Knowledge

QR algorithm

Source 📝

700: 764:
corresponds to a multiple of the identity matrix. A near-circle corresponds to a near-multiple of the identity matrix whose eigenvalues are nearly equal to the diagonal entries of the matrix. Therefore the problem of approximately finding the eigenvalues is shown to be easy in that case. But notice what happens to the semi-axes of the ellipses. An iteration of QR (or LR) tilts the semi-axes less and less as the input ellipse gets closer to being a circle. The eigenvectors can only be known when the semi-axes are parallel to the x-axis and y-axis. The number of iterations needed to achieve near-parallelism increases without bound as the input ellipse becomes more circular.
749: 740:. Observe that one fixed point is stable while the other is unstable. If the ellipse were tilted away from the unstable fixed point by a very small amount, one iteration of QR would cause the ellipse to tilt away from the fixed point instead of towards. Eventually though, the algorithm would converge to a different fixed point, but it would take a long time. 894:. In higher dimensions, shifting like this makes the length of the smallest semi-axis of an ellipsoid small relative to the other semi-axes, which speeds up convergence to the smallest eigenvalue, but does not speed up convergence to the other eigenvalues. This becomes useless when the smallest eigenvalue is fully determined, so the matrix must then be 517:), with a finite sequence of orthogonal similarity transforms, somewhat like a two-sided QR decomposition. (For QR decomposition, the Householder reflectors are multiplied only on the left, but for the Hessenberg case they are multiplied on both left and right.) Determining the QR decomposition of an upper Hessenberg matrix costs 901:
The issue with the unstable fixed point also needs to be addressed. The shifting heuristic is often designed to deal with this problem as well: Practical shifts are often discontinuous and randomised. Wilkinson's shift -- which is well-suited for symmetric matrices like the ones we're visualising --
771:
of an arbitrary symmetric matrix, it is always possible to perturb the matrix by an arbitrarily small amount and compute the eigendecomposition of the resulting matrix. In the case when the matrix is depicted as a near-circle, the matrix can be replaced with one whose depiction is a perfect circle.
763:
We will now discuss how these difficulties manifest in the basic QR algorithm. This is illustrated in Figure 2. Recall that the ellipses represent positive-definite symmetric matrices. As the two eigenvalues of the input matrix approach each other, the input ellipse changes into a circle. A circle
731:
of the ellipse is parallel to the x-axis, one iteration of QR does nothing. Another situation where the algorithm "does nothing" is when the large semi-axis is parallel to the y-axis instead of the x-axis. In that event, the ellipse can be thought of as balancing precariously without being able to
690:
The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only
1428:
times a single vector, normalizing after each iteration. The vector converges to an eigenvector of the largest eigenvalue. Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix
388: 566:
arithmetic operations. Moreover, because the Hessenberg form is already nearly upper-triangular (it has just one nonzero entry below each diagonal), using it as a starting point reduces the number of steps required for convergence of the QR algorithm.
784:
The slowdown when the ellipse gets more circular has a converse: It turns out that when the ellipse gets more stretched - and less circular - then the rotation of the ellipse becomes faster. Such a stretch can be induced when the matrix
723:
in higher dimensions. The relationship between the input to the algorithm and a single iteration can then be depicted as in Figure 1 (click to see an animation). Note that the LR algorithm is depicted alongside the QR algorithm.
760:). This difficulty exists whenever the multiplicities of a matrix's eigenvalues are not knowable. On the other hand, the same problem does not exist for finding eigenvalues. The eigenvalues of a matrix are always computable. 910:
In modern computational practice, the QR algorithm is performed in an implicit version which makes the use of multiple shifts easier to introduce. The matrix is first brought to upper Hessenberg form
511: 652: 202: 1192: 1357:, due to the peculiar shape of the non-zero entries of the matrix along the steps of the algorithm. As in the first version, deflation is performed as soon as one of the sub-diagonal entries of 1473:
instead of the QR decomposition. The QR algorithm is more stable, so the LR algorithm is rarely used nowadays. However, it represents an important step in the development of the QR algorithm.
433:. The eigenvalues of a triangular matrix are listed on the diagonal, and the eigenvalue problem is solved. In testing for convergence it is impractical to require exact zeros, but the 956: 564: 1241: 685: 1065: 832: 1267: 1212: 1101: 1019: 852: 892: 1382: 1351: 1294: 983: 1324: 756:
It's worth pointing out that finding even a single eigenvector of a symmetric matrix is not computable (in exact real arithmetic according to the definitions in
1121: 872: 803: 2176: 654:
arithmetic operations using a technique based on Householder reduction. Determining the QR decomposition of a symmetric tridiagonal matrix costs
732:
fall in either direction. In both situations, the matrix is diagonal. A situation where an iteration of the algorithm "does nothing" is called a
1845: 1942:
Bochkanov Sergey Anatolyevich. ALGLIB User Guide - General Matrix operations - Singular value decomposition . ALGLIB Project. 2010-12-11. URL:
772:
In that case, the matrix is a multiple of the identity matrix, and its eigendecomposition is immediate. Be aware though that the resulting
2297: 2144: 2322: 2317: 2169: 1878: 451: 1946: 1126: 592: 1627:
implements this iterative method, with some modifications to cover the case where the singular values are very small (
2343: 2276: 2162: 1746: 1538:. After arranging the computation in a suitable shape, he discovered that the qd algorithm is in fact the iteration 2307: 2234: 752:
Figure 2: How the output of a single iteration of QR or LR are affected when two eigenvalues approach each other
699: 383:{\displaystyle A_{k+1}=R_{k}Q_{k}=Q_{k}^{-1}Q_{k}R_{k}Q_{k}=Q_{k}^{-1}A_{k}Q_{k}=Q_{k}^{\mathsf {T}}A_{k}Q_{k},} 768: 728: 440:
In this crude form the iterations are relatively expensive. This can be mitigated by first bringing the matrix
913: 2266: 1640: 36: 1643:. The QR algorithm can also be implemented in infinite dimensions with corresponding convergence results. 520: 727:
A single iteration causes the ellipse to tilt or "fall" towards the x-axis. In the event where the large
2220: 1217: 657: 514: 1453:
is a composite of all the orthogonal similarity transforms required to get there. Thus the columns of
2271: 733: 434: 2185: 2058: 1722: 1024: 703:
Figure 1: How the output of a single iteration of the QR or LR algorithm varies alongside its input
20: 1713:
Vera N. Kublanovskaya, "On some algorithms for the solution of the complete eigenvalue problem,"
808: 2053: 1246: 1197: 1070: 988: 837: 2230: 1396:
are explicitly performed, some authors, for instance Watkins, suggested changing its name to
985:
is transformed via a small-size Householder similarity transformation to the first column of
877: 737: 48: 2225: 2091: 2084:
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis
1660: 1607:
algorithm starts with reducing a general matrix into a bidiagonal one. This variant of the
1360: 1329: 1272: 961: 40: 32: 8: 2204: 1947:
https://www.webcitation.org/5utO4iSnR?url=http://www.alglib.net/matrixops/general/svd.php
1405: 1303: 757: 406: 2095: 2107: 2004: 1786: 1669: 1106: 857: 788: 575: 44: 1846:"linear algebra - Why is uncomputability of the spectral decomposition not a problem?" 1976: 1959: 1926: 1874: 1742: 1477: 145: 60: 56: 2135: 1895: 2240: 2099: 2063: 2014: 1971: 1918: 1910: 1825: 1694: 1632: 1527: 1470: 1393: 571: 102: 52: 1943: 2281: 1765: 1631:). Together with a first step using Householder reflections and, if appropriate, 1612: 1421: 445: 2199: 2139: 2019: 1992: 1922: 1636: 1624: 1481: 402: 2337: 2245: 2079: 2075: 2041: 1930: 1717:, vol. 1, no. 3, pages 637–657 (1963, received Feb 1961). Also published in: 1699: 1682: 1401: 2149: 1914: 1830: 1805: 1420:
The QR algorithm can be seen as a more sophisticated variation of the basic
2154: 2125: 2037: 2082:(1965). "Calculating the singular values and pseudo-inverse of a matrix". 874:. In this case, the ratio of the two semi-axes of the ellipse approaches 748: 1591:, applied on a tridiagonal matrix, from which the LR algorithm follows. 2129: 2111: 1485: 773: 426: 77:
be a real matrix of which we want to compute the eigenvalues, and let
2261: 720: 2103: 2067: 958:
as in the explicit version; then, at each step, the first column of
2009: 1896:"From qd to LR, or, how were the qd and LR algorithms discovered?" 743: 1488:. Stiefel suggested that Rutishauser use the sequence of moments 716: 2312: 2302: 1620: 2136:
Notes on orthogonal bases and the workings of the QR algorithm
1123:, is the polynomial that defines the shifting strategy (often 691:
one or two iterations, making it efficient as well as robust.
574:, then the upper Hessenberg matrix is also symmetric and thus 1871:
The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods
2044:(1990). "Accurate singular values of bidiagonal matrices". 1741:(3rd ed.). Baltimore: Johns Hopkins University Press. 1719:
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
707:
The basic QR algorithm can be visualized in the case where
405:
and hence they have the same eigenvalues. The algorithm is
63:, multiply the factors in the reverse order, and iterate. 1392:
Since in the modern implicit version of the procedure no
51:, working independently. The basic idea is to perform a 1668:(3), pages 265–271 (1961, received October 1959). 1424:. Recall that the power algorithm repeatedly multiplies 506:{\textstyle {\tfrac {10}{3}}n^{3}+{\mathcal {O}}(n^{2})} 1715:
USSR Computational Mathematics and Mathematical Physics
1300:). Then successive Householder transformations of size 898:, which simply means removing its last row and column. 711:
is a positive-definite symmetric matrix. In that case,
647:{\textstyle {\tfrac {4}{3}}n^{3}+{\mathcal {O}}(n^{2})} 1187:{\displaystyle p(x)=(x-\lambda )(x-{\bar {\lambda }})} 779: 597: 595: 523: 456: 454: 43:. The QR algorithm was developed in the late 1950s by 1958:
Deift, Percy; Li, Luenchau C.; Tomei, Carlos (1985).
1480:, who worked at that time as a research assistant of 1476:
The LR algorithm was developed in the early 1950s by
1363: 1353:
to upper Hessenberg form. This operation is known as
1332: 1306: 1275: 1249: 1220: 1200: 1129: 1109: 1073: 1027: 991: 964: 916: 880: 860: 840: 811: 791: 660: 205: 2046:
SIAM Journal on Scientific and Statistical Computing
1894:
Parlett, Beresford N.; Gutknecht, Martin H. (2011),
1326:
are performed in order to return the working matrix
1522:are arbitrary vectors) to find the eigenvalues of 1376: 1345: 1318: 1288: 1261: 1235: 1206: 1186: 1115: 1095: 1059: 1013: 977: 950: 886: 866: 846: 826: 797: 679: 646: 558: 505: 382: 1415: 513:arithmetic operations using a technique based on 2335: 1991:Colbrook, Matthew J.; Hansen, Anders C. (2019). 1893: 805:which the ellipse represents gets replaced with 1445:is the diagonal matrix of eigenvalues to which 776:can be quite far from the original eigenbasis. 744:Finding eigenvalues versus finding eigenvectors 1990: 1945:Accessed: 2010-12-11. (Archived by WebCite at 1732: 1730: 2170: 1736: 66: 2184: 1957: 1803: 1785: 1658:J.G.F. Francis, "The QR Transformation, I", 905: 854:is approximately the smallest eigenvalue of 736:. The strategy employed by the algorithm is 169:is an upper triangular matrix. We then form 2036: 1960:"Toda flows with infinitely many variables" 1814:methods for symmetric tridiagonal matrices" 1804:Ortega, James M.; Kaiser, Henry F. (1963). 1781: 1779: 1727: 1628: 2177: 2163: 2074: 1993:"On the infinite-dimensional QR algorithm" 1616: 767:While it may be impossible to compute the 2057: 2018: 2008: 1975: 1829: 1698: 1776: 1760: 1758: 1530:for this task and developed it into the 1243:are the two eigenvalues of the trailing 747: 698: 55:, writing the matrix as a product of an 35:: that is, a procedure to calculate the 2308:Basic Linear Algebra Subprograms (BLAS) 1868: 1680: 951:{\displaystyle A_{0}=QAQ^{\mathsf {T}}} 416:Under certain conditions, the matrices 2336: 1764: 1737:Golub, G. H.; Van Loan, C. F. (1996). 1721:, vol.1, no. 4, pages 555–570 (1961). 942: 351: 2158: 1755: 1465:The QR algorithm was preceded by the 559:{\textstyle 6n^{2}+{\mathcal {O}}(n)} 425:converge to a triangular matrix, the 1387: 1639:routine for the computation of the 1532:quotient–difference algorithm 1526:. Rutishauser took an algorithm of 780:Speeding up: Shifting and deflation 13: 881: 663: 623: 542: 482: 16:Algorithm to calculate eigenvalues 14: 2355: 2119: 1903:IMA Journal of Numerical Analysis 1594: 1236:{\displaystyle {\bar {\lambda }}} 680:{\displaystyle {\mathcal {O}}(n)} 1770:Applied Numerical Linear Algebra 1723:doi:10.1016/0041-5553(63)90168-X 902:is in particular discontinuous. 694: 1984: 1951: 1936: 1887: 738:iteration towards a fixed-point 437:provides a bound on the error. 1964:Journal of Functional Analysis 1862: 1838: 1797: 1707: 1674: 1652: 1416:Interpretation and convergence 1227: 1181: 1175: 1160: 1157: 1145: 1139: 1133: 1090: 1077: 1044: 1031: 1008: 995: 674: 668: 641: 628: 553: 547: 500: 487: 1: 1646: 1060:{\displaystyle p(A_{k})e_{1}} 1977:10.1016/0022-1236(85)90065-5 1641:singular value decomposition 1422:"power" eigenvalue algorithm 37:eigenvalues and eigenvectors 7: 1683:"The QR Transformation, II" 827:{\displaystyle M-\lambda I} 10: 2360: 2221:System of linear equations 2030: 2020:10.1007/s00211-019-01047-5 1873:. Philadelphia, PA: SIAM. 1869:Watkins, David S. (2007). 1681:Francis, J. G. F. (1962). 1670:doi:10.1093/comjnl/4.3.265 1460: 570:If the original matrix is 67:The practical QR algorithm 2290: 2272:Cache-oblivious algorithm 2254: 2213: 2192: 1262:{\displaystyle 2\times 2} 906:The implicit QR algorithm 435:Gershgorin circle theorem 2344:Numerical linear algebra 2323:General purpose software 2186:Numerical linear algebra 2145:Module for the QR Method 1791:Numerical Linear Algebra 1617:Golub & Kahan (1965) 1207:{\displaystyle \lambda } 1096:{\displaystyle p(A_{k})} 1014:{\displaystyle p(A_{k})} 847:{\displaystyle \lambda } 94:-th step (starting with 21:numerical linear algebra 1629:Demmel & Kahan 1990 1615:was first described by 1611:for the computation of 1605:the Golub-Kahan-Reinsch 1384:is sufficiently small. 1269:principal submatrix of 887:{\displaystyle \infty } 589:. This procedure costs 413:similarity transforms. 409:because it proceeds by 1700:10.1093/comjnl/4.4.332 1457:are the eigenvectors. 1378: 1347: 1320: 1290: 1263: 1237: 1208: 1188: 1117: 1097: 1061: 1015: 979: 952: 888: 868: 848: 828: 799: 753: 719:in 2 dimensions or an 715:can be depicted as an 704: 681: 648: 560: 507: 384: 2318:Specialized libraries 2231:Matrix multiplication 2226:Matrix decompositions 1997:Numerische Mathematik 1915:10.1093/imanum/drq003 1831:10.1093/comjnl/6.1.99 1789:; Bau, David (1997). 1449:converged, and where 1379: 1377:{\displaystyle A_{k}} 1348: 1346:{\displaystyle A_{k}} 1321: 1298:implicit double-shift 1291: 1289:{\displaystyle A_{k}} 1264: 1238: 1209: 1189: 1118: 1098: 1062: 1016: 980: 978:{\displaystyle A_{k}} 953: 889: 869: 849: 829: 800: 751: 702: 682: 649: 578:, and so are all the 561: 515:Householder reduction 508: 385: 49:Vera N. Kublanovskaya 1818:The Computer Journal 1687:The Computer Journal 1661:The Computer Journal 1564:(LU decomposition), 1433:, upon convergence, 1361: 1330: 1304: 1273: 1247: 1218: 1198: 1127: 1107: 1071: 1025: 989: 962: 914: 878: 858: 838: 809: 789: 658: 593: 521: 452: 203: 33:eigenvalue algorithm 2205:Numerical stability 2096:1965SJNA....2..205G 1923:20.500.11850/159536 1787:Trefethen, Lloyd N. 1739:Matrix Computations 1599:One variant of the 1319:{\displaystyle r+1} 758:computable analysis 356: 316: 265: 2126:Eigenvalue problem 1374: 1343: 1316: 1286: 1259: 1233: 1204: 1184: 1113: 1093: 1057: 1011: 975: 948: 884: 864: 844: 824: 795: 769:eigendecomposition 754: 705: 677: 644: 606: 556: 503: 465: 407:numerically stable 380: 340: 299: 248: 101:), we compute the 45:John G. F. Francis 2331: 2330: 1880:978-0-89871-641-2 1635:, this forms the 1508:= 0, 1, … (where 1478:Heinz Rutishauser 1469:, which uses the 1398:Francis algorithm 1394:QR decompositions 1388:Renaming proposal 1230: 1178: 1116:{\displaystyle r} 867:{\displaystyle M} 798:{\displaystyle M} 605: 464: 146:orthogonal matrix 61:triangular matrix 57:orthogonal matrix 2351: 2241:Matrix splitting 2179: 2172: 2165: 2156: 2155: 2115: 2071: 2061: 2025: 2024: 2022: 2012: 1988: 1982: 1981: 1979: 1955: 1949: 1940: 1934: 1933: 1900: 1891: 1885: 1884: 1866: 1860: 1859: 1857: 1856: 1842: 1836: 1835: 1833: 1801: 1795: 1794: 1783: 1774: 1773: 1766:Demmel, James W. 1762: 1753: 1752: 1734: 1725: 1711: 1705: 1704: 1702: 1678: 1672: 1656: 1633:QR decomposition 1528:Alexander Aitken 1471:LU decomposition 1383: 1381: 1380: 1375: 1373: 1372: 1352: 1350: 1349: 1344: 1342: 1341: 1325: 1323: 1322: 1317: 1296:, the so-called 1295: 1293: 1292: 1287: 1285: 1284: 1268: 1266: 1265: 1260: 1242: 1240: 1239: 1234: 1232: 1231: 1223: 1213: 1211: 1210: 1205: 1193: 1191: 1190: 1185: 1180: 1179: 1171: 1122: 1120: 1119: 1114: 1102: 1100: 1099: 1094: 1089: 1088: 1066: 1064: 1063: 1058: 1056: 1055: 1043: 1042: 1020: 1018: 1017: 1012: 1007: 1006: 984: 982: 981: 976: 974: 973: 957: 955: 954: 949: 947: 946: 945: 926: 925: 893: 891: 890: 885: 873: 871: 870: 865: 853: 851: 850: 845: 833: 831: 830: 825: 804: 802: 801: 796: 686: 684: 683: 678: 667: 666: 653: 651: 650: 645: 640: 639: 627: 626: 617: 616: 607: 598: 588: 565: 563: 562: 557: 546: 545: 536: 535: 512: 510: 509: 504: 499: 498: 486: 485: 476: 475: 466: 457: 443: 400: 389: 387: 386: 381: 376: 375: 366: 365: 355: 354: 348: 336: 335: 326: 325: 315: 307: 295: 294: 285: 284: 275: 274: 264: 256: 244: 243: 234: 233: 221: 220: 198: 168: 157: 143: 132: 103:QR decomposition 100: 93: 89: 76: 53:QR decomposition 2359: 2358: 2354: 2353: 2352: 2350: 2349: 2348: 2334: 2333: 2332: 2327: 2286: 2282:Multiprocessing 2250: 2246:Sparse problems 2209: 2188: 2183: 2122: 2104:10.1137/0702016 2068:10.1137/0911052 2033: 2028: 1989: 1985: 1956: 1952: 1941: 1937: 1898: 1892: 1888: 1881: 1867: 1863: 1854: 1852: 1844: 1843: 1839: 1802: 1798: 1784: 1777: 1763: 1756: 1749: 1735: 1728: 1712: 1708: 1679: 1675: 1657: 1653: 1649: 1613:singular values 1597: 1590: 1582: 1573: 1563: 1555: 1546: 1521: 1514: 1503: 1494: 1463: 1418: 1410:Francis QR step 1390: 1368: 1364: 1362: 1359: 1358: 1337: 1333: 1331: 1328: 1327: 1305: 1302: 1301: 1280: 1276: 1274: 1271: 1270: 1248: 1245: 1244: 1222: 1221: 1219: 1216: 1215: 1199: 1196: 1195: 1170: 1169: 1128: 1125: 1124: 1108: 1105: 1104: 1084: 1080: 1072: 1069: 1068: 1051: 1047: 1038: 1034: 1026: 1023: 1022: 1002: 998: 990: 987: 986: 969: 965: 963: 960: 959: 941: 940: 936: 921: 917: 915: 912: 911: 908: 879: 876: 875: 859: 856: 855: 839: 836: 835: 810: 807: 806: 790: 787: 786: 782: 746: 697: 662: 661: 659: 656: 655: 635: 631: 622: 621: 612: 608: 596: 594: 591: 590: 587: 579: 541: 540: 531: 527: 522: 519: 518: 494: 490: 481: 480: 471: 467: 455: 453: 450: 449: 446:Hessenberg form 441: 424: 399: 391: 371: 367: 361: 357: 350: 349: 344: 331: 327: 321: 317: 308: 303: 290: 286: 280: 276: 270: 266: 257: 252: 239: 235: 229: 225: 210: 206: 204: 201: 200: 197: 188: 179: 170: 167: 159: 149: 142: 134: 131: 122: 113: 105: 95: 91: 84: 78: 72: 69: 17: 12: 11: 5: 2357: 2347: 2346: 2329: 2328: 2326: 2325: 2320: 2315: 2310: 2305: 2300: 2294: 2292: 2288: 2287: 2285: 2284: 2279: 2274: 2269: 2264: 2258: 2256: 2252: 2251: 2249: 2248: 2243: 2238: 2228: 2223: 2217: 2215: 2211: 2210: 2208: 2207: 2202: 2200:Floating point 2196: 2194: 2190: 2189: 2182: 2181: 2174: 2167: 2159: 2153: 2152: 2147: 2142: 2140:Peter J. Olver 2133: 2121: 2120:External links 2118: 2117: 2116: 2090:(2): 205–224. 2080:Kahan, William 2076:Golub, Gene H. 2072: 2059:10.1.1.48.3740 2052:(5): 873–912. 2042:Kahan, William 2032: 2029: 2027: 2026: 1983: 1970:(3): 358–402. 1950: 1935: 1909:(3): 741–754, 1886: 1879: 1861: 1837: 1796: 1775: 1754: 1747: 1726: 1706: 1693:(4): 332–345. 1673: 1650: 1648: 1645: 1596: 1595:Other variants 1593: 1586: 1578: 1568: 1559: 1551: 1542: 1519: 1512: 1501: 1492: 1482:Eduard Stiefel 1462: 1459: 1417: 1414: 1389: 1386: 1371: 1367: 1340: 1336: 1315: 1312: 1309: 1283: 1279: 1258: 1255: 1252: 1229: 1226: 1203: 1183: 1177: 1174: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1112: 1092: 1087: 1083: 1079: 1076: 1054: 1050: 1046: 1041: 1037: 1033: 1030: 1010: 1005: 1001: 997: 994: 972: 968: 944: 939: 935: 932: 929: 924: 920: 907: 904: 883: 863: 843: 823: 820: 817: 814: 794: 781: 778: 745: 742: 696: 693: 676: 673: 670: 665: 643: 638: 634: 630: 625: 620: 615: 611: 604: 601: 583: 555: 552: 549: 544: 539: 534: 530: 526: 502: 497: 493: 489: 484: 479: 474: 470: 463: 460: 420: 395: 379: 374: 370: 364: 360: 353: 347: 343: 339: 334: 330: 324: 320: 314: 311: 306: 302: 298: 293: 289: 283: 279: 273: 269: 263: 260: 255: 251: 247: 242: 238: 232: 228: 224: 219: 216: 213: 209: 193: 184: 174: 163: 138: 127: 118: 109: 82: 71:Formally, let 68: 65: 15: 9: 6: 4: 3: 2: 2356: 2345: 2342: 2341: 2339: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2295: 2293: 2289: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2259: 2257: 2253: 2247: 2244: 2242: 2239: 2236: 2232: 2229: 2227: 2224: 2222: 2219: 2218: 2216: 2212: 2206: 2203: 2201: 2198: 2197: 2195: 2191: 2187: 2180: 2175: 2173: 2168: 2166: 2161: 2160: 2157: 2151: 2148: 2146: 2143: 2141: 2137: 2134: 2131: 2127: 2124: 2123: 2113: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2060: 2055: 2051: 2047: 2043: 2039: 2038:Demmel, James 2035: 2034: 2021: 2016: 2011: 2006: 2002: 1998: 1994: 1987: 1978: 1973: 1969: 1965: 1961: 1954: 1948: 1944: 1939: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1897: 1890: 1882: 1876: 1872: 1865: 1851: 1847: 1841: 1832: 1827: 1824:(1): 99–101. 1823: 1819: 1815: 1813: 1809: 1800: 1792: 1788: 1782: 1780: 1771: 1767: 1761: 1759: 1750: 1748:0-8018-5414-8 1744: 1740: 1733: 1731: 1724: 1720: 1716: 1710: 1701: 1696: 1692: 1688: 1684: 1677: 1671: 1667: 1663: 1662: 1655: 1651: 1644: 1642: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1592: 1589: 1585: 1581: 1577: 1571: 1567: 1562: 1558: 1554: 1550: 1545: 1541: 1537: 1533: 1529: 1525: 1518: 1511: 1507: 1500: 1497: 1491: 1487: 1483: 1479: 1474: 1472: 1468: 1458: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1427: 1423: 1413: 1411: 1408:use the term 1407: 1403: 1399: 1395: 1385: 1369: 1365: 1356: 1355:bulge chasing 1338: 1334: 1313: 1310: 1307: 1299: 1281: 1277: 1256: 1253: 1250: 1224: 1201: 1172: 1166: 1163: 1154: 1151: 1148: 1142: 1136: 1130: 1110: 1085: 1081: 1074: 1052: 1048: 1039: 1035: 1028: 1003: 999: 992: 970: 966: 937: 933: 930: 927: 922: 918: 903: 899: 897: 861: 841: 821: 818: 815: 812: 792: 777: 775: 770: 765: 761: 759: 750: 741: 739: 735: 730: 725: 722: 718: 714: 710: 701: 695:Visualization 692: 688: 671: 636: 632: 618: 613: 609: 602: 599: 586: 582: 577: 573: 568: 550: 537: 532: 528: 524: 516: 495: 491: 477: 472: 468: 461: 458: 448:(which costs 447: 438: 436: 432: 428: 423: 419: 414: 412: 408: 404: 398: 394: 377: 372: 368: 362: 358: 345: 341: 337: 332: 328: 322: 318: 312: 309: 304: 300: 296: 291: 287: 281: 277: 271: 267: 261: 258: 253: 249: 245: 240: 236: 230: 226: 222: 217: 214: 211: 207: 196: 192: 187: 183: 177: 173: 166: 162: 156: 152: 147: 141: 137: 130: 126: 121: 117: 112: 108: 104: 98: 88: 81: 75: 64: 62: 59:and an upper 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 2193:Key concepts 2087: 2083: 2049: 2045: 2003:(1): 17–83. 2000: 1996: 1986: 1967: 1963: 1953: 1938: 1906: 1902: 1889: 1870: 1864: 1853:. Retrieved 1850:MathOverflow 1849: 1840: 1821: 1817: 1811: 1807: 1799: 1790: 1769: 1738: 1718: 1714: 1709: 1690: 1686: 1676: 1665: 1659: 1654: 1609:QR algorithm 1608: 1604: 1601:QR algorithm 1600: 1598: 1587: 1583: 1579: 1575: 1569: 1565: 1560: 1556: 1552: 1548: 1543: 1539: 1536:qd algorithm 1535: 1531: 1523: 1516: 1509: 1505: 1498: 1495: 1489: 1475: 1467:LR algorithm 1466: 1464: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1425: 1419: 1409: 1397: 1391: 1354: 1297: 1103:, of degree 909: 900: 895: 783: 766: 762: 755: 726: 712: 708: 706: 689: 687:operations. 584: 580: 569: 439: 430: 421: 417: 415: 410: 396: 392: 199:. Note that 194: 190: 185: 181: 175: 171: 164: 160: 154: 150: 139: 135: 128: 124: 119: 115: 110: 106: 96: 86: 79: 73: 70: 29:QR iteration 28: 25:QR algorithm 24: 18: 2150:C++ Library 1623:subroutine 734:fixed point 576:tridiagonal 390:so all the 2235:algorithms 2130:PlanetMath 2010:2011.08172 1855:2021-08-09 1647:References 1486:ETH Zurich 774:eigenbasis 427:Schur form 411:orthogonal 2262:CPU cache 2054:CiteSeerX 1931:0272-4979 1254:× 1228:¯ 1225:λ 1202:λ 1176:¯ 1173:λ 1167:− 1155:λ 1152:− 1067:), where 882:∞ 842:λ 819:λ 816:− 729:semi-axis 721:ellipsoid 572:symmetric 444:to upper 310:− 259:− 90:. At the 85: := 2338:Category 2291:Software 2255:Hardware 2214:Problems 1768:(1997). 1441:, where 1406:Van Loan 1194:, where 896:deflated 2112:2949777 2092:Bibcode 2031:Sources 1793:. SIAM. 1772:. SIAM. 1461:History 1439:QΛ 717:ellipse 403:similar 189:  148:(i.e., 123:  47:and by 2313:LAPACK 2303:MATLAB 2110:  2056:  1929:  1877:  1745:  1637:DGESVD 1625:DBDSQR 1621:LAPACK 1619:. The 1443:Λ 834:where 158:) and 144:is an 133:where 41:matrix 31:is an 23:, the 2298:ATLAS 2108:JSTOR 2005:arXiv 1899:(PDF) 1806:"The 1402:Golub 39:of a 2277:SIMD 1927:ISSN 1875:ISBN 1810:and 1743:ISBN 1515:and 1404:and 1214:and 1021:(or 401:are 2267:TLB 2138:by 2128:at 2100:doi 2064:doi 2015:doi 2001:143 1972:doi 1919:hdl 1911:doi 1826:doi 1695:doi 1534:or 1484:at 429:of 99:= 0 27:or 19:In 2340:: 2106:. 2098:. 2086:. 2078:; 2062:. 2050:11 2048:. 2040:; 2013:. 1999:. 1995:. 1968:64 1966:. 1962:. 1925:, 1917:, 1907:31 1905:, 1901:, 1848:. 1820:. 1816:. 1812:QR 1808:LL 1778:^ 1757:^ 1729:^ 1689:. 1685:. 1664:, 1603:, 1574:= 1572:+1 1547:= 1504:, 1437:= 1435:AQ 1412:. 1400:. 459:10 180:= 178:+1 153:= 114:= 2237:) 2233:( 2178:e 2171:t 2164:v 2132:. 2114:. 2102:: 2094:: 2088:2 2070:. 2066:: 2023:. 2017:: 2007:: 1980:. 1974:: 1921:: 1913:: 1883:. 1858:. 1834:. 1828:: 1822:6 1751:. 1703:. 1697:: 1691:4 1666:4 1588:k 1584:L 1580:k 1576:U 1570:k 1566:A 1561:k 1557:U 1553:k 1549:L 1544:k 1540:A 1524:A 1520:0 1517:y 1513:0 1510:x 1506:k 1502:0 1499:x 1496:A 1493:0 1490:y 1455:Q 1451:Q 1447:A 1431:A 1426:A 1370:k 1366:A 1339:k 1335:A 1314:1 1311:+ 1308:r 1282:k 1278:A 1257:2 1251:2 1182:) 1164:x 1161:( 1158:) 1149:x 1146:( 1143:= 1140:) 1137:x 1134:( 1131:p 1111:r 1091:) 1086:k 1082:A 1078:( 1075:p 1053:1 1049:e 1045:) 1040:k 1036:A 1032:( 1029:p 1009:) 1004:k 1000:A 996:( 993:p 971:k 967:A 943:T 938:Q 934:A 931:Q 928:= 923:0 919:A 862:M 822:I 813:M 793:M 713:A 709:A 675:) 672:n 669:( 664:O 642:) 637:2 633:n 629:( 624:O 619:+ 614:3 610:n 603:3 600:4 585:k 581:A 554:) 551:n 548:( 543:O 538:+ 533:2 529:n 525:6 501:) 496:2 492:n 488:( 483:O 478:+ 473:3 469:n 462:3 442:A 431:A 422:k 418:A 397:k 393:A 378:, 373:k 369:Q 363:k 359:A 352:T 346:k 342:Q 338:= 333:k 329:Q 323:k 319:A 313:1 305:k 301:Q 297:= 292:k 288:Q 282:k 278:R 272:k 268:Q 262:1 254:k 250:Q 246:= 241:k 237:Q 231:k 227:R 223:= 218:1 215:+ 212:k 208:A 195:k 191:Q 186:k 182:R 176:k 172:A 165:k 161:R 155:Q 151:Q 140:k 136:Q 129:k 125:R 120:k 116:Q 111:k 107:A 97:k 92:k 87:A 83:0 80:A 74:A

Index

numerical linear algebra
eigenvalue algorithm
eigenvalues and eigenvectors
matrix
John G. F. Francis
Vera N. Kublanovskaya
QR decomposition
orthogonal matrix
triangular matrix
QR decomposition
orthogonal matrix
similar
numerically stable
Schur form
Gershgorin circle theorem
Hessenberg form
Householder reduction
symmetric
tridiagonal

ellipse
ellipsoid
semi-axis
fixed point
iteration towards a fixed-point

computable analysis
eigendecomposition
eigenbasis
QR decompositions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.