Knowledge

Quasi-fibration

Source πŸ“

559: 870: 1323:. That way, one can reduce it to the case where the assertion is known. These two theorems mean that it suffices to show that a given map is a quasifibration on certain subsets. Then one can patch these together in order to see that it holds on bigger subsets and finally, using a limiting argument, one sees that the map is a quasifibration on the whole space. This procedure has e.g. been used in the proof of the Dold-Thom theorem. 891: 499: 288: 799: 230: 293: 1151:
Checking whether a given map is a quasifibration tends to be quite tedious. The following two theorems are designed to make this problem easier. They will make use of the following notion: Let
494:{\displaystyle {\begin{aligned}\dots \to \pi _{i+1}(B,x)\to \pi _{i}(p^{-1}(x),y)\to \pi _{i}(E,y)&\to \pi _{i}(B,x)\to \dots \\&\to \pi _{0}(B,x)\to 0\end{aligned}}} 704: 86:). Equivalently, one can define a quasifibration to be a continuous map such that the inclusion of each fibre into its homotopy fibre is a 127: 909:
The projection of the letter L onto its base interval is a quasifibration, but not a fibration. More generally, the projection
1447: 1360: 1144:
A corollary of this theorem is that all fibres of a quasifibration are weakly homotopy equivalent if the base space is
87: 1479: 1495: 1370:
Dold, Albrecht; Lashof, Richard (1959), "Principal Quasifibrations and Fibre Homotopy Equivalence of Bundles",
17: 1117:
The following is a direct consequence of the alternative definition of a fibration using the homotopy fibre:
1520: 1439: 903: 695: 1104:) consisting of two connected spaces. This is one of the main statements used in the proof of the 1306:
To see that the latter statement holds, one only needs to bear in mind that continuous images of
555:)) and therefore a morphism between the exact sequences of a quasifibration. Hence, the diagram 266:
By definition, quasifibrations share a key property of fibrations, namely that a quasifibration
1013: 1385: 1422: 1383:
Dold, Albrecht; Thom, RenΓ© (1958), "Quasifaserungen und unendliche symmetrische Produkte",
1021: 8: 279: 1410: 1136:
factors through a fibration whose fibres are weakly homotopy equivalent to the ones of
31: 1433: 519:
This long exact sequence is also functorial in the following sense: Any fibrewise map
1475: 1443: 1402: 1356: 1105: 91: 558: 1394: 923: 1418: 1263: 899: 67: 1145: 1514: 1429: 1406: 1307: 869: 47: 1499: 119: 39: 51: 1504: 1414: 1289:
are moreover assumed to satisfy the first separation axiom. If all the
939: 43: 794:{\displaystyle E_{p}=\{(e,\gamma )\in E\times B^{I}:\gamma (0)=p(e)\}} 90:. One of the main applications of quasifibrations lies in proving the 1398: 816:, Ξ³) = Ξ³(1). Now consider the natural homotopy equivalence Ο† : 225:{\displaystyle p_{*}\colon \pi _{i}(E,p^{-1}(x),y)\to \pi _{i}(B,x)} 66:
having the same behaviour as a fibration regarding the (relative)
1061:. This means that the projection is not a fibration in this case. 1457:
May, J. Peter (1990), "Weak Equivalences and Quasifibrations",
1044:
starting at 0 cannot be lifted to paths starting at a point of
890: 504:
as follows directly from the long exact sequence for the pair (
531:
induces a morphism between the exact sequences of the pairs (
263:= 0,1 one can only speak of bijections between the two sets. 942:
onto the unit interval is a quasifibration if and only if Ο€
853:) denotes the corresponding constant path. By definition, 1351:
Aguilar, Marcelo; Gitler, Samuel; Prieto, Carlos (2008).
615:
An equivalent definition is saying that a surjective map
1218:
are distinguished with respect to the continuous map
707: 291: 130: 1108:. In general, this map also fails to be a fibration. 1350: 1036:being a weak homotopy equivalence. Furthermore, if 793: 627:is a quasifibration if the inclusion of the fibre 493: 224: 102:A continuous surjective map of topological spaces 1512: 1353:Algebraic Topology from a Homotopical Viewpoint 995:. But by the long exact sequence of the pair ( 788: 721: 902:is a quasifibration. This follows from the 54:. Roughly speaking, it is a continuous map 1369: 1469: 1355:. Springer Science & Business Media. 1040:is not surjective, non-constant paths in 866:such that one gets a commutative diagram 1382: 889: 1428: 14: 1513: 1496:Quasifibrations and homotopy pullbacks 1148:, as this is the case for fibrations. 1456: 1096:is a quasifibration for a CW pair ( 882:yields the alternative definition. 24: 868: 557: 25: 1532: 1489: 1032:in general, it is equivalent to 1372:Illinois Journal of Mathematics 1338:Dold and Thom (1958), Satz 2.2 1332: 1163:be a continuous map. A subset 785: 779: 770: 764: 736: 724: 652:is a weak equivalence for all 481: 478: 466: 453: 440: 437: 425: 412: 405: 393: 380: 377: 368: 362: 346: 333: 330: 318: 299: 219: 207: 194: 191: 182: 176: 154: 13: 1: 1344: 1112: 588:being an element of the form 97: 1470:Piccinini, Renzo A. (1992). 1080:) induced by the projection 7: 1472:Lectures on Homotopy Theory 885: 696:path fibration construction 660:. To see this, recall that 10: 1537: 1507:from the Lehigh University 1440:Cambridge University Press 1258:be a continuous map where 635:) into the homotopy fibre 1024:. For topological spaces 904:Homotopy lifting property 572:being the restriction of 1326: 1298:are distinguished, then 1016:, this is equivalent to 27:Concept from mathematics 38:is a generalisation of 1459:Springer Lecture Notes 894: 873: 795: 562: 495: 226: 1386:Annals of Mathematics 1199:is a quasifibration. 1124:Every quasifibration 1048:outside the image of 893: 872: 796: 561: 496: 227: 1314:already lie in some 1302:is a quasifibration. 1206:If the open subsets 1022:homotopy equivalence 705: 289: 128: 1014:Whitehead's theorem 282:of homotopy groups 280:long exact sequence 1521:Algebraic topology 1435:Algebraic Topology 938:between connected 895: 874: 791: 563: 491: 489: 222: 32:algebraic topology 1449:978-0-521-79540-1 1389:, Second Series, 1362:978-0-387-22489-3 1179:(with respect to 1106:Dold-Thom theorem 92:Dold-Thom theorem 16:(Redirected from 1528: 1485: 1466: 1453: 1425: 1379: 1366: 1339: 1336: 979:) holds for all 924:mapping cylinder 857:factors through 800: 798: 797: 792: 757: 756: 717: 716: 698:. Thus, one has 669:is the fibre of 500: 498: 497: 492: 490: 465: 464: 449: 424: 423: 392: 391: 361: 360: 345: 344: 317: 316: 231: 229: 228: 223: 206: 205: 175: 174: 153: 152: 140: 139: 88:weak equivalence 21: 1536: 1535: 1531: 1530: 1529: 1527: 1526: 1525: 1511: 1510: 1505:Quasifibrations 1492: 1482: 1450: 1399:10.2307/1970005 1363: 1347: 1342: 1337: 1333: 1329: 1322: 1297: 1288: 1279: 1272: 1264:inductive limit 1115: 1060: 1003: 970: 956: 947: 917: 900:Serre fibration 888: 881: 865: 828: 752: 748: 712: 708: 706: 703: 702: 689: 668: 643: 571: 488: 487: 460: 456: 447: 446: 419: 415: 408: 387: 383: 353: 349: 340: 336: 306: 302: 292: 290: 287: 286: 201: 197: 167: 163: 148: 144: 135: 131: 129: 126: 125: 100: 68:homotopy groups 28: 23: 22: 15: 12: 11: 5: 1534: 1524: 1523: 1509: 1508: 1502: 1491: 1490:External links 1488: 1487: 1486: 1480: 1467: 1454: 1448: 1430:Hatcher, Allen 1426: 1393:(2): 239–281, 1380: 1367: 1361: 1346: 1343: 1341: 1340: 1330: 1328: 1325: 1318: 1304: 1303: 1293: 1284: 1277: 1270: 1266:of a sequence 1240: 1239: 1146:path-connected 1142: 1141: 1114: 1111: 1110: 1109: 1062: 1056: 999: 966: 952: 943: 913: 907: 887: 884: 877: 861: 824: 802: 801: 790: 787: 784: 781: 778: 775: 772: 769: 766: 763: 760: 755: 751: 747: 744: 741: 738: 735: 732: 729: 726: 723: 720: 715: 711: 685: 664: 639: 569: 565:commutes with 502: 501: 486: 483: 480: 477: 474: 471: 468: 463: 459: 455: 452: 450: 448: 445: 442: 439: 436: 433: 430: 427: 422: 418: 414: 411: 409: 407: 404: 401: 398: 395: 390: 386: 382: 379: 376: 373: 370: 367: 364: 359: 356: 352: 348: 343: 339: 335: 332: 329: 326: 323: 320: 315: 312: 309: 305: 301: 298: 295: 294: 233: 232: 221: 218: 215: 212: 209: 204: 200: 196: 193: 190: 187: 184: 181: 178: 173: 170: 166: 162: 159: 156: 151: 147: 143: 138: 134: 118:if it induces 116:quasifibration 99: 96: 46:introduced by 36:quasifibration 26: 18:Quasifibration 9: 6: 4: 3: 2: 1533: 1522: 1519: 1518: 1516: 1506: 1503: 1501: 1497: 1494: 1493: 1483: 1481:9780080872827 1477: 1473: 1468: 1464: 1460: 1455: 1451: 1445: 1441: 1437: 1436: 1431: 1427: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1387: 1381: 1377: 1373: 1368: 1364: 1358: 1354: 1349: 1348: 1335: 1331: 1324: 1321: 1317: 1313: 1309: 1301: 1296: 1292: 1287: 1283: 1276: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1242: 1241: 1237: 1233: 1230:, then so is 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1202: 1201: 1200: 1198: 1194: 1190: 1186: 1182: 1178: 1177:distinguished 1174: 1170: 1166: 1162: 1158: 1154: 1149: 1147: 1139: 1135: 1131: 1127: 1123: 1120: 1119: 1118: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1002: 998: 994: 990: 986: 982: 978: 974: 969: 964: 960: 955: 951: 946: 941: 937: 933: 929: 925: 921: 916: 912: 908: 905: 901: 897: 896: 892: 883: 880: 871: 867: 864: 860: 856: 852: 848: 844: 840: 836: 832: 829:, given by Ο†( 827: 823: 819: 815: 811: 807: 782: 776: 773: 767: 761: 758: 753: 749: 745: 742: 739: 733: 730: 727: 718: 713: 709: 701: 700: 699: 697: 694:is the usual 693: 688: 684: 680: 676: 672: 667: 663: 659: 655: 651: 647: 642: 638: 634: 630: 626: 622: 618: 613: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 568: 560: 556: 554: 550: 546: 542: 538: 534: 530: 526: 522: 517: 515: 511: 507: 484: 475: 472: 469: 461: 457: 451: 443: 434: 431: 428: 420: 416: 410: 402: 399: 396: 388: 384: 374: 371: 365: 357: 354: 350: 341: 337: 327: 324: 321: 313: 310: 307: 303: 296: 285: 284: 283: 281: 277: 273: 269: 264: 262: 258: 254: 250: 246: 242: 238: 216: 213: 210: 202: 198: 188: 185: 179: 171: 168: 164: 160: 157: 149: 145: 141: 136: 132: 124: 123: 122: 121: 117: 113: 109: 105: 95: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 48:Albrecht Dold 45: 41: 40:fibre bundles 37: 33: 19: 1500:MathOverflow 1474:. Elsevier. 1471: 1462: 1458: 1434: 1390: 1384: 1378:(2): 285–305 1375: 1371: 1352: 1334: 1319: 1315: 1311: 1305: 1299: 1294: 1290: 1285: 1281: 1274: 1267: 1259: 1255: 1251: 1247: 1243: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1196: 1192: 1188: 1184: 1180: 1176: 1175:) is called 1172: 1168: 1164: 1160: 1156: 1152: 1150: 1143: 1137: 1133: 1129: 1125: 1121: 1116: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1068:) : SP( 1065: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1017: 1009: 1005: 1000: 996: 992: 988: 984: 980: 976: 972: 967: 962: 958: 953: 949: 944: 940:CW complexes 935: 931: 927: 919: 914: 910: 878: 875: 862: 858: 854: 850: 846: 842: 838: 834: 830: 825: 821: 817: 813: 809: 808:is given by 805: 803: 691: 686: 682: 678: 674: 670: 665: 661: 657: 653: 649: 645: 640: 636: 632: 628: 624: 620: 616: 614: 609: 605: 601: 597: 593: 589: 585: 581: 577: 573: 566: 564: 552: 548: 544: 540: 536: 532: 528: 524: 520: 518: 513: 509: 505: 503: 275: 271: 267: 265: 260: 256: 252: 248: 244: 240: 236: 234: 120:isomorphisms 115: 114:is called a 111: 107: 103: 101: 83: 79: 75: 71: 63: 59: 55: 35: 29: 1064:The map SP( 965:)) = 0 = Ο€ 1345:References 1280:βŠ‚ ... All 1113:Properties 1012:)) and by 876:Applying Ο€ 845:)), where 600:)) for an 278:induces a 98:Definition 44:fibrations 1407:0003-486X 926:of a map 762:γ 746:× 740:∈ 734:γ 482:→ 458:π 454:→ 444:… 441:→ 417:π 413:→ 385:π 381:→ 355:− 338:π 334:→ 304:π 300:→ 297:⋯ 259:β‰₯ 0. For 199:π 195:→ 169:− 146:π 142:: 137:∗ 52:RenΓ© Thom 1515:Category 1465:: 91–101 1432:(2002). 1310:sets in 1244:Theorem. 1204:Theorem. 1122:Theorem. 1020:being a 886:Examples 543:)) and ( 235:for all 1423:0097062 1415:1970005 1308:compact 1262:is the 1072:) β†’ SP( 922:of the 1478:  1446:  1421:  1413:  1405:  1359:  898:Every 677:where 673:under 584:) and 255:) and 1411:JSTOR 1327:Notes 1183:) if 833:) = ( 648:over 1476:ISBN 1463:1425 1444:ISBN 1403:ISSN 1357:ISBN 1246:Let 1210:and 1195:) β†’ 1028:and 987:and 804:and 516:)). 78:and 50:and 42:and 34:, a 1498:on 1395:doi 1208:U,V 1052:in 644:of 612:). 576:to 70:of 30:In 1517:: 1461:, 1442:. 1438:. 1419:MR 1417:, 1409:, 1401:, 1391:67 1374:, 1273:βŠ‚ 1254:β†’ 1250:: 1234:βˆͺ 1226:β†’ 1222:: 1214:∩ 1187:: 1167:βŠ‚ 1159:β†’ 1155:: 1132:β†’ 1128:: 1100:, 1088:β†’ 1084:: 1004:, 991:∈ 983:∈ 975:, 957:, 934:β†’ 930:: 918:β†’ 837:, 820:β†’ 690:β†’ 681:: 656:∈ 623:β†’ 619:: 604:∈ 590:pβ€² 586:xβ€² 549:pβ€² 547:, 545:Eβ€² 535:, 529:Eβ€² 527:β†’ 523:: 508:, 274:β†’ 270:: 247:∈ 243:, 239:∈ 110:β†’ 106:: 94:. 74:, 62:β†’ 58:: 1484:. 1452:. 1397:: 1376:2 1365:. 1320:n 1316:B 1312:B 1300:p 1295:n 1291:B 1286:n 1282:B 1278:2 1275:B 1271:1 1268:B 1260:B 1256:B 1252:E 1248:p 1238:. 1236:V 1232:U 1228:B 1224:E 1220:p 1216:V 1212:U 1197:U 1193:U 1191:( 1189:p 1185:p 1181:p 1173:E 1171:( 1169:p 1165:U 1161:B 1157:E 1153:p 1140:. 1138:p 1134:B 1130:E 1126:p 1102:A 1098:X 1094:A 1092:/ 1090:X 1086:X 1082:p 1078:A 1076:/ 1074:X 1070:X 1066:p 1058:f 1054:M 1050:f 1046:Y 1042:I 1038:f 1034:f 1030:Y 1026:X 1018:f 1010:b 1008:( 1006:p 1001:f 997:M 993:B 989:b 985:I 981:i 977:b 973:I 971:( 968:i 963:b 961:( 959:p 954:f 950:M 948:( 945:i 936:Y 932:X 928:f 920:I 915:f 911:M 906:. 879:n 863:p 859:E 855:p 851:e 849:( 847:p 843:e 841:( 839:p 835:e 831:e 826:p 822:E 818:E 814:e 812:( 810:q 806:q 789:} 786:) 783:e 780:( 777:p 774:= 771:) 768:0 765:( 759:: 754:I 750:B 743:E 737:) 731:, 728:e 725:( 722:{ 719:= 714:p 710:E 692:B 687:p 683:E 679:q 675:b 671:q 666:b 662:F 658:B 654:b 650:b 646:p 641:b 637:F 633:b 631:( 629:p 625:B 621:E 617:p 610:x 608:( 606:p 602:e 598:e 596:( 594:f 592:( 582:x 580:( 578:p 574:f 570:0 567:f 553:x 551:( 541:x 539:( 537:p 533:E 525:E 521:f 514:x 512:( 510:p 506:E 485:0 479:) 476:x 473:, 470:B 467:( 462:0 438:) 435:x 432:, 429:B 426:( 421:i 406:) 403:y 400:, 397:E 394:( 389:i 378:) 375:y 372:, 369:) 366:x 363:( 358:1 351:p 347:( 342:i 331:) 328:x 325:, 322:B 319:( 314:1 311:+ 308:i 276:B 272:E 268:p 261:i 257:i 253:x 251:( 249:p 245:y 241:B 237:x 220:) 217:x 214:, 211:B 208:( 203:i 192:) 189:y 186:, 183:) 180:x 177:( 172:1 165:p 161:, 158:E 155:( 150:i 133:p 112:B 108:E 104:p 84:x 82:( 80:p 76:B 72:E 64:B 60:E 56:p 20:)

Index

Quasifibration
algebraic topology
fibre bundles
fibrations
Albrecht Dold
RenΓ© Thom
homotopy groups
weak equivalence
Dold-Thom theorem
isomorphisms
long exact sequence

path fibration construction


Serre fibration
Homotopy lifting property
mapping cylinder
CW complexes
Whitehead's theorem
homotopy equivalence
Dold-Thom theorem
path-connected
inductive limit
compact
ISBN
978-0-387-22489-3
Annals of Mathematics
doi
10.2307/1970005

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑