Knowledge

Projective bundle

Source 📝

184:,O*). To see why, recall that a projective bundle comes equipped with transition functions on double intersections of a suitable open cover. On triple overlaps, any lift of these transition functions satisfies the cocycle condition up to an invertible function. The collection of these functions forms a 2-cocycle which vanishes in 1177: 1497: 2089: 1596: 1352: 1055: 849: 753: 501: 1028:
are generically elliptic curves. Because every elliptic curve is a genus 1 curve with a distinguished point, there exists a global section of the fibration. Because of this global section, there exists a model of
1920: 105: 1731: 1392: 961: 1026: 1628: 890: 144: 252: 1387: 991: 1648: 1047: 917: 893: 1967: 1505: 1191: 1172:{\displaystyle X\to \mathbb {P} ({\mathcal {O}}_{\mathbb {P} ^{1}}(4)\oplus {\mathcal {O}}_{\mathbb {P} ^{1}}(6)\oplus {\mathcal {O}}_{\mathbb {P} ^{1}})} 761: 691: 2256: 2305: 418: 1826: 169:
gives a projective bundle by taking the projective spaces of the fibers, but not all projective bundles arise in this way: there is an
57: 2352: 2317: 1492:{\displaystyle {\mathcal {O}}_{\mathbb {P} ^{1}}(4),{\mathcal {O}}_{\mathbb {P} ^{1}}(6),{\mathcal {O}}_{\mathbb {P} ^{1}}} 1653: 925: 390: 2344: 996: 2383: 2378: 1604: 866: 2339: 2161: 2150: 118: 1630:. Note this equation is well-defined because each term in the Weierstrass equation has total degree 342: 192:,O*) only if the projective bundle is the projectivization of a vector bundle. In particular, if 1950:
Chern classes as the coefficients in the relation; this is the approach taken by Grothendieck.
221: 2362: 2327: 2285: 1360: 1183: 969: 8: 1786: 1633: 2289: 2223: 2166: 2129: 1032: 902: 170: 2084:{\displaystyle A_{k}(\mathbf {P} (E))=\bigoplus _{i=0}^{r-1}\zeta ^{i}A_{k-r+1+i}(X).} 1591:{\displaystyle a_{i}\in H^{0}(\mathbb {P} ^{1},{\mathcal {O}}_{\mathbb {P} ^{1}}(2i))} 2348: 2313: 2293: 2273: 2145: 1650:(meaning the degree of the coefficient plus the degree of the monomial. For example, 599:. Moreover, this natural map vanishes at a point exactly when the point is a line in 163: 1347:{\displaystyle y^{2}z+a_{1}xyz+a_{3}yz^{2}=x^{3}+a_{2}x^{2}z+a_{4}xz^{2}+a_{6}z^{3}} 2334: 2265: 863:
Many non-trivial examples of projective bundles can be found using fibrations over
358: 216: 174: 32: 2254:
Elencwajg, G.; Narasimhan, M. S. (1983), "Projective bundles on a complex torus",
1961:
is smooth). In particular, for Chow groups, there is the direct sum decomposition
2358: 2323: 2309: 2281: 1953:
Over fields other than the complex field, the same description remains true with
1774: 844:{\displaystyle g^{*}({\mathcal {O}}(-1))\simeq {\mathcal {O}}(-1)\otimes p^{*}L.} 748:{\displaystyle g:\mathbf {P} (E){\overset {\sim }{\to }}\mathbf {P} (E\otimes L)} 197: 412:), there is a natural exact sequence (called the tautological exact sequence): 112: 2372: 2277: 2155: 496:{\displaystyle 0\to {\mathcal {O}}_{\mathbf {P} (E)}(-1)\to p^{*}E\to Q\to 0} 159: 2269: 662:⊕ 1) is referred to as the projective completion (or "compactification") of 28: 1798: 20: 897: 1954: 574: 855:
by the universal property applied to the line bundle on the right.)
2228: 1915:{\displaystyle \zeta ^{r}+c_{1}(E)\zeta ^{r-1}+\cdots +c_{r}(E)=0} 2222:
Propp, Oron Y. (2019-05-22). "Constructing explicit K3 spectra".
642:⊕ 1), called the hyperplane at infinity, and the complement of 107:
and transition automorphisms are linear. Over a regular scheme
1946:. One interesting feature of this description is that one can 626:
and the trivial line bundle (i.e., the structure sheaf). Then
614:
A particularly useful instance of this construction is when
2308:. 3. Folge., vol. 2 (2nd ed.), Berlin, New York: 2094:
As it turned out, this decomposition remains valid even if
521:
be vector bundles (locally free sheaves of finite rank) on
153: 100:{\displaystyle X\times _{S}U\simeq \mathbb {P} _{U}^{n}} 273:
is characterized by the universal property that says:
1970: 1829: 1656: 1636: 1607: 1508: 1395: 1363: 1194: 1058: 1035: 999: 972: 928: 905: 869: 764: 694: 421: 224: 121: 60: 603:; in other words, the zero-locus of this section is 2253: 1726:{\displaystyle {\text{deg}}(a_{1}xyz)=2+(4+6+0)=12} 2083: 1914: 1725: 1642: 1622: 1590: 1491: 1381: 1346: 1171: 1041: 1020: 985: 955: 911: 884: 843: 747: 495: 246: 138: 99: 1736: 681:by a line bundle; precisely, given a line bundle 2370: 2306:Ergebnisse der Mathematik und ihrer Grenzgebiete 2257:Journal für die reine und angewandte Mathematik 16:Fiber bundle whose fibers are projective spaces 1957:in place of cohomology ring (still assuming 510:is called the tautological quotient-bundle. 146:for some vector bundle (locally free sheaf) 2347:, vol. 52, New York: Springer-Verlag, 2098:is not smooth nor projective. In contrast, 1745:be a complex smooth projective variety and 2333: 2209: 2197: 2185: 1049:giving a morphism to the projective bundle 956:{\displaystyle \pi :X\to \mathbb {P} ^{1}} 208:,O*)=0, and so this obstruction vanishes. 2227: 1610: 1561: 1537: 1477: 1442: 1407: 1154: 1119: 1084: 1066: 1008: 943: 872: 211:The projective bundle of a vector bundle 123: 115:, every projective bundle is of the form 82: 553:be the projection. Then the natural map 154:The projective bundle of a vector bundle 2136:, the vector spaces, are contractible. 2371: 2299: 2242: 50:-bundle if it is locally a projective 2221: 2132:, morally because that the fibers of 1021:{\displaystyle p\in \mathbb {P} ^{1}} 361:in the sense that when a line bundle 1499:, respectively, and the coefficients 685:, there is the natural isomorphism: 397:for a more explicit construction of 2158:(an example of a projective bundle) 1389:represent the local coordinates of 13: 1553: 1469: 1434: 1399: 1146: 1111: 1076: 805: 780: 431: 311:is to specify a line subbundle of 14: 2395: 1985: 1749:a complex vector bundle of rank 1623:{\displaystyle \mathbb {P} ^{1}} 919:is a K3 surface with a fibration 885:{\displaystyle \mathbb {P} ^{1}} 726: 702: 438: 139:{\displaystyle \mathbb {P} (E)} 2236: 2215: 2203: 2191: 2179: 2075: 2069: 1998: 1995: 1989: 1981: 1903: 1897: 1859: 1853: 1737:Cohomology ring and Chow group 1714: 1696: 1684: 1662: 1585: 1582: 1573: 1532: 1460: 1454: 1425: 1419: 1166: 1137: 1131: 1102: 1096: 1070: 1062: 938: 819: 810: 797: 794: 785: 775: 742: 730: 717: 712: 706: 487: 481: 465: 462: 453: 448: 442: 425: 330:, one gets the line subbundle 241: 235: 133: 127: 1: 2345:Graduate Texts in Mathematics 2188:, Ch. II, Exercise 7.10. (c). 2172: 1769:be the projective bundle of 7: 2200:, Ch. II, Proposition 7.12. 2139: 1601:are sections of sheaves on 896:. For example, an elliptic 858: 677:) is stable under twisting 573:is a global section of the 293:through the projection map 10: 2400: 2151:cone (algebraic geometry) 650:) can be identified with 215:is the same thing as the 42:over a Noetherian scheme 2300:Fulton, William (1998), 343:tautological line bundle 247:{\displaystyle G_{1}(E)} 38:By definition, a scheme 2270:10.1515/crll.1983.340.1 1793:) through the pullback 2085: 2030: 1916: 1727: 1644: 1624: 1599: 1592: 1493: 1383: 1355: 1348: 1180: 1173: 1043: 1022: 987: 964: 957: 913: 886: 845: 749: 669:The projective bundle 497: 365:gives a factorization 261:The projective bundle 248: 140: 101: 2162:Severi–Brauer variety 2086: 2004: 1917: 1820:)) with the relation 1728: 1645: 1625: 1593: 1501: 1494: 1384: 1382:{\displaystyle x,y,z} 1349: 1187: 1174: 1051: 1044: 1023: 988: 986:{\displaystyle E_{p}} 966:such that the fibers 958: 921: 914: 887: 846: 750: 634:) is a hyperplane in 498: 269:) of a vector bundle 249: 141: 102: 2212:, Ch. II, Lemma 7.9. 1968: 1827: 1654: 1634: 1605: 1506: 1393: 1361: 1192: 1184:Weierstrass equation 1056: 1033: 997: 970: 926: 903: 894:Lefschetz fibrations 867: 762: 692: 419: 322:For example, taking 222: 119: 58: 2302:Intersection theory 1942:-th Chern class of 851:(In fact, one gets 381:is the pullback of 96: 2384:Algebraic geometry 2379:Algebraic topology 2340:Algebraic Geometry 2167:Hirzebruch surface 2130:Gysin homomorphism 2081: 1912: 1723: 1643:{\displaystyle 12} 1640: 1620: 1588: 1489: 1379: 1344: 1169: 1039: 1018: 983: 953: 909: 882: 841: 745: 618:is the direct sum 493: 353:). Moreover, this 244: 136: 97: 80: 2354:978-0-387-90244-9 2335:Hartshorne, Robin 2319:978-3-540-62046-4 2146:Proj construction 1812:(1)) generates H( 1797:. Then the first 1660: 1042:{\displaystyle X} 912:{\displaystyle X} 723: 277:Given a morphism 33:projective spaces 31:whose fibers are 25:projective bundle 2391: 2365: 2330: 2296: 2246: 2240: 2234: 2233: 2231: 2219: 2213: 2207: 2201: 2195: 2189: 2183: 2090: 2088: 2087: 2082: 2068: 2067: 2040: 2039: 2029: 2018: 1988: 1980: 1979: 1921: 1919: 1918: 1913: 1896: 1895: 1877: 1876: 1852: 1851: 1839: 1838: 1732: 1730: 1729: 1724: 1674: 1673: 1661: 1658: 1649: 1647: 1646: 1641: 1629: 1627: 1626: 1621: 1619: 1618: 1613: 1597: 1595: 1594: 1589: 1572: 1571: 1570: 1569: 1564: 1557: 1556: 1546: 1545: 1540: 1531: 1530: 1518: 1517: 1498: 1496: 1495: 1490: 1488: 1487: 1486: 1485: 1480: 1473: 1472: 1453: 1452: 1451: 1450: 1445: 1438: 1437: 1418: 1417: 1416: 1415: 1410: 1403: 1402: 1388: 1386: 1385: 1380: 1353: 1351: 1350: 1345: 1343: 1342: 1333: 1332: 1320: 1319: 1307: 1306: 1291: 1290: 1281: 1280: 1268: 1267: 1255: 1254: 1242: 1241: 1220: 1219: 1204: 1203: 1178: 1176: 1175: 1170: 1165: 1164: 1163: 1162: 1157: 1150: 1149: 1130: 1129: 1128: 1127: 1122: 1115: 1114: 1095: 1094: 1093: 1092: 1087: 1080: 1079: 1069: 1048: 1046: 1045: 1040: 1027: 1025: 1024: 1019: 1017: 1016: 1011: 992: 990: 989: 984: 982: 981: 962: 960: 959: 954: 952: 951: 946: 918: 916: 915: 910: 891: 889: 888: 883: 881: 880: 875: 850: 848: 847: 842: 834: 833: 809: 808: 784: 783: 774: 773: 754: 752: 751: 746: 729: 724: 716: 705: 598: 572: 502: 500: 499: 494: 477: 476: 452: 451: 441: 435: 434: 359:universal bundle 310: 253: 251: 250: 245: 234: 233: 217:Grassmann bundle 175:cohomology group 145: 143: 142: 137: 126: 106: 104: 103: 98: 95: 90: 85: 73: 72: 2399: 2398: 2394: 2393: 2392: 2390: 2389: 2388: 2369: 2368: 2355: 2320: 2310:Springer-Verlag 2250: 2249: 2241: 2237: 2220: 2216: 2210:Hartshorne 1977 2208: 2204: 2198:Hartshorne 1977 2196: 2192: 2186:Hartshorne 1977 2184: 2180: 2175: 2142: 2123: 2106: 2045: 2041: 2035: 2031: 2019: 2008: 1984: 1975: 1971: 1969: 1966: 1965: 1933: 1891: 1887: 1866: 1862: 1847: 1843: 1834: 1830: 1828: 1825: 1824: 1807: 1775:cohomology ring 1739: 1669: 1665: 1657: 1655: 1652: 1651: 1635: 1632: 1631: 1614: 1609: 1608: 1606: 1603: 1602: 1565: 1560: 1559: 1558: 1552: 1551: 1550: 1541: 1536: 1535: 1526: 1522: 1513: 1509: 1507: 1504: 1503: 1481: 1476: 1475: 1474: 1468: 1467: 1466: 1446: 1441: 1440: 1439: 1433: 1432: 1431: 1411: 1406: 1405: 1404: 1398: 1397: 1396: 1394: 1391: 1390: 1362: 1359: 1358: 1338: 1334: 1328: 1324: 1315: 1311: 1302: 1298: 1286: 1282: 1276: 1272: 1263: 1259: 1250: 1246: 1237: 1233: 1215: 1211: 1199: 1195: 1193: 1190: 1189: 1182:defined by the 1158: 1153: 1152: 1151: 1145: 1144: 1143: 1123: 1118: 1117: 1116: 1110: 1109: 1108: 1088: 1083: 1082: 1081: 1075: 1074: 1073: 1065: 1057: 1054: 1053: 1034: 1031: 1030: 1012: 1007: 1006: 998: 995: 994: 977: 973: 971: 968: 967: 947: 942: 941: 927: 924: 923: 904: 901: 900: 876: 871: 870: 868: 865: 864: 861: 829: 825: 804: 803: 779: 778: 769: 765: 763: 760: 759: 725: 715: 701: 693: 690: 689: 654:. In this way, 577: 554: 472: 468: 437: 436: 430: 429: 428: 420: 417: 416: 294: 289:, to factorize 254:of 1-planes in 229: 225: 223: 220: 219: 198:Riemann surface 156: 122: 120: 117: 116: 91: 86: 81: 68: 64: 59: 56: 55: 17: 12: 11: 5: 2397: 2387: 2386: 2381: 2367: 2366: 2353: 2331: 2318: 2297: 2248: 2247: 2245:, Theorem 3.3. 2235: 2214: 2202: 2190: 2177: 2176: 2174: 2171: 2170: 2169: 2164: 2159: 2153: 2148: 2141: 2138: 2115: 2102: 2092: 2091: 2080: 2077: 2074: 2071: 2066: 2063: 2060: 2057: 2054: 2051: 2048: 2044: 2038: 2034: 2028: 2025: 2022: 2017: 2014: 2011: 2007: 2003: 2000: 1997: 1994: 1991: 1987: 1983: 1978: 1974: 1929: 1923: 1922: 1911: 1908: 1905: 1902: 1899: 1894: 1890: 1886: 1883: 1880: 1875: 1872: 1869: 1865: 1861: 1858: 1855: 1850: 1846: 1842: 1837: 1833: 1805: 1738: 1735: 1722: 1719: 1716: 1713: 1710: 1707: 1704: 1701: 1698: 1695: 1692: 1689: 1686: 1683: 1680: 1677: 1672: 1668: 1664: 1639: 1617: 1612: 1587: 1584: 1581: 1578: 1575: 1568: 1563: 1555: 1549: 1544: 1539: 1534: 1529: 1525: 1521: 1516: 1512: 1484: 1479: 1471: 1465: 1462: 1459: 1456: 1449: 1444: 1436: 1430: 1427: 1424: 1421: 1414: 1409: 1401: 1378: 1375: 1372: 1369: 1366: 1341: 1337: 1331: 1327: 1323: 1318: 1314: 1310: 1305: 1301: 1297: 1294: 1289: 1285: 1279: 1275: 1271: 1266: 1262: 1258: 1253: 1249: 1245: 1240: 1236: 1232: 1229: 1226: 1223: 1218: 1214: 1210: 1207: 1202: 1198: 1168: 1161: 1156: 1148: 1142: 1139: 1136: 1133: 1126: 1121: 1113: 1107: 1104: 1101: 1098: 1091: 1086: 1078: 1072: 1068: 1064: 1061: 1038: 1015: 1010: 1005: 1002: 980: 976: 950: 945: 940: 937: 934: 931: 908: 879: 874: 860: 857: 840: 837: 832: 828: 824: 821: 818: 815: 812: 807: 802: 799: 796: 793: 790: 787: 782: 777: 772: 768: 756: 755: 744: 741: 738: 735: 732: 728: 722: 719: 714: 711: 708: 704: 700: 697: 504: 503: 492: 489: 486: 483: 480: 475: 471: 467: 464: 461: 458: 455: 450: 447: 444: 440: 433: 427: 424: 320: 319: 243: 240: 237: 232: 228: 155: 152: 135: 132: 129: 125: 113:smooth variety 94: 89: 84: 79: 76: 71: 67: 63: 54:-space; i.e., 15: 9: 6: 4: 3: 2: 2396: 2385: 2382: 2380: 2377: 2376: 2374: 2364: 2360: 2356: 2350: 2346: 2342: 2341: 2336: 2332: 2329: 2325: 2321: 2315: 2311: 2307: 2303: 2298: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2258: 2252: 2251: 2244: 2239: 2230: 2225: 2218: 2211: 2206: 2199: 2194: 2187: 2182: 2178: 2168: 2165: 2163: 2160: 2157: 2156:ruled surface 2154: 2152: 2149: 2147: 2144: 2143: 2137: 2135: 2131: 2127: 2122: 2118: 2114: 2110: 2105: 2101: 2097: 2078: 2072: 2064: 2061: 2058: 2055: 2052: 2049: 2046: 2042: 2036: 2032: 2026: 2023: 2020: 2015: 2012: 2009: 2005: 2001: 1992: 1976: 1972: 1964: 1963: 1962: 1960: 1956: 1951: 1949: 1945: 1941: 1937: 1932: 1928: 1909: 1906: 1900: 1892: 1888: 1884: 1881: 1878: 1873: 1870: 1867: 1863: 1856: 1848: 1844: 1840: 1835: 1831: 1823: 1822: 1821: 1819: 1815: 1811: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1734: 1720: 1717: 1711: 1708: 1705: 1702: 1699: 1693: 1690: 1687: 1681: 1678: 1675: 1670: 1666: 1637: 1615: 1598: 1579: 1576: 1566: 1547: 1542: 1527: 1523: 1519: 1514: 1510: 1500: 1482: 1463: 1457: 1447: 1428: 1422: 1412: 1376: 1373: 1370: 1367: 1364: 1354: 1339: 1335: 1329: 1325: 1321: 1316: 1312: 1308: 1303: 1299: 1295: 1292: 1287: 1283: 1277: 1273: 1269: 1264: 1260: 1256: 1251: 1247: 1243: 1238: 1234: 1230: 1227: 1224: 1221: 1216: 1212: 1208: 1205: 1200: 1196: 1186: 1185: 1179: 1159: 1140: 1134: 1124: 1105: 1099: 1089: 1059: 1050: 1036: 1013: 1003: 1000: 978: 974: 963: 948: 935: 932: 929: 920: 906: 899: 895: 877: 856: 854: 838: 835: 830: 826: 822: 816: 813: 800: 791: 788: 770: 766: 739: 736: 733: 720: 709: 698: 695: 688: 687: 686: 684: 680: 676: 672: 667: 665: 661: 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 617: 612: 610: 606: 602: 596: 592: 589: 585: 581: 576: 571: 568: 564: 561: 557: 552: 548: 544: 540: 536: 532: 528: 524: 520: 516: 511: 509: 490: 484: 478: 473: 469: 459: 456: 445: 422: 415: 414: 413: 411: 407: 402: 400: 396: 394: 388: 384: 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 341:, called the 340: 337: 333: 329: 325: 317: 314: 309: 305: 301: 297: 292: 288: 284: 280: 276: 275: 274: 272: 268: 264: 259: 257: 238: 230: 226: 218: 214: 209: 207: 203: 199: 196:is a compact 195: 191: 187: 183: 179: 176: 172: 168: 165: 161: 160:vector bundle 151: 149: 130: 114: 110: 92: 87: 77: 74: 69: 65: 61: 53: 49: 45: 41: 36: 34: 30: 26: 22: 2338: 2301: 2264:(340): 1–5, 2261: 2255: 2238: 2217: 2205: 2193: 2181: 2133: 2125: 2120: 2116: 2112: 2108: 2103: 2099: 2095: 2093: 1958: 1952: 1947: 1943: 1939: 1935: 1930: 1926: 1924: 1817: 1813: 1809: 1802: 1794: 1790: 1787:algebra over 1782: 1778: 1770: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1740: 1600: 1502: 1356: 1188: 1181: 1052: 965: 922: 862: 852: 757: 682: 678: 674: 670: 668: 663: 659: 655: 651: 647: 643: 639: 635: 631: 627: 623: 619: 615: 613: 608: 604: 600: 594: 590: 587: 583: 579: 569: 566: 562: 559: 555: 550: 546: 542: 538: 534: 530: 526: 522: 518: 514: 512: 507: 505: 409: 405: 403: 398: 392: 386: 382: 378: 374: 370: 366: 362: 354: 350: 346: 338: 335: 331: 327: 323: 321: 315: 312: 307: 303: 299: 295: 290: 286: 282: 278: 270: 266: 262: 260: 255: 212: 210: 205: 201: 193: 189: 185: 181: 177: 166: 157: 147: 108: 51: 47: 43: 39: 37: 29:fiber bundle 24: 18: 2243:Fulton 1998 2128:), via the 1799:Chern class 1773:. Then the 1753:on it. Let 389:. See also 385:(-1) along 171:obstruction 21:mathematics 2373:Categories 2229:1810.08953 2173:References 898:K3 surface 758:such that 357:(-1) is a 111:such as a 2294:122557310 2278:0075-4102 2050:− 2033:ζ 2024:− 2006:⨁ 1955:Chow ring 1938:) is the 1882:⋯ 1871:− 1864:ζ 1832:ζ 1785:)) is an 1520:∈ 1141:⊕ 1106:⊕ 1063:→ 1004:∈ 939:→ 930:π 831:∗ 823:⊗ 814:− 801:≃ 789:− 771:∗ 737:⊗ 721:∼ 718:→ 575:sheaf hom 488:→ 482:→ 474:∗ 466:→ 457:− 426:→ 78:≃ 66:× 2337:(1977), 2140:See also 892:such as 859:Examples 334:(-1) of 2363:0463157 2328:1644323 2286:0691957 622:⊕ 1 of 558:(-1) → 173:in the 164:variety 162:over a 2361:  2351:  2326:  2316:  2292:  2284:  2276:  1948:define 1925:where 1357:where 582:(-1), 537:. Let 506:where 401:(-1). 326:to be 158:Every 2290:S2CID 2224:arXiv 586:G) = 391:Cone# 200:then 46:is a 27:is a 2349:ISBN 2314:ISBN 2274:ISSN 2262:1983 2111:) = 1801:ζ = 1765:) → 1741:Let 993:for 578:Hom( 549:) → 525:and 513:Let 306:) → 23:, a 2266:doi 1733:). 1659:deg 611:). 597:(1) 404:On 395:(1) 345:on 19:In 2375:: 2359:MR 2357:, 2343:, 2324:MR 2322:, 2312:, 2304:, 2288:, 2282:MR 2280:, 2272:, 2260:, 1789:H( 1777:H( 1757:: 1721:12 1638:12 666:. 593:⊗ 565:→ 541:: 529:= 517:⊂ 377:, 373:∘ 369:= 298:: 285:→ 281:: 258:. 150:. 35:. 2268:: 2232:. 2226:: 2134:E 2126:X 2124:( 2121:r 2119:- 2117:k 2113:A 2109:E 2107:( 2104:k 2100:A 2096:X 2079:. 2076:) 2073:X 2070:( 2065:i 2062:+ 2059:1 2056:+ 2053:r 2047:k 2043:A 2037:i 2027:1 2021:r 2016:0 2013:= 2010:i 2002:= 1999:) 1996:) 1993:E 1990:( 1986:P 1982:( 1977:k 1973:A 1959:X 1944:E 1940:i 1936:E 1934:( 1931:i 1927:c 1910:0 1907:= 1904:) 1901:E 1898:( 1893:r 1889:c 1885:+ 1879:+ 1874:1 1868:r 1860:) 1857:E 1854:( 1849:1 1845:c 1841:+ 1836:r 1818:E 1816:( 1814:P 1810:O 1808:( 1806:1 1803:c 1795:p 1791:X 1783:E 1781:( 1779:P 1771:E 1767:X 1763:E 1761:( 1759:P 1755:p 1751:r 1747:E 1743:X 1718:= 1715:) 1712:0 1709:+ 1706:6 1703:+ 1700:4 1697:( 1694:+ 1691:2 1688:= 1685:) 1682:z 1679:y 1676:x 1671:1 1667:a 1663:( 1616:1 1611:P 1586:) 1583:) 1580:i 1577:2 1574:( 1567:1 1562:P 1554:O 1548:, 1543:1 1538:P 1533:( 1528:0 1524:H 1515:i 1511:a 1483:1 1478:P 1470:O 1464:, 1461:) 1458:6 1455:( 1448:1 1443:P 1435:O 1429:, 1426:) 1423:4 1420:( 1413:1 1408:P 1400:O 1377:z 1374:, 1371:y 1368:, 1365:x 1340:3 1336:z 1330:6 1326:a 1322:+ 1317:2 1313:z 1309:x 1304:4 1300:a 1296:+ 1293:z 1288:2 1284:x 1278:2 1274:a 1270:+ 1265:3 1261:x 1257:= 1252:2 1248:z 1244:y 1239:3 1235:a 1231:+ 1228:z 1225:y 1222:x 1217:1 1213:a 1209:+ 1206:z 1201:2 1197:y 1167:) 1160:1 1155:P 1147:O 1138:) 1135:6 1132:( 1125:1 1120:P 1112:O 1103:) 1100:4 1097:( 1090:1 1085:P 1077:O 1071:( 1067:P 1060:X 1037:X 1014:1 1009:P 1001:p 979:p 975:E 949:1 944:P 936:X 933:: 907:X 878:1 873:P 853:g 839:. 836:L 827:p 820:) 817:1 811:( 806:O 798:) 795:) 792:1 786:( 781:O 776:( 767:g 743:) 740:L 734:E 731:( 727:P 713:) 710:E 707:( 703:P 699:: 696:g 683:L 679:E 675:E 673:( 671:P 664:E 660:E 658:( 656:P 652:E 648:E 646:( 644:P 640:E 638:( 636:P 632:E 630:( 628:P 624:E 620:E 616:F 609:E 607:( 605:P 601:E 595:O 591:G 588:q 584:q 580:O 570:G 567:q 563:F 560:q 556:O 551:X 547:F 545:( 543:P 539:q 535:E 533:/ 531:F 527:G 523:X 519:F 515:E 508:Q 491:0 485:Q 479:E 470:p 463:) 460:1 454:( 449:) 446:E 443:( 439:P 432:O 423:0 410:E 408:( 406:P 399:O 393:O 387:g 383:O 379:L 375:g 371:p 367:f 363:L 355:O 351:E 349:( 347:P 339:E 336:p 332:O 328:p 324:f 318:. 316:E 313:f 308:X 304:E 302:( 300:P 296:p 291:f 287:X 283:T 279:f 271:E 267:E 265:( 263:P 256:E 242:) 239:E 236:( 231:1 227:G 213:E 206:X 204:( 202:H 194:X 190:X 188:( 186:H 182:X 180:( 178:H 167:X 148:E 134:) 131:E 128:( 124:P 109:S 93:n 88:U 83:P 75:U 70:S 62:X 52:n 48:P 44:S 40:X

Index

mathematics
fiber bundle
projective spaces
smooth variety
vector bundle
variety
obstruction
cohomology group
Riemann surface
Grassmann bundle
tautological line bundle
universal bundle
Cone#O(1)
sheaf hom
Lefschetz fibrations
K3 surface
Weierstrass equation
cohomology ring
algebra over
Chern class
Chow ring
Gysin homomorphism
Proj construction
cone (algebraic geometry)
ruled surface
Severi–Brauer variety
Hirzebruch surface
Hartshorne 1977
Hartshorne 1977
Hartshorne 1977

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.