Knowledge

Proper orbital elements

Source 📝

135: 22: 542: 566: 518: 554: 530: 119: 391:
To calculate proper elements for an object, one usually conducts a detailed simulation of its motion over timespans of several millions of years. Such a simulation must take into account many details of celestial mechanics including perturbations by the planets. Subsequently, one extracts quantities
399:
in the early 20th century. Later analytic methods often included thousands of perturbing corrections for each particular object. Presently, the method of choice is to use a computer to numerically integrate the equations of
392:
from the simulation which remain unchanged over this long timespan; for example, the mean inclination, mean eccentricity, and mean semi-major axis. These are the proper orbital elements.
249:
For most bodies, the osculating elements are relatively close to the proper elements because precession and perturbation effects are relatively small (see diagram). For over 99% of
166:
are constants of motion of an object in space that remain practically unchanged over an astronomically long timescale. The term is usually used to describe the three quantities:
246:, such changes usually occur on timescales of thousands of years, while proper elements are meant to be practically constant over at least tens of millions of years. 86: 58: 484:
Z. Knežević: COMPUTATION OF ASTEROID PROPER ELEMENTS: RECENT ADVANCES, Serbian Astronomical Journal, vol. 195, pp. 1-8 (2017).
39: 278:). Nevertheless, this difference is non-negligible for any purposes where precision is of importance. As an example, the asteroid 65: 238:
and (in principle) predictable manner due to such effects as perturbations from planets or other bodies, and precession (e.g.
72: 105: 54: 43: 508: 79: 432: 404:, and extract constants of motion directly from a numerical analysis of the predicted positions. 32: 452: 412: 239: 235: 347: 300: 279: 265: 227: 395:
Historically, various approximate analytic calculations were made, starting with those of
8: 570: 134: 501: 558: 546: 401: 396: 118: 316: 283: 219: 127: 495: 522: 215: 211: 122:
Distribution of the difference between proper and osculating orbital elements for
586: 427: 408: 258: 223: 147: 407:
At present the most prominent use of proper orbital elements is in the study of
483: 337: 293: 580: 254: 143: 534: 496:
Latest calculations of proper elements for numbered minor planets at astDys
385: 243: 418:
is the lowest numbered asteroid to not have any proper orbital elements.
357: 307: 272: 231: 480:, pp. 603–612 in Asteroids III, University of Arizona Press (2002). 415: 502:
Asteroid proper orbital elements dataset at Asteroid Families Portal
21: 411:, following in the footsteps of the pioneering work of Hirayama. A 381: 250: 139: 123: 330:
while its proper orbital elements (independent of epoch) are
163: 529: 138:
Osculating (left) and proper (right) orbital elements for
455:. Department of Mathematics, University of Pisa, Italy 388:, which are in strong orbital resonance with Jupiter. 380:
A notable exception to this small-difference rule are
506: 46:. Unsourced material may be challenged and removed. 453:"AstDyS-2 Ceres Synthetic Proper Orbital Elements" 257:, the differences are less than 0.02 AU (for 578: 126:with semi-major axes lying between 2 and 4  332: 288: 210:The proper elements can be contrasted with the 478:The Determination of Asteroid Proper Elements 106:Learn how and when to remove this message 445: 234:. Those osculating elements change in a 133: 117: 150:clumps are not discernible on the left. 579: 282:has osculating orbital elements (at 44:adding citations to reliable sources 15: 13: 470: 14: 598: 489: 218:observed at a particular time or 564: 552: 540: 528: 516: 20: 31:needs additional citations for 1: 438: 7: 421: 10: 603: 55:"Proper orbital elements" 433:Perturbation (astronomy) 156:proper orbital elements 151: 131: 413:Mars-crosser asteroid 240:perihelion precession 171:proper semimajor axis 137: 121: 476:Z. Knežević et al., 40:improve this article 286:November 26, 2005) 184:proper eccentricity 402:celestial dynamics 397:Kiyotsugu Hirayama 197:proper inclination 152: 132: 409:asteroid families 378: 377: 328: 327: 116: 115: 108: 90: 594: 569: 568: 567: 557: 556: 555: 545: 544: 543: 533: 532: 521: 520: 519: 512: 464: 463: 461: 460: 449: 368:2.767096 AU 333: 289: 216:orbital elements 111: 104: 100: 97: 91: 89: 48: 24: 16: 602: 601: 597: 596: 595: 593: 592: 591: 577: 576: 575: 565: 563: 553: 551: 541: 539: 527: 517: 515: 507: 492: 473: 471:Further reading 468: 467: 458: 456: 451: 450: 446: 441: 428:Hirayama family 424: 361: 351: 341: 271:), and 2° (for 259:semi-major axis 224:semi-major axis 204: 191: 178: 160:proper elements 148:asteroid family 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 600: 590: 589: 574: 573: 561: 549: 537: 525: 505: 504: 499: 491: 490:External links 488: 487: 486: 481: 472: 469: 466: 465: 443: 442: 440: 437: 436: 435: 430: 423: 420: 376: 375: 372: 369: 365: 364: 359: 354: 349: 344: 339: 326: 325: 322: 319: 315:2.765515  312: 311: 304: 297: 236:quasi-periodic 222:, such as the 208: 207: 202: 194: 189: 181: 176: 114: 113: 28: 26: 19: 9: 6: 4: 3: 2: 599: 588: 585: 584: 582: 572: 562: 560: 550: 548: 538: 536: 531: 526: 524: 514: 513: 510: 503: 500: 497: 494: 493: 485: 482: 479: 475: 474: 454: 448: 444: 434: 431: 429: 426: 425: 419: 417: 414: 410: 405: 403: 398: 393: 389: 387: 386:Kirkwood gaps 384:lying in the 383: 373: 370: 367: 366: 363: 362: 355: 353: 352: 345: 343: 342: 335: 334: 331: 323: 320: 318: 314: 313: 310: 309: 305: 303: 302: 298: 296: 295: 291: 290: 287: 285: 281: 277: 274: 270: 267: 263: 260: 256: 255:asteroid belt 252: 247: 245: 241: 237: 233: 229: 225: 221: 217: 213: 205: 198: 195: 192: 185: 182: 179: 172: 169: 168: 167: 165: 161: 157: 149: 145: 144:asteroid belt 141: 136: 129: 125: 120: 110: 107: 99: 96:December 2008 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: –  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 571:Solar System 477: 457:. Retrieved 447: 406: 394: 390: 379: 356: 346: 336: 329: 306: 299: 292: 275: 268: 266:eccentricity 264:), 0.1 (for 261: 248: 244:Solar System 228:eccentricity 209: 200: 196: 187: 183: 174: 170: 159: 155: 153: 102: 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 559:Outer space 547:Spaceflight 273:inclination 232:inclination 146:. Note how 459:2011-09-19 439:References 416:132 Aethra 242:). In the 214:Keplerian 212:osculating 66:newspapers 523:Astronomy 382:asteroids 324:10.5868° 251:asteroids 140:asteroids 124:asteroids 581:Category 422:See also 374:9.6474° 371:0.116198 321:0.080015 509:Portals 253:in the 142:in the 80:scholar 587:Orbits 230:, and 193:), and 162:of an 82:  75:  68:  61:  53:  535:Stars 284:epoch 280:Ceres 220:epoch 164:orbit 87:JSTOR 73:books 154:The 59:news 158:or 42:by 583:: 317:AU 226:, 206:). 180:), 128:AU 511:: 498:. 462:. 360:p 358:i 350:p 348:e 340:p 338:a 308:i 301:e 294:a 276:i 269:e 262:a 203:p 201:i 199:( 190:p 188:e 186:( 177:p 175:a 173:( 130:. 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Proper orbital elements"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

asteroids
AU

asteroids
asteroid belt
asteroid family
orbit
osculating
orbital elements
epoch
semi-major axis
eccentricity
inclination
quasi-periodic
perihelion precession
Solar System
asteroids
asteroid belt

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.