is the most permissive possible solution concept that still requires both players to be at least 2303: 2226: 1962: 1518: 1443: 1300: 2318: 2051: 1937: 1734: 1528: 1346: 1203: 275:
T is weakly dominated by U for Player 2. If Player 2 chooses U, then the final equilibrium is (N,U)
260:
U is weakly dominated by T for Player 2. If Player 2 chooses T, then the final equilibrium is (N,T)
168: 2121: 2323: 1922: 1892: 1548: 1336: 296: 2348: 2328: 2308: 2257: 1927: 1832: 1691: 1636: 1568: 1538: 1458: 1386: 1000: 1280: 1807: 1792: 1366: 923: 846: 2369: 2141: 2126: 2013: 2008: 1912: 1897: 1862: 1827: 1426: 1371: 1293: 103: 895:
This provides an infinite chain of consistent beliefs that result in the players playing (
8: 2298: 1917: 1867: 1704: 1631: 1611: 1468: 1351: 1165: 133: 1957: 2277: 2136: 1967: 1947: 1797: 1676: 1581: 1508: 1453: 1184:
Joel., Watson,. Strategy : an introduction to game theory (Second ed.). New York.
2262: 2231: 2186: 2081: 1952: 1907: 1882: 1812: 1686: 1616: 1606: 1498: 1448: 1396: 1222: 1185: 798: 748: 735: 829:
if it is reasonable for the column player to believe that the row player could play
2343: 2338: 2272: 2236: 2216: 2176: 2146: 2101: 2056: 2041: 1998: 1852: 1493: 1430: 1416: 1381: 1272:
Pearce, D. (1984) Rationalizable Strategic Behavior and the Problem of Perfection.
1218: 1077: 1011:
elimination of strategies that are never a best response (in pure or mixed sense).
325:. We can set a mixed strategy where player 1 plays up and down with probabilities ( 232: 139:
Remove all actions which are never a best reply to any belief about the opponents'
122: 110: 91: 79: 56: 27: 496:
Z must be greater than the expected payoff for playing pure strategy X, assigning
102:
and know the other players are also somewhat rational, i.e. that they do not play
2241: 2201: 2156: 2071: 2066: 1787: 1739: 1626: 1391: 1361: 1331: 2106: 157: 2181: 2171: 2161: 2096: 2086: 2076: 2061: 1857: 1837: 1822: 1817: 1777: 1744: 1729: 1724: 1714: 1523: 934:
is not a best response to any strategy by the column player. For this reason,
2363: 2221: 2211: 2166: 2151: 2131: 1902: 1877: 1749: 1719: 1709: 1696: 1601: 1543: 1478: 1411: 1097: 1080:
pictured to the right. In this game the only Nash equilibrium is row playing
1007: 818: 802: 403: 2196: 2191: 2046: 1621: 911:) a rationalizable pair of actions. A similar process can be repeated for ( 2313: 2116: 2111: 2091: 1887: 1872: 1681: 1651: 1586: 1576: 1406: 1341: 1317: 1262: 1026: 940: 745: 95: 31: 1285: 843: 1942: 1596: 922:
As an example where not all strategies are rationalizable, consider a
1847: 1767: 1591: 163: 208: 203: 2282: 1782: 99: 2003: 1993: 1671: 265: 250: 198: 193: 125:, the rationalizable set of actions can be computed as follows: 150:
Continue the process until no further actions can be eliminated.
809:
if he can reasonably believe that the column player could play
1772: 1279:
Ratcliff, J. (1992–1997) lecture notes on game theory, §2.2:
1123:
if it is reasonable for her to believe that column will play
1107:
if it is reasonable for her to believe that column will play
158:
Iterated elimination of strictly dominated strategies (IESDS)
825:. He can reasonably believe that the column player can play 185: 1131:
if it is reasonable for him to believe that row will play
837:
if it is reasonable for her to believe that he could play
143:
actions—this second step is justified because each player
636:
Expected average payoff of pure strategy X: (1+1+3) = 5
286: 1115:
if its reasonable for him to believe that row will play
1018: 1254:
Bernheim, D. (1984) Rationalizable Strategic Behavior.
738:
strategy for Players 1 and 2 is then (M,Z) or (3,5).
728:
For player 2, Y is dominated by the pure strategy Z.
725:
For Player 1, U is dominated by the pure strategy D.
429:For Player 2, X is dominated by the mixed strategy 1204:"On the order of eliminating dominated strategies" 1139:. A similar argument can be given for row playing 926:pictured to the left. Row player would never play 2361: 1201: 1103:Consider the following reasoning: row can play 180:Strict Dominance Deletion Step-by-Step Example: 129:Start with the full action set for each player. 109:Rationalizability is a broader concept than a 1301: 244:Weak Dominance Deletion Step-by-Step Example: 402: 184: 1308: 1294: 1281:"Iterated Dominance and Rationalizability" 1088:with equal probability and column playing 805:is to the right). The row player can play 295: 264: 249: 207: 202: 197: 192: 1315: 1202:Gilboa, I.; Kalai, E.; Zemel, E. (1990). 741: 731:This leaves M dominating D for Player 1. 464:The expected payoff for playing strategy 1235: 2362: 1229: 287:Iterated elimination by mixed strategy 1289: 1096:with equal probability. However, all 1019:Rationalizability and Nash equilibria 833:. She can believe that he will play 147:that the other players are rational. 13: 1357:First-player and second-player win 14: 2381: 1100:in this game are rationalizable. 1076:As an example, consider the game 1027: 844: 746: 1464:Coalition-proof Nash equilibrium 1143:, and for column playing either 16:Solution concept in game theory 1474:Evolutionarily stable strategy 1195: 1178: 1: 1402:Simultaneous action selection 1248: 116: 47:Dominant strategy equilibrium 2334:List of games in game theory 1514:Quantal response equilibrium 1504:Perfect Bayesian equilibrium 1439:Bayes correlated equilibrium 1223:10.1016/0167-6377(90)90046-8 1171: 7: 1803:Optional prisoner's dilemma 1534:Self-confirming equilibrium 1211:Operations Research Letters 1161:Self-confirming equilibrium 1154: 601:Expected average payoff of 566:Expected average payoff of 10: 2386: 2268:Principal variation search 1984:Aumann's agreement theorem 1647:Strategy-stealing argument 1559:Trembling hand equilibrium 1489:Markov perfect equilibrium 1484:Mertens-stable equilibrium 2304:Combinatorial game theory 2291: 2250: 2032: 1976: 1963:Princess and monster game 1758: 1660: 1567: 1519:Quasi-perfect equilibrium 1444:Bayesian Nash equilibrium 1425: 1324: 75: 71:D. Bernheim and D. Pearce 67: 62: 52: 42: 37: 26: 21: 2319:Evolutionary game theory 2052:Antoine Augustin Cournot 1938:Guess 2/3 of the average 1735:Strictly determined game 1529:Satisfaction equilibrium 1347:Escalation of commitment 1236:Gibbons, Robert (1992). 2324:Glossary of game theory 1923:Stackelberg competition 1549:Strong Nash equilibrium 1238:A Primer in Game Theory 1006:Moreover, "b" is not a 938:is not rationalizable. 2349:Tragedy of the commons 2329:List of game theorists 2309:Confrontation analysis 2019:Sprague–Grundy theorem 1539:Sequential equilibrium 1459:Correlated equilibrium 742:Constraints on beliefs 426:Step-by-step solving: 407: 189: 2122:Jean-François Mertens 1269:Cambridge: MIT Press. 563:gets the following: 406: 188: 2251:Search optimizations 2127:Jennifer Tour Chayes 2014:Revelation principle 2009:Purification theorem 1948:Nash bargaining game 1913:Bertrand competition 1898:El Farol Bar problem 1863:Electronic mail game 1828:Lewis signaling game 1372:Hierarchy of beliefs 1261:Fudenberg, Drew and 134:dominated strategies 104:dominated strategies 2299:Bounded rationality 1918:Cournot competition 1868:Rock paper scissors 1843:Battle of the sexes 1833:Volunteer's dilemma 1705:Perfect information 1632:Dominant strategies 1469:Epsilon-equilibrium 1352:Extensive-form game 1166:Strategic dominance 1031: 850: 752: 2278:Paranoid algorithm 2258:Alpha–beta pruning 2137:John Maynard Smith 1968:Rendezvous problem 1808:Traveler's dilemma 1798:Gift-exchange game 1793:Prisoner's dilemma 1710:Large Poisson game 1677:Bargaining problem 1582:Backward induction 1554:Subgame perfection 1509:Proper equilibrium 1127:. Column can play 1111:. Column can play 924:prisoner's dilemma 847:Prisoner's Dilemma 797:Consider a simple 408: 281:dominance-solvable 190: 2357: 2356: 2263:Aspiration window 2232:Suzanne Scotchmer 2187:Oskar Morgenstern 2082:Donald B. Gillies 2024:Zermelo's theorem 1953:Induction puzzles 1908:Fair cake-cutting 1883:Public goods game 1813:Coordination game 1687:Intransitive game 1617:Forward induction 1499:Pareto efficiency 1479:Gibbs equilibrium 1449:Berge equilibrium 1397:Simultaneous game 1240:. pp. 32–33. 1074: 1073: 996: 995: 893: 892: 799:coordination game 795: 794: 749:Coordination game 100:somewhat rational 88:Rationalizability 85: 84: 22:Rationalizability 2377: 2344:Topological game 2339:No-win situation 2237:Thomas Schelling 2217:Robert B. Wilson 2177:Merrill M. Flood 2147:John von Neumann 2057:Ariel Rubinstein 2042:Albert W. Tucker 1893:War of attrition 1853:Matching pennies 1494:Nash equilibrium 1417:Mechanism design 1382:Normal-form game 1337:Cooperative game 1310: 1303: 1296: 1287: 1286: 1242: 1241: 1233: 1227: 1226: 1208: 1199: 1193: 1182: 1078:matching pennies 1032: 1029:Matching pennies 1001:mixed strategies 941: 851: 753: 721: 719: 718: 715: 712: 705: 703: 702: 699: 696: 678: 676: 675: 672: 669: 659: 657: 656: 653: 650: 632: 630: 629: 626: 623: 616: 614: 613: 610: 607: 597: 595: 594: 591: 588: 581: 579: 578: 575: 572: 562: 560: 559: 556: 553: 546: 544: 543: 540: 537: 527: 525: 524: 521: 518: 511: 509: 508: 505: 502: 495: 493: 492: 489: 486: 479: 477: 476: 473: 470: 460: 458: 457: 454: 451: 444: 442: 441: 438: 435: 388: 386: 385: 382: 379: 372: 370: 369: 366: 363: 356: 354: 353: 350: 347: 340: 338: 337: 334: 331: 324: 322: 321: 318: 315: 299: 268: 253: 233:Nash equilibrium 211: 206: 201: 196: 169:common knowledge 123:normal-form game 121:Starting with a 111:Nash equilibrium 92:solution concept 80:Matching pennies 57:Nash equilibrium 28:Solution concept 19: 18: 2385: 2384: 2380: 2379: 2378: 2376: 2375: 2374: 2360: 2359: 2358: 2353: 2287: 2273:max^n algorithm 2246: 2242:William Vickrey 2202:Reinhard Selten 2157:Kenneth Binmore 2072:David K. Levine 2067:Daniel Kahneman 2034: 2028: 2004:Negamax theorem 1994:Minimax theorem 1972: 1933:Diner's dilemma 1788:All-pay auction 1754: 1740:Stochastic game 1692:Mean-field game 1663: 1656: 1627:Markov strategy 1563: 1429: 1421: 1392:Sequential game 1377:Information set 1362:Game complexity 1332:Congestion game 1320: 1314: 1251: 1246: 1245: 1234: 1230: 1206: 1200: 1196: 1183: 1179: 1174: 1157: 1119:. Row can play 1098:pure strategies 1021: 903:). This makes ( 744: 716: 713: 710: 709: 707: 700: 697: 694: 693: 691: 690:Mixed strategy 684: 680: 673: 670: 667: 666: 664: 661: 654: 651: 648: 647: 645: 639: 627: 624: 621: 620: 618: 611: 608: 605: 604: 602: 592: 589: 586: 585: 583: 576: 573: 570: 569: 567: 557: 554: 551: 550: 548: 541: 538: 535: 534: 532: 522: 519: 516: 515: 513: 506: 503: 500: 499: 497: 490: 487: 484: 483: 481: 474: 471: 468: 467: 465: 455: 452: 449: 448: 446: 439: 436: 433: 432: 430: 425: 422: 419: 416: 413: 410: 392: 383: 380: 377: 376: 374: 367: 364: 361: 360: 358: 351: 348: 345: 344: 342: 335: 332: 329: 328: 326: 319: 316: 313: 312: 310: 289: 160: 119: 17: 12: 11: 5: 2383: 2373: 2372: 2355: 2354: 2352: 2351: 2346: 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2295: 2293: 2289: 2288: 2286: 2285: 2280: 2275: 2270: 2265: 2260: 2254: 2252: 2248: 2247: 2245: 2244: 2239: 2234: 2229: 2224: 2219: 2214: 2209: 2207:Robert Axelrod 2204: 2199: 2194: 2189: 2184: 2182:Olga Bondareva 2179: 2174: 2172:Melvin Dresher 2169: 2164: 2162:Leonid Hurwicz 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2097:Harold W. Kuhn 2094: 2089: 2087:Drew Fudenberg 2084: 2079: 2077:David M. Kreps 2074: 2069: 2064: 2062:Claude Shannon 2059: 2054: 2049: 2044: 2038: 2036: 2030: 2029: 2027: 2026: 2021: 2016: 2011: 2006: 2001: 1999:Nash's theorem 1996: 1991: 1986: 1980: 1978: 1974: 1973: 1971: 1970: 1965: 1960: 1955: 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1880: 1875: 1870: 1865: 1860: 1858:Ultimatum game 1855: 1850: 1845: 1840: 1838:Dollar auction 1835: 1830: 1825: 1823:Centipede game 1820: 1815: 1810: 1805: 1800: 1795: 1790: 1785: 1780: 1778:Infinite chess 1775: 1770: 1764: 1762: 1756: 1755: 1753: 1752: 1747: 1745:Symmetric game 1742: 1737: 1732: 1730:Signaling game 1727: 1725:Screening game 1722: 1717: 1715:Potential game 1712: 1707: 1702: 1694: 1689: 1684: 1679: 1674: 1668: 1666: 1658: 1657: 1655: 1654: 1649: 1644: 1642:Mixed strategy 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1604: 1599: 1594: 1589: 1584: 1579: 1573: 1571: 1565: 1564: 1562: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1524:Risk dominance 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1435: 1433: 1423: 1422: 1420: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1379: 1374: 1369: 1367:Graphical game 1364: 1359: 1354: 1349: 1344: 1339: 1334: 1328: 1326: 1322: 1321: 1313: 1312: 1305: 1298: 1290: 1284: 1283: 1277: 1276:52: 1029–1050. 1270: 1259: 1258:52: 1007–1028. 1250: 1247: 1244: 1243: 1228: 1194: 1176: 1175: 1173: 1170: 1169: 1168: 1163: 1156: 1153: 1072: 1071: 1068: 1065: 1059: 1058: 1055: 1052: 1046: 1045: 1040: 1035: 1020: 1017: 994: 993: 990: 987: 981: 980: 977: 974: 968: 967: 964: 961: 955: 954: 949: 944: 891: 890: 887: 884: 878: 877: 874: 871: 865: 864: 859: 854: 793: 792: 789: 786: 780: 779: 776: 773: 767: 766: 761: 756: 743: 740: 736:rationalizable 687:4 + 5 > 5 682: 663: 644: 288: 285: 277: 276: 273: 262: 261: 258: 229: 228: 225: 222: 219: 216: 159: 156: 152: 151: 148: 137: 130: 118: 115: 83: 82: 77: 73: 72: 69: 65: 64: 60: 59: 54: 50: 49: 44: 40: 39: 35: 34: 24: 23: 15: 9: 6: 4: 3: 2: 2382: 2371: 2368: 2367: 2365: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2296: 2294: 2292:Miscellaneous 2290: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2255: 2253: 2249: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2227:Samuel Bowles 2225: 2223: 2222:Roger Myerson 2220: 2218: 2215: 2213: 2212:Robert Aumann 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2167:Lloyd Shapley 2165: 2163: 2160: 2158: 2155: 2153: 2152:Kenneth Arrow 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2132:John Harsanyi 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2102:Herbert Simon 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2039: 2037: 2031: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1981: 1979: 1975: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1903:Fair division 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1878:Dictator game 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1765: 1763: 1761: 1757: 1751: 1750:Zero-sum game 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1720:Repeated game 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1699: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1669: 1667: 1665: 1659: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1637:Pure strategy 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1602:De-escalation 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1574: 1572: 1570: 1566: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1544:Shapley value 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1436: 1434: 1432: 1428: 1424: 1418: 1415: 1413: 1412:Succinct game 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1329: 1327: 1323: 1319: 1311: 1306: 1304: 1299: 1297: 1292: 1291: 1288: 1282: 1278: 1275: 1271: 1268: 1264: 1260: 1257: 1253: 1252: 1239: 1232: 1224: 1220: 1216: 1212: 1205: 1198: 1191: 1190:9780393929348 1187: 1181: 1177: 1167: 1164: 1162: 1159: 1158: 1152: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1110: 1106: 1101: 1099: 1095: 1091: 1087: 1083: 1079: 1069: 1066: 1064: 1061: 1060: 1056: 1053: 1051: 1048: 1047: 1044: 1041: 1039: 1036: 1034: 1033: 1030: 1025: 1016: 1012: 1009: 1008:best response 1004: 1002: 991: 988: 986: 983: 982: 978: 975: 973: 970: 969: 965: 962: 960: 957: 956: 953: 950: 948: 945: 943: 942: 939: 937: 933: 929: 925: 920: 918: 914: 910: 906: 902: 898: 888: 885: 883: 880: 879: 875: 872: 870: 867: 866: 863: 860: 858: 855: 853: 852: 849: 848: 842: 840: 836: 832: 828: 824: 820: 819:best response 816: 812: 808: 804: 803:payoff matrix 800: 790: 787: 785: 782: 781: 777: 774: 772: 769: 768: 765: 762: 760: 757: 755: 754: 751: 750: 739: 737: 732: 729: 726: 723: 688: 685: 641: 637: 634: 633:(0+5+5) = 5 599: 598:(4+0+4) = 4 564: 531:Testing with 529: 462: 427: 423: 420: 417: 414: 411: 405: 401: 398: 397: 396: 390: 307: 306: 305: 300: 298: 293: 284: 282: 274: 271: 270: 269: 267: 259: 256: 255: 254: 252: 247: 246: 245: 240: 238: 234: 226: 223: 220: 217: 214: 213: 212: 210: 205: 200: 195: 187: 183: 182: 181: 176: 172: 170: 165: 155: 149: 146: 142: 138: 135: 131: 128: 127: 126: 124: 114: 112: 107: 105: 101: 97: 93: 89: 81: 78: 74: 70: 66: 61: 58: 55: 51: 48: 45: 41: 36: 33: 29: 25: 20: 2197:Peyton Young 2192:Paul Milgrom 2107:HervĂ© Moulin 2047:Amos Tversky 1989:Folk theorem 1700:-player game 1697: 1622:Grim trigger 1274:Econometrica 1273: 1267:Game Theory. 1266: 1256:Econometrica 1255: 1237: 1231: 1217:(2): 85–89. 1214: 1210: 1197: 1180: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1104: 1102: 1093: 1089: 1085: 1081: 1075: 1062: 1049: 1042: 1037: 1028: 1022: 1013: 1005: 997: 984: 971: 958: 951: 946: 935: 931: 927: 921: 916: 912: 908: 904: 900: 896: 894: 881: 868: 861: 856: 845: 838: 834: 830: 826: 822: 814: 810: 806: 796: 783: 770: 763: 758: 747: 733: 730: 727: 724: 689: 686: 642: 638: 635: 617:Strategy Z: 600: 582:Strategy Y: 565: 530: 463: 428: 424: 421: 418: 415: 412: 409: 399: 394: 393: 391: 308: 303: 302: 301: 294: 290: 280: 278: 263: 248: 243: 242: 241: 236: 230: 191: 179: 178: 177: 173: 161: 153: 144: 140: 120: 108: 87: 86: 63:Significance 38:Relationship 2370:Game theory 2314:Coopetition 2117:Jean Tirole 2112:John Conway 2092:Eric Maskin 1888:Blotto game 1873:Pirate game 1682:Global game 1652:Tit for tat 1587:Bid shading 1577:Appeasement 1427:Equilibrium 1407:Solved game 1342:Determinacy 1325:Definitions 1318:game theory 1263:Jean Tirole 164:iteratively 132:Remove all 96:game theory 68:Proposed by 53:Superset of 32:game theory 1958:Trust game 1943:Kuhn poker 1612:Escalation 1607:Deterrence 1597:Cheap talk 1569:Strategies 1387:Preference 1316:Topics of 1249:References 395:Example 2: 304:Example 1: 292:this way. 117:Definition 2142:John Nash 1848:Stag hunt 1592:Collusion 1172:Footnotes 734:The only 141:remaining 43:Subset of 2364:Category 2283:Lazy SMP 1977:Theorems 1928:Deadlock 1783:Checkers 1664:of games 1431:concepts 1155:See also 930:, since 813:, since 2035:figures 1818:Chicken 1672:Auction 1662:Classes 1265:(1993) 841:, etc. 720:⁠ 708:⁠ 704:⁠ 692:⁠ 677:⁠ 665:⁠ 658:⁠ 646:⁠ 631:⁠ 619:⁠ 615:⁠ 603:⁠ 596:⁠ 584:⁠ 580:⁠ 568:⁠ 561:⁠ 549:⁠ 545:⁠ 533:⁠ 526:⁠ 514:⁠ 510:⁠ 498:⁠ 494:⁠ 482:⁠ 478:⁠ 466:⁠ 459:⁠ 447:⁠ 443:⁠ 431:⁠ 387:⁠ 375:⁠ 371:⁠ 359:⁠ 355:⁠ 343:⁠ 339:⁠ 327:⁠ 323:⁠ 311:⁠ 76:Example 1188:  1070:1, -1 1067:-1, 1 1057:-1, 1 1054:1, -1 706:Y and 445:Y and 283:game. 1773:Chess 1760:Games 1207:(PDF) 992:1, - 989:1, - 979:3, - 976:0, - 966:0, - 963:3, - 889:1, 1 886:3, 0 876:0, 3 873:2, 2 817:is a 801:(the 791:1, 1 788:0, 0 778:0, 0 775:1, 1 145:knows 90:is a 1454:Core 1186:ISBN 1092:and 1084:and 547:and 512:and 480:Y + 461:Z. 237:only 2033:Key 1219:doi 1147:or 919:). 821:to 681:â©Ľ u 662:+ u 389:). 94:in 30:in 2366:: 1768:Go 1213:. 1209:. 1151:. 915:, 907:, 899:, 1698:n 1309:e 1302:t 1295:v 1225:. 1221:: 1215:9 1192:. 1149:T 1145:H 1141:t 1137:h 1133:h 1129:T 1125:T 1121:t 1117:t 1113:H 1109:H 1105:h 1094:T 1090:H 1086:t 1082:h 1063:t 1050:h 1043:T 1038:H 985:b 972:m 959:t 952:R 947:L 936:c 932:c 928:c 917:B 913:b 909:A 905:a 901:A 897:a 882:d 869:c 862:D 857:C 839:a 835:a 831:a 827:A 823:A 815:a 811:A 807:a 784:b 771:a 764:B 759:A 717:2 714:/ 711:1 701:2 698:/ 695:1 683:X 679:Z 674:2 671:/ 668:1 660:Y 655:2 652:/ 649:1 643:u 628:2 625:/ 622:1 612:2 609:/ 606:1 593:2 590:/ 587:1 577:2 574:/ 571:1 558:2 555:/ 552:1 542:2 539:/ 536:1 523:2 520:/ 517:1 507:2 504:/ 501:1 491:2 488:/ 485:1 475:2 472:/ 469:1 456:2 453:/ 450:1 440:2 437:/ 434:1 384:2 381:/ 378:1 373:, 368:2 365:/ 362:1 352:2 349:/ 346:1 341:, 336:2 333:/ 330:1 320:2 317:/ 314:1

Index

Solution concept
game theory
Dominant strategy equilibrium
Nash equilibrium
Matching pennies
solution concept
game theory
somewhat rational
dominated strategies
Nash equilibrium
normal-form game
dominated strategies
iteratively
common knowledge





Nash equilibrium




rationalizable
Coordination game
coordination game
payoff matrix
best response
Prisoner's Dilemma

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑