Knowledge

Proportional-fair scheduling

Source 📝

44:. It is based upon maintaining a balance between two competing interests: Trying to maximize the total throughput of the network (wired or not) while at the same time allowing all users at least a minimal level of service. This is done by assigning each data flow a data rate or a scheduling priority (depending on the implementation) that is inversely proportional to its anticipated resource consumption. 771:
This technique can be further parametrized by using a "memory constant" that determines the period of time over which the station data rate used in calculating the priority function is averaged. A larger constant generally improves throughput at the expense of reduced short-term fairness.
376:
in the formula above, we are able to adjust the balance between serving the best mobiles (the ones in the best channel conditions) more often and serving the costly mobiles often enough that they have an acceptable level of performance.
432:) the scheduler acts in a "packet" round-robin fashion and serves all mobiles one after the other (but not equally often in time), with no regard for resource consumption, and such that each user gets the same amount of data. The ( 194:
Another way to schedule data transfer that leads to similar results is through the use of prioritization coefficients. Here we schedule the channel for the station that has the maximum of the priority function:
716:) scheduler could be implemented by providing the same amount of time & spectrum for each user, irrespective of the desired packet size, channel quality and data rate (MCS) used. The proportional fair ( 243: 632: 658: 122: 740: 688: 580: 508: 456: 404: 766: 714: 606: 534: 482: 430: 354: 310: 987:
Parruca, Donald; Grysla, Marius; Gortzen, Simon; Gross, James (2013), "Analytical Model of Proportional Fair Scheduling in Interference-Limited OFDMA/LTE Networks",
374: 330: 149: 554: 288: 266: 170:, the cost may be the required time to transmit a certain number of bits using the modulation and error coding scheme that this required. An example of this is 74: 185:, the cost may be the number of nearby base station sites that can not use the same frequency channel simultaneously, in view to avoid co-channel interference. 536:
then the scheduler will always serve the mobile with the best channel conditions. This will maximize the throughput of the channel while stations with low
966:; Kumaran, K.; Ramanan, K.; Stoyar, A.; Whitting, Phil (February 2001), "Providing Quality of Service over a Shared Wireless Link", 796:- a more general rule for selecting among different alternatives, based on the same principle of balancing efficiency and fairness. 484:) scheduler could be called "maximum fairness scheduler" (to be used to provide equal throughout to voice users for example). If 1063: 885:
Ji Yang; Zhang Yifan; Wang Ying; Zhang Ping (2004), "Average rate updating mechanism in proportional fair scheduler for HDR",
1022: 814:
Kushner, H. J.; Whiting, P.A. (July 2004), "Convergence of proportional-fair sharing algorithms under general conditions",
201: 17: 1058: 1048: 902: 1068: 869: 864:, Jens Zander, Ki Won Sung, and Ben Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, 182: 611: 637: 938: 79: 828: 933: 823: 793: 787: 781: 768:) scheduler could be called "equal effort scheduler" or "time/spectrum Round Robin scheduler". 719: 667: 559: 487: 435: 383: 160: 745: 693: 585: 513: 461: 409: 339: 295: 175: 53: 31: 359: 315: 1002: 661: 127: 41: 8: 1006: 1028: 992: 951: 924:(September 2004), "Instability of the Proportional Fair Scheduling Algorithm for HDR", 841: 539: 273: 251: 59: 268:
denotes the data rate potentially achievable for the station in the present time slot.
159:
spread spectrum cellular networks, the cost may be the required energy per bit in the
1053: 1018: 898: 865: 955: 1032: 1010: 975: 943: 890: 845: 833: 1014: 963: 921: 167: 894: 1042: 947: 837: 861: 979: 884: 997: 151:
is the amount of consumed resources per data bit. For instance:
887:
IEEE Global Telecommunications Conference, 2004. GLOBECOM '04
962: 171: 156: 52:
Proportionally fair scheduling can be achieved by means of
989:
2013 IEEE 78th Vehicular Technology Conference (VTC Fall)
986: 608:) scheduler could be called "max rate" scheduler. Using 56:(WFQ), by setting the scheduling weights for data flow 784:- an introduction to the general topic of scheduling. 748: 722: 696: 670: 640: 614: 588: 562: 542: 516: 490: 464: 438: 412: 386: 362: 342: 318: 298: 276: 254: 204: 130: 82: 62: 290:
is the historical average data rate of this station.
238:{\displaystyle P={\frac {T^{\alpha }}{R^{\beta }}}} 760: 734: 708: 682: 652: 626: 600: 574: 548: 528: 502: 476: 450: 424: 398: 368: 348: 324: 304: 282: 260: 237: 143: 116: 68: 1040: 813: 926:IEEE Transactions on Wireless Communications 816:IEEE Transactions on Wireless Communications 996: 937: 827: 30:For the resource allocation problem, see 857: 855: 47: 920: 14: 1041: 880: 878: 807: 189: 178:is used as the primary costing factor. 852: 332:tune the "fairness" of the scheduler. 889:, vol. 6, pp. 3464–3466, 875: 790:- a different scheduling algorithm. 163:(the increased interference level). 24: 914: 25: 1080: 660:will yield the proportional fair 27:Data network scheduling algorithm 627:{\displaystyle \alpha \approx 1} 653:{\displaystyle \beta \approx 1} 181:In wireless networks with fast 166:In wireless communication with 13: 1: 1064:Network scheduling algorithms 800: 117:{\displaystyle w_{i}=1/c_{i}} 1015:10.1109/VTCFall.2013.6692106 556:are not served at all. The ( 38:Proportional-fair scheduling 7: 895:10.1109/GLOCOM.2004.1379010 775: 10: 1085: 664:used in 3G networks. The ( 183:Dynamic Channel Allocation 29: 1059:Mobile telecommunications 1049:Radio resource management 735:{\displaystyle \alpha =1} 683:{\displaystyle \alpha =1} 575:{\displaystyle \alpha =1} 503:{\displaystyle \alpha =1} 451:{\displaystyle \alpha =0} 399:{\displaystyle \alpha =0} 174:networks, where reported 761:{\displaystyle \beta =1} 709:{\displaystyle \beta =1} 601:{\displaystyle \beta =0} 529:{\displaystyle \beta =0} 477:{\displaystyle \beta =1} 425:{\displaystyle \beta =1} 1069:Fair division protocols 948:10.1109/TWC.2004.833419 838:10.1109/TWC.2004.830826 349:{\displaystyle \alpha } 305:{\displaystyle \alpha } 794:Proportional-fair rule 788:Round-robin scheduling 782:Scheduling (computing) 762: 736: 710: 684: 654: 628: 602: 576: 550: 530: 504: 478: 452: 426: 400: 370: 369:{\displaystyle \beta } 350: 326: 325:{\displaystyle \beta } 306: 284: 262: 246: 239: 161:transmit power control 145: 118: 70: 40:is a compromise-based 763: 737: 711: 685: 655: 629: 603: 577: 551: 531: 505: 479: 453: 427: 401: 380:In the extreme case ( 371: 351: 327: 307: 285: 263: 240: 197: 146: 144:{\displaystyle c_{i}} 119: 71: 54:weighted fair queuing 48:Weighted fair queuing 32:Proportional division 746: 720: 694: 668: 662:scheduling algorithm 638: 612: 586: 560: 540: 514: 488: 462: 436: 410: 384: 360: 340: 316: 296: 274: 252: 202: 128: 80: 60: 42:scheduling algorithm 1007:2013arXiv1303.1778P 968:IEEE Communications 190:User prioritization 18:Proportionally fair 758: 732: 706: 680: 650: 624: 598: 572: 546: 526: 500: 474: 448: 422: 396: 366: 346: 322: 302: 280: 258: 235: 141: 114: 66: 1024:978-1-4673-6187-3 980:10.1109/35.900644 549:{\displaystyle T} 283:{\displaystyle R} 261:{\displaystyle T} 233: 124:, where the cost 69:{\displaystyle i} 16:(Redirected from 1076: 1035: 1000: 991:, pp. 1–7, 983: 964:Andrews, Matthew 959: 941: 932:(5): 1422–1426, 922:Andrews, Matthew 908: 907: 882: 873: 859: 850: 849: 831: 822:(4): 1250–1259, 811: 767: 765: 764: 759: 741: 739: 738: 733: 715: 713: 712: 707: 689: 687: 686: 681: 659: 657: 656: 651: 633: 631: 630: 625: 607: 605: 604: 599: 581: 579: 578: 573: 555: 553: 552: 547: 535: 533: 532: 527: 509: 507: 506: 501: 483: 481: 480: 475: 457: 455: 454: 449: 431: 429: 428: 423: 405: 403: 402: 397: 375: 373: 372: 367: 355: 353: 352: 347: 331: 329: 328: 323: 311: 309: 308: 303: 289: 287: 286: 281: 267: 265: 264: 259: 244: 242: 241: 236: 234: 232: 231: 222: 221: 212: 150: 148: 147: 142: 140: 139: 123: 121: 120: 115: 113: 112: 103: 92: 91: 75: 73: 72: 67: 21: 1084: 1083: 1079: 1078: 1077: 1075: 1074: 1073: 1039: 1038: 1025: 917: 915:Further reading 912: 911: 905: 883: 876: 860: 853: 812: 808: 803: 778: 747: 744: 743: 721: 718: 717: 695: 692: 691: 669: 666: 665: 639: 636: 635: 613: 610: 609: 587: 584: 583: 561: 558: 557: 541: 538: 537: 515: 512: 511: 489: 486: 485: 463: 460: 459: 437: 434: 433: 411: 408: 407: 385: 382: 381: 361: 358: 357: 341: 338: 337: 317: 314: 313: 297: 294: 293: 275: 272: 271: 253: 250: 249: 227: 223: 217: 213: 211: 203: 200: 199: 192: 168:link adaptation 135: 131: 129: 126: 125: 108: 104: 99: 87: 83: 81: 78: 77: 61: 58: 57: 50: 35: 28: 23: 22: 15: 12: 11: 5: 1082: 1072: 1071: 1066: 1061: 1056: 1051: 1037: 1036: 1023: 984: 974:(2): 150–154, 960: 939:10.1.1.73.4092 916: 913: 910: 909: 903: 874: 851: 805: 804: 802: 799: 798: 797: 791: 785: 777: 774: 757: 754: 751: 731: 728: 725: 705: 702: 699: 679: 676: 673: 649: 646: 643: 623: 620: 617: 597: 594: 591: 571: 568: 565: 545: 525: 522: 519: 499: 496: 493: 473: 470: 467: 447: 444: 441: 421: 418: 415: 395: 392: 389: 365: 345: 334: 333: 321: 301: 291: 279: 269: 257: 230: 226: 220: 216: 210: 207: 191: 188: 187: 186: 179: 164: 138: 134: 111: 107: 102: 98: 95: 90: 86: 65: 49: 46: 26: 9: 6: 4: 3: 2: 1081: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1046: 1044: 1034: 1030: 1026: 1020: 1016: 1012: 1008: 1004: 999: 994: 990: 985: 981: 977: 973: 969: 965: 961: 957: 953: 949: 945: 940: 935: 931: 927: 923: 919: 918: 906: 904:0-7803-8794-5 900: 896: 892: 888: 881: 879: 871: 867: 863: 858: 856: 847: 843: 839: 835: 830: 829:10.1.1.8.6408 825: 821: 817: 810: 806: 795: 792: 789: 786: 783: 780: 779: 773: 769: 755: 752: 749: 729: 726: 723: 703: 700: 697: 677: 674: 671: 663: 647: 644: 641: 621: 618: 615: 595: 592: 589: 569: 566: 563: 543: 523: 520: 517: 497: 494: 491: 471: 468: 465: 445: 442: 439: 419: 416: 413: 393: 390: 387: 378: 363: 343: 336:By adjusting 319: 299: 292: 277: 270: 255: 248: 247: 245: 228: 224: 218: 214: 208: 205: 196: 184: 180: 177: 173: 169: 165: 162: 158: 154: 153: 152: 136: 132: 109: 105: 100: 96: 93: 88: 84: 63: 55: 45: 43: 39: 33: 19: 988: 971: 967: 929: 925: 886: 862:Guowang Miao 819: 815: 809: 770: 379: 335: 198: 193: 51: 37: 36: 1043:Categories 870:1107143217 801:References 998:1303.1778 934:CiteSeerX 824:CiteSeerX 750:β 724:α 698:β 672:α 645:≈ 642:β 619:≈ 616:α 590:β 564:α 518:β 492:α 466:β 440:α 414:β 388:α 364:β 344:α 320:β 300:α 229:β 219:α 1054:Wireless 956:34595035 776:See also 1033:8236469 1003:Bibcode 872:, 2016. 846:6780351 1031:  1021:  954:  936:  901:  868:  844:  826:  1029:S2CID 993:arXiv 952:S2CID 842:S2CID 1019:ISBN 899:ISBN 866:ISBN 742:and 690:and 634:and 582:and 510:and 458:and 406:and 356:and 312:and 172:EVDO 157:CDMA 1011:doi 976:doi 944:doi 891:doi 834:doi 176:SNR 155:In 76:to 1045:: 1027:, 1017:, 1009:, 1001:, 972:39 970:, 950:, 942:, 928:, 897:, 877:^ 854:^ 840:, 832:, 818:, 1013:: 1005:: 995:: 982:. 978:: 958:. 946:: 930:3 893:: 848:. 836:: 820:3 756:1 753:= 730:1 727:= 704:1 701:= 678:1 675:= 648:1 622:1 596:0 593:= 570:1 567:= 544:T 524:0 521:= 498:1 495:= 472:1 469:= 446:0 443:= 420:1 417:= 394:0 391:= 278:R 256:T 225:R 215:T 209:= 206:P 137:i 133:c 110:i 106:c 101:/ 97:1 94:= 89:i 85:w 64:i 34:. 20:)

Index

Proportionally fair
Proportional division
scheduling algorithm
weighted fair queuing
CDMA
transmit power control
link adaptation
EVDO
SNR
Dynamic Channel Allocation
scheduling algorithm
Scheduling (computing)
Round-robin scheduling
Proportional-fair rule
CiteSeerX
10.1.1.8.6408
doi
10.1109/TWC.2004.830826
S2CID
6780351


Guowang Miao
ISBN
1107143217


doi
10.1109/GLOCOM.2004.1379010
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.