Knowledge

Ran space

Source 📝

236: 115: 546: 308: 834: 759: 699: 365: 68: 466: 618: 583: 663: 411: 727: 638: 857: 231:{\displaystyle \{S\in \operatorname {Ran} (U_{1}\cup \dots \cup U_{m})\mid S\cap U_{1}\neq \emptyset ,\dots ,S\cap U_{m}\neq \emptyset \}} 98: 936: 474: 1014: 250: 807: 732: 672: 338: 41: 1035: 987: 430: 372: 322: 378: 864:. Via this construction, one also obtains the topological chiral homology with coefficients in 368: 928: 592: 557: 920: 643: 549: 414: 314: 712: 623: 8: 912: 869: 785: 329: 972: 94: 932: 916: 90: 32: 1003: 968: 921: 881: 778: 762: 1029: 242: 83: 245: 20: 852:
is, roughly, a family of commutative algebras parametrized by points in
586: 71: 781: 777:
A theorem of Beilinson and Drinfeld states that the Ran space of a
469: 977: 801: 109:
In general, the topology of the Ran space is generated by sets
75: 971:(2012). "Contractibility of the space of rational maps". 729:. A theorem of Beilinson and Drinfeld continues to hold: 995:
Tamagawa Numbers via Nonabelian Poincare Duality (282y)
810: 735: 715: 675: 646: 626: 595: 560: 477: 433: 381: 341: 253: 118: 44: 836:, then its space of global sections is called the 828: 753: 721: 693: 657: 632: 612: 577: 540: 460: 405: 359: 302: 230: 62: 911: 1027: 988:"Homology and Cohomology of Stacks (Lecture 7)" 791: 225: 119: 868:. The construction is a generalization of 541:{\displaystyle (R,S,\mu )\to (R',S',\mu ')} 1019:Algebraic Topology: A Guide to Literature 976: 967: 927:. American Mathematical Society. p.  313:There is an analog of a Ran space for a 303:{\displaystyle U_{i}\subset X,i=1,...,m} 829:{\displaystyle \operatorname {Ran} (M)} 754:{\displaystyle \operatorname {Ran} (X)} 694:{\displaystyle \operatorname {Ran} (X)} 360:{\displaystyle \operatorname {Ran} (X)} 70:whose underlying set is the set of all 63:{\displaystyle \operatorname {Ran} (X)} 1028: 1001: 985: 951: 900: 413:consisting of a finitely generated 13: 1002:Lurie, Jacob (18 September 2017). 222: 191: 14: 1047: 986:Lurie, Jacob (19 February 2014). 1015:"Exponential space と Ran space" 945: 905: 894: 823: 817: 748: 742: 688: 682: 599: 564: 535: 502: 499: 496: 478: 461:{\displaystyle \mu :S\to X(R)} 455: 449: 443: 400: 382: 354: 348: 166: 134: 57: 51: 1: 961: 772: 104: 701:is a nonempty finite set of 97:. The notion is named after 7: 875: 838:topological chiral homology 792:Topological chiral homology 10: 1052: 406:{\displaystyle (R,S,\mu )} 887: 709:"with labels" given by 613:{\displaystyle S\to S'} 578:{\displaystyle R\to R'} 323:quasi-projective scheme 38:is a topological space 830: 755: 723: 695: 659: 634: 614: 579: 542: 462: 407: 361: 304: 232: 64: 844:with coefficients in 831: 756: 724: 696: 660: 658:{\displaystyle \mu '} 635: 615: 580: 553:-algebra homomorphism 543: 463: 408: 362: 305: 233: 65: 913:Beilinson, Alexander 808: 733: 722:{\displaystyle \mu } 713: 705:-rational points of 673: 644: 633:{\displaystyle \mu } 624: 593: 558: 475: 431: 379: 339: 251: 116: 42: 870:Hochschild homology 786:weakly contractible 620:that commutes with 1036:Topological spaces 954:, Theorem 5.5.3.11 917:Drinfeld, Vladimir 858:factorizable sheaf 856:, then there is a 826: 751: 719: 691: 655: 630: 610: 575: 538: 458: 427:and a map of sets 403: 357: 300: 228: 95:Hausdorff distance 93:is induced by the 60: 969:Gaitsgory, Dennis 804:on the Ran space 423:, a nonempty set 33:topological space 16:Topological space 1043: 1022: 1010: 1008: 1004:"Higher Algebra" 998: 992: 982: 980: 955: 949: 943: 942: 926: 909: 903: 898: 835: 833: 832: 827: 760: 758: 757: 752: 728: 726: 725: 720: 700: 698: 697: 692: 664: 662: 661: 656: 654: 639: 637: 636: 631: 619: 617: 616: 611: 609: 584: 582: 581: 576: 574: 547: 545: 544: 539: 534: 523: 512: 467: 465: 464: 459: 412: 410: 409: 404: 366: 364: 363: 358: 309: 307: 306: 301: 263: 262: 237: 235: 234: 229: 218: 217: 187: 186: 165: 164: 146: 145: 69: 67: 66: 61: 1051: 1050: 1046: 1045: 1044: 1042: 1041: 1040: 1026: 1025: 1013: 1006: 990: 964: 959: 958: 950: 946: 939: 923:Chiral algebras 910: 906: 899: 895: 890: 882:Chiral homology 878: 809: 806: 805: 794: 775: 734: 731: 730: 714: 711: 710: 674: 671: 670: 647: 645: 642: 641: 625: 622: 621: 602: 594: 591: 590: 567: 559: 556: 555: 527: 516: 505: 476: 473: 472: 432: 429: 428: 380: 377: 376: 340: 337: 336: 258: 254: 252: 249: 248: 213: 209: 182: 178: 160: 156: 141: 137: 117: 114: 113: 107: 43: 40: 39: 17: 12: 11: 5: 1049: 1039: 1038: 1024: 1023: 1011: 999: 983: 963: 960: 957: 956: 944: 937: 904: 892: 891: 889: 886: 885: 884: 877: 874: 860:associated to 825: 822: 819: 816: 813: 793: 790: 774: 771: 769:is connected. 750: 747: 744: 741: 738: 718: 690: 687: 684: 681: 678: 665:. Roughly, an 653: 650: 629: 608: 605: 601: 598: 573: 570: 566: 563: 537: 533: 530: 526: 522: 519: 515: 511: 508: 504: 501: 498: 495: 492: 489: 486: 483: 480: 457: 454: 451: 448: 445: 442: 439: 436: 402: 399: 396: 393: 390: 387: 384: 356: 353: 350: 347: 344: 299: 296: 293: 290: 287: 284: 281: 278: 275: 272: 269: 266: 261: 257: 239: 238: 227: 224: 221: 216: 212: 208: 205: 202: 199: 196: 193: 190: 185: 181: 177: 174: 171: 168: 163: 159: 155: 152: 149: 144: 140: 136: 133: 130: 127: 124: 121: 106: 103: 59: 56: 53: 50: 47: 15: 9: 6: 4: 3: 2: 1048: 1037: 1034: 1033: 1031: 1020: 1016: 1012: 1005: 1000: 996: 989: 984: 979: 974: 970: 966: 965: 953: 948: 940: 938:0-8218-3528-9 934: 930: 925: 924: 918: 914: 908: 902: 897: 893: 883: 880: 879: 873: 871: 867: 863: 859: 855: 851: 847: 843: 839: 820: 814: 811: 803: 799: 789: 787: 783: 780: 770: 768: 764: 745: 739: 736: 716: 708: 704: 685: 679: 676: 668: 651: 648: 627: 606: 603: 596: 588: 571: 568: 561: 554: 552: 548:consist of a 531: 528: 524: 520: 517: 513: 509: 506: 493: 490: 487: 484: 481: 471: 452: 446: 440: 437: 434: 426: 422: 419: 417: 397: 394: 391: 388: 385: 374: 370: 351: 345: 342: 335:, denoted by 334: 331: 327: 324: 320: 316: 311: 297: 294: 291: 288: 285: 282: 279: 276: 273: 270: 267: 264: 259: 255: 247: 244: 219: 214: 210: 206: 203: 200: 197: 194: 188: 183: 179: 175: 172: 169: 161: 157: 153: 150: 147: 142: 138: 131: 128: 125: 122: 112: 111: 110: 102: 100: 96: 92: 88: 85: 81: 77: 73: 54: 48: 45: 37: 34: 30: 26: 22: 1018: 994: 947: 922: 907: 896: 865: 861: 853: 849: 845: 841: 837: 797: 795: 776: 766: 706: 702: 666: 550: 468:, and whose 424: 420: 415: 375:are triples 332: 325: 319:Ran prestack 318: 312: 246:open subsets 240: 108: 86: 84:metric space 79: 35: 28: 24: 18: 29:Ran's space 21:mathematics 962:References 952:Lurie 2017 901:Lurie 2014 773:Properties 669:-point of 587:surjective 105:Definition 978:1108.1741 815:⁡ 779:connected 740:⁡ 717:μ 680:⁡ 649:μ 628:μ 600:→ 565:→ 529:μ 500:→ 494:μ 470:morphisms 444:→ 435:μ 398:μ 367:, is the 346:⁡ 265:⊂ 223:∅ 220:≠ 207:∩ 198:… 192:∅ 189:≠ 176:∩ 170:∣ 154:∪ 151:⋯ 148:∪ 132:⁡ 126:∈ 49:⁡ 25:Ran space 1030:Category 919:(2004). 876:See also 782:manifold 652:′ 607:′ 572:′ 532:′ 521:′ 510:′ 418:-algebra 369:category 243:disjoint 241:for any 91:topology 82:: for a 72:nonempty 1021:. 2018. 802:cosheaf 763:acyclic 373:objects 328:over a 99:Ziv Ran 76:subsets 74:finite 31:) of a 935:  585:and a 371:whose 317:: the 315:scheme 23:, the 1007:(PDF) 991:(PDF) 973:arXiv 888:Notes 848:. If 800:is a 330:field 321:of a 933:ISBN 640:and 589:map 89:the 27:(or 929:173 840:of 812:Ran 796:If 784:is 765:if 761:is 737:Ran 677:Ran 343:Ran 129:Ran 78:of 46:Ran 19:In 1032:: 1017:. 993:. 931:. 915:; 872:. 788:. 310:. 101:. 1009:. 997:. 981:. 975:: 941:. 866:A 862:A 854:M 850:A 846:F 842:M 824:) 821:M 818:( 798:F 767:X 749:) 746:X 743:( 707:X 703:R 689:) 686:X 683:( 667:R 604:S 597:S 569:R 562:R 551:k 536:) 525:, 518:S 514:, 507:R 503:( 497:) 491:, 488:S 485:, 482:R 479:( 456:) 453:R 450:( 447:X 441:S 438:: 425:S 421:R 416:k 401:) 395:, 392:S 389:, 386:R 383:( 355:) 352:X 349:( 333:k 326:X 298:m 295:, 292:. 289:. 286:. 283:, 280:1 277:= 274:i 271:, 268:X 260:i 256:U 226:} 215:m 211:U 204:S 201:, 195:, 184:1 180:U 173:S 167:) 162:m 158:U 143:1 139:U 135:( 123:S 120:{ 87:X 80:X 58:) 55:X 52:( 36:X

Index

mathematics
topological space
nonempty
subsets
metric space
topology
Hausdorff distance
Ziv Ran
disjoint
open subsets
scheme
quasi-projective scheme
field
category
objects
k-algebra
morphisms
k-algebra homomorphism
surjective
acyclic
connected
manifold
weakly contractible
cosheaf
factorizable sheaf
Hochschild homology
Chiral homology
Lurie 2014
Beilinson, Alexander
Drinfeld, Vladimir

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.