Knowledge

Quadrupole magnet

Source đź“ť

131: 116: 246: 20: 274:). But if there is a space between them (and the length of this has been correctly chosen), the overall effect is focusing in both horizontal and vertical planes. A lattice can then be built up enabling the transport of the beam over long distances—for example round an entire ring. A common lattice is a FODO lattice consisting of a basis of a focusing quadrupole, 'nothing' (often a bending magnet), a defocusing quadrupole and another length of 'nothing'. 267:) which show that it is impossible for a quadrupole to focus in both planes at the same time. The image on the right shows an example of a quadrupole focusing in the vertical direction for a positively charged particle going into the image plane (forces above and below the center point towards the center) while defocusing in the horizontal direction (forces left and right of the center point away from the center). 1122: 916: 743: 69:
The simplest magnetic quadrupole is two identical bar magnets parallel to each other such that the north pole of one is next to the south of the other and vice versa. Such a configuration will have no dipole moment, and its field will decrease at large distances faster than that of a dipole. A
719: 911:{\displaystyle {\begin{aligned}{\vec {B}}_{\text{normal}}&=\left({\begin{matrix}K\cdot y,&K\cdot x,&0\end{matrix}}\right)\\{\vec {B}}_{\text{skew}}&=\left({\begin{matrix}J\cdot x,&-J\cdot y,&0\end{matrix}}\right)\\\end{aligned}}} 506: 258:
The quadrupoles in the lattice are of two types: 'F quadrupoles' (which are horizontally focusing but vertically defocusing) and 'D quadrupoles' (which are vertically focusing but horizontally defocusing). This situation is due to the laws of
225: 249:
Magnetic field lines of an idealized quadrupole field in the plane transverse to the nominal beam direction. The red arrows show the direction of the magnetic field while the blue arrows indicate the direction of the
748: 572: 282:
A charged particle beam in a quadrupole magnetic field will experience a focusing / defocusing force in the transverse direction. This focusing effect is summed up by a focusing strength
995: 560: 394: 300: 366: 1015: 959: 939: 386: 320: 997:. The field in a normal quadrupole is such that the magnetic poles are arranged with an angle of 45 degrees to the horizontal and vertical planes. The sign of 725:
The same equation will be true for the y direction, but with a minus sign in front of the focusing strength to account for the field changing directions.
172: 1086:
Steven M. Lund, Transverse Particle Dynamics, US Particle Accelerator School (USPAS) Lectures on “Beam Physics with Intense SpaceCharge”
270:
If an F quadrupole and a D quadrupole are placed immediately next to each other, their fields completely cancel out (in accordance with
1017:
determines whether (for a fixed particle charge and direction) the quadrupole focuses or defocuses particles in the horizontal plane.
714:{\displaystyle x^{\prime \prime }(z)+{\frac {\gamma ^{\prime }(z)}{\gamma ^{2}(z)\beta (z)}}x^{\prime }(z)+\kappa (z)x(z)=0} 1126: 733:
The components of the ideal magnetic field in the plane transverse to the beam are given by the following (see also
968: 130: 501:{\displaystyle p=\gamma mv=\beta \gamma mc,\qquad \beta ={\frac {v}{c}},\quad \gamma =(1-\beta ^{2})^{-1/2}} 115: 1142: 521: 323: 139: 1100: 1087: 245: 42:
of the field, the dipole terms cancel and where the lowest significant terms in the field equations are
1147: 1075: 235: 143: 124: 1026: 285: 271: 159: 328: 8: 1056: 231: 90: 39: 1000: 944: 924: 371: 305: 264: 1051: 1046: 1041: 734: 260: 94: 75: 1036: 239: 110: 59: 51: 512: 147: 135: 98: 47: 1136: 1031: 277: 251: 220:{\displaystyle \mathbf {F} =q(\mathbf {E} +\mathbf {v} \times \mathbf {B} ),} 163: 82: 63: 19: 120: 93:
and two opposing magnetic south poles. The steel is magnetized by a large
254:
on a positive particle going into the image plane (away from the reader)
43: 238:. Therefore a 'lattice' of electromagnets is used to bend, steer and 1088:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017/lec_set_02/tpd.pdf
97:
in the coils of tubing wrapped around the poles. Another design is a
151: 162:, the magnetic force term is larger than the electric term in the 70:
stronger version with very little external field involves using a
962: 1121: 566:
and particles in the magnetic will behave according to the ODE
55: 35: 941:
is the field gradient of the normal quadrupole component and
86: 961:
is the field gradient of the skew quadrupole component. The
278:
Equations of motion and focal length for charged particles
101:
layout but with the current in one of the coils reversed.
104: 859: 782: 584: 1003: 971: 947: 927: 746: 575: 524: 397: 374: 331: 308: 288: 175: 23:
Four bar magnets configured to produce a quadrupole
1009: 989: 953: 933: 910: 713: 554: 500: 380: 360: 314: 294: 219: 46:. Quadrupole magnets are useful as they create a 1134: 158:At the particle speeds reached in high energy 388:is the electric charge of the particle and 119:A quadrupole electromagnet as used in the 990:{\displaystyle \mathrm {T} /\mathrm {m} } 728: 302:which depends on the quadrupole gradient 244: 129: 114: 18: 1101:"Conventional Magnets for Accelerators" 1135: 555:{\displaystyle \kappa ={\frac {G}{}}} 81:In some designs of quadrupoles using 515:. The focusing strength is given by 105:Quadrupoles in particle accelerators 1098: 13: 983: 973: 664: 609: 581: 14: 1159: 1114: 1120: 207: 199: 191: 177: 451: 431: 58:distance from its longitudinal 38:laid out so that in the planar 1092: 1080: 1069: 835: 758: 702: 696: 690: 684: 675: 669: 653: 647: 641: 635: 620: 614: 595: 589: 546: 537: 478: 458: 341: 332: 211: 187: 1: 1062: 34:, consist of groups of four 7: 1020: 965:of the field gradients are 138:(in blue), surrounding the 10: 1164: 242:a charged particle beam. 108: 1076:Quadrupole Magnetic Field 236:electrostatic deflection 89:pole tips: two opposing 295:{\displaystyle \kappa } 234:is more effective than 1011: 991: 955: 935: 912: 729:Quadrupole ideal field 715: 556: 502: 382: 362: 316: 296: 255: 221: 155: 144:Australian Synchrotron 127: 125:Australian Synchrotron 24: 1027:Charged particle beam 1012: 992: 956: 936: 913: 716: 557: 513:relativistic momentum 503: 383: 363: 317: 297: 248: 222: 160:particle accelerators 133: 118: 22: 16:Group of four magnets 1129:at Wikimedia Commons 1001: 969: 945: 925: 744: 573: 522: 395: 372: 361:{\displaystyle =p/q} 329: 306: 286: 173: 91:magnetic north poles 1143:Accelerator physics 1057:Accelerator physics 232:magnetic deflection 40:multipole expansion 1007: 987: 951: 931: 908: 906: 898: 818: 711: 552: 498: 378: 358: 312: 292: 272:Earnshaw's theorem 256: 217: 156: 128: 62:. This is used in 28:Quadrupole magnets 25: 1127:Quadrupole magnet 1125:Media related to 1010:{\displaystyle K} 954:{\displaystyle J} 934:{\displaystyle K} 844: 838: 767: 761: 657: 550: 446: 381:{\displaystyle q} 315:{\displaystyle G} 265:Maxwell equations 85:, there are four 30:, abbreviated as 1155: 1148:Types of magnets 1124: 1108: 1107: 1105: 1096: 1090: 1084: 1078: 1073: 1052:Multipole magnet 1047:Sextupole magnet 1042:Halbach cylinder 1016: 1014: 1013: 1008: 996: 994: 993: 988: 986: 981: 976: 960: 958: 957: 952: 940: 938: 937: 932: 917: 915: 914: 909: 907: 903: 899: 846: 845: 842: 840: 839: 831: 823: 819: 769: 768: 765: 763: 762: 754: 735:multipole magnet 720: 718: 717: 712: 668: 667: 658: 656: 634: 633: 623: 613: 612: 602: 588: 587: 561: 559: 558: 553: 551: 549: 532: 507: 505: 504: 499: 497: 496: 492: 476: 475: 447: 439: 387: 385: 384: 379: 367: 365: 364: 359: 354: 321: 319: 318: 313: 301: 299: 298: 293: 261:electromagnetism 226: 224: 223: 218: 210: 202: 194: 180: 95:electric current 76:Halbach cylinder 50:whose magnitude 1163: 1162: 1158: 1157: 1156: 1154: 1153: 1152: 1133: 1132: 1117: 1112: 1111: 1103: 1097: 1093: 1085: 1081: 1074: 1070: 1065: 1037:Electron optics 1023: 1002: 999: 998: 982: 977: 972: 970: 967: 966: 946: 943: 942: 926: 923: 922: 905: 904: 897: 896: 891: 874: 858: 854: 847: 841: 830: 829: 828: 825: 824: 817: 816: 811: 797: 781: 777: 770: 764: 753: 752: 751: 747: 745: 742: 741: 731: 663: 659: 629: 625: 624: 608: 604: 603: 601: 580: 576: 574: 571: 570: 536: 531: 523: 520: 519: 488: 481: 477: 471: 467: 438: 396: 393: 392: 373: 370: 369: 350: 330: 327: 326: 324:beam's rigidity 322:as well as the 307: 304: 303: 287: 284: 283: 280: 206: 198: 190: 176: 174: 171: 170: 113: 111:Strong focusing 107: 17: 12: 11: 5: 1161: 1151: 1150: 1145: 1131: 1130: 1116: 1115:External links 1113: 1110: 1109: 1099:Shepard, Ben. 1091: 1079: 1067: 1066: 1064: 1061: 1060: 1059: 1054: 1049: 1044: 1039: 1034: 1029: 1022: 1019: 1006: 985: 980: 975: 950: 930: 919: 918: 902: 895: 892: 890: 887: 884: 881: 878: 875: 873: 870: 867: 864: 861: 860: 857: 853: 850: 848: 837: 834: 827: 826: 822: 815: 812: 810: 807: 804: 801: 798: 796: 793: 790: 787: 784: 783: 780: 776: 773: 771: 760: 757: 750: 749: 730: 727: 723: 722: 710: 707: 704: 701: 698: 695: 692: 689: 686: 683: 680: 677: 674: 671: 666: 662: 655: 652: 649: 646: 643: 640: 637: 632: 628: 622: 619: 616: 611: 607: 600: 597: 594: 591: 586: 583: 579: 564: 563: 548: 545: 542: 539: 535: 530: 527: 509: 508: 495: 491: 487: 484: 480: 474: 470: 466: 463: 460: 457: 454: 450: 445: 442: 437: 434: 430: 427: 424: 421: 418: 415: 412: 409: 406: 403: 400: 377: 357: 353: 349: 346: 343: 340: 337: 334: 311: 291: 279: 276: 228: 227: 216: 213: 209: 205: 201: 197: 193: 189: 186: 183: 179: 146:, are used to 136:electromagnets 109:Main article: 106: 103: 99:Helmholtz coil 83:electromagnets 48:magnetic field 15: 9: 6: 4: 3: 2: 1160: 1149: 1146: 1144: 1141: 1140: 1138: 1128: 1123: 1119: 1118: 1102: 1095: 1089: 1083: 1077: 1072: 1068: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1032:Dipole magnet 1030: 1028: 1025: 1024: 1018: 1004: 978: 964: 948: 928: 900: 893: 888: 885: 882: 879: 876: 871: 868: 865: 862: 855: 851: 849: 832: 820: 813: 808: 805: 802: 799: 794: 791: 788: 785: 778: 774: 772: 755: 740: 739: 738: 736: 726: 708: 705: 699: 693: 687: 681: 678: 672: 660: 650: 644: 638: 630: 626: 617: 605: 598: 592: 577: 569: 568: 567: 543: 540: 533: 528: 525: 518: 517: 516: 514: 493: 489: 485: 482: 472: 468: 464: 461: 455: 452: 448: 443: 440: 435: 432: 428: 425: 422: 419: 416: 413: 410: 407: 404: 401: 398: 391: 390: 389: 375: 355: 351: 347: 344: 338: 335: 325: 309: 289: 275: 273: 268: 266: 262: 253: 252:Lorentz force 247: 243: 241: 237: 233: 214: 203: 195: 184: 181: 169: 168: 167: 165: 164:Lorentz force 161: 153: 149: 145: 141: 137: 132: 126: 122: 117: 112: 102: 100: 96: 92: 88: 84: 79: 77: 73: 67: 65: 64:particle beam 61: 57: 53: 52:grows rapidly 49: 45: 41: 37: 33: 29: 21: 1094: 1082: 1071: 920: 732: 724: 565: 510: 281: 269: 257: 229: 157: 121:storage ring 80: 71: 68: 31: 27: 26: 134:Quadrupole 1137:Categories 1063:References 66:focusing. 44:quadrupole 883:⋅ 877:− 866:⋅ 836:→ 803:⋅ 789:⋅ 759:→ 682:κ 665:′ 645:β 627:γ 610:′ 606:γ 585:′ 582:′ 544:ρ 526:κ 483:− 469:β 465:− 453:γ 433:β 420:γ 417:β 405:γ 339:ρ 290:κ 230:and thus 204:× 54:with the 32:Q-magnets 1021:See also 368:, where 152:electron 963:SI unit 511:is the 142:of the 123:of the 36:magnets 921:where 766:normal 56:radial 1104:(PDF) 263:(the 240:focus 148:focus 140:linac 87:steel 843:skew 154:beam 150:the 60:axis 737:). 74:=3 1139:: 166:: 78:. 1106:. 1005:K 984:m 979:/ 974:T 949:J 929:K 901:) 894:0 889:, 886:y 880:J 872:, 869:x 863:J 856:( 852:= 833:B 821:) 814:0 809:, 806:x 800:K 795:, 792:y 786:K 779:( 775:= 756:B 721:. 709:0 706:= 703:) 700:z 697:( 694:x 691:) 688:z 685:( 679:+ 676:) 673:z 670:( 661:x 654:) 651:z 648:( 642:) 639:z 636:( 631:2 621:) 618:z 615:( 599:+ 596:) 593:z 590:( 578:x 562:, 547:] 541:B 538:[ 534:G 529:= 494:2 490:/ 486:1 479:) 473:2 462:1 459:( 456:= 449:, 444:c 441:v 436:= 429:, 426:c 423:m 414:= 411:v 408:m 402:= 399:p 376:q 356:q 352:/ 348:p 345:= 342:] 336:B 333:[ 310:G 215:, 212:) 208:B 200:v 196:+ 192:E 188:( 185:q 182:= 178:F 72:k

Index


magnets
multipole expansion
quadrupole
magnetic field
grows rapidly
radial
axis
particle beam
Halbach cylinder
electromagnets
steel
magnetic north poles
electric current
Helmholtz coil
Strong focusing

storage ring
Australian Synchrotron

electromagnets
linac
Australian Synchrotron
focus
electron
particle accelerators
Lorentz force
magnetic deflection
electrostatic deflection
focus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑