Knowledge

Primary ideal

Source đź“ť

971: 747: 1104: 114:
Various methods of generalizing primary ideals to noncommutative rings exist, but the topic is most often studied for commutative rings. Therefore, the rings in this article are assumed to be commutative rings with identity.
1163: 562: 828: 1876: 784: 663: 1539: 603: 277: 1701: 303: 1636: 179: 239: 209: 1574: 1004: 881: 668: 1796: 1745: 1598: 1486: 1462: 1438: 1414: 1390: 1028: 876: 852: 627: 331: 146: 506: 1343: 1822: 1772: 1721: 1033: 2080: 1109: 511: 789: 1827: 1962: 752: 632: 2091:(in French), MĂ©mor. Sci. Math., Fasc. CLIV. Gauthier-Villars & Cie, Editeur -Imprimeur-Libraire, Paris, p. 119, 1491: 567: 244: 1230: 1641: 2132: 282: 2127: 1603: 151: 966:{\displaystyle ({\overline {x}})\cap ({\overline {x}}^{2},{\overline {x}}{\overline {z}},{\overline {y}})} 214: 184: 103:, that is, can be written as an intersection of finitely many primary ideals. This result is known as the 1548: 742:{\displaystyle {\overline {x}}{\overline {y}}={\overline {z}}^{2}\in {\mathfrak {p}}^{2}={\mathfrak {q}}} 1542: 976: 104: 1777: 1726: 1579: 1467: 1443: 1419: 1395: 1371: 1009: 857: 833: 608: 312: 127: 1600:-primary, for example the infinite product of the maximal (and hence prime and hence primary) ideal 434: 1315: 1979:
Chatters, A. W.; Hajarnavis, C. R. (1971), "Non-commutative rings with primary decomposition",
1350: 431:
On the other hand, an ideal whose radical is prime is not necessarily primary: for example, if
410: 95:
The notion of primary ideals is important in commutative ring theory because every ideal of a
2109: 100: 1801: 2096: 2074: 2046: 2008: 1750: 1903:
See the references to Chatters–Hajarnavis, Goldman, Gorton–Heatherly, and Lesieur–Croisot.
8: 398: 380: 306: 32: 28: 1706: 2062: 2034: 2029: 1996: 1958: 108: 2053:
Gorton, Christine; Heatherly, Henry (2006), "Generalized primary rings and ideals",
1099:{\displaystyle ({\overline {x}}^{2},{\overline {x}}{\overline {z}},{\overline {y}})} 2024: 1988: 1950: 1703:
yields the zero ideal, which in this case is not primary (because the zero divisor
74: 39: 2092: 2070: 2042: 2004: 1305: 376: 96: 1946: 2121: 2066: 2038: 2000: 1992: 375:
is primary, and moreover an ideal is prime if and only if it is primary and
1464:-primary; since for example, in a Noetherian local ring with maximal ideal 387: 345: 124:
The definition can be rephrased in a more symmetric manner: a proper ideal
89: 372: 24: 17: 1723:
is not nilpotent). In fact, in a Noetherian ring, a nonempty product of
2052: 1265:, but at least they contain a power of P; for example the ideal ( 1158:{\displaystyle ({\overline {x}},{\overline {y}},{\overline {z}})} 557:{\displaystyle {\mathfrak {p}}=({\overline {x}},{\overline {z}})} 1978: 356:
is nilpotent. (Compare this to the case of prime ideals, where
1894:
To be precise, one usually uses this fact to prove the theorem.
1249:
is a maximal prime ideal, then any ideal containing a power of
823:{\displaystyle {\overline {y}}^{n}\not \in {\mathfrak {q}}} 1912:
For the proof of the second part see the article of Fuchs.
2015:
Goldman, Oscar (1969), "Rings and modules of quotients",
1871:{\displaystyle {\mathfrak {p}}^{n}\subset \cap _{i}Q_{i}} 779:{\displaystyle {\overline {x}}\not \in {\mathfrak {q}}} 658:{\displaystyle {\sqrt {\mathfrak {q}}}={\mathfrak {p}}} 2086: 1830: 1804: 1780: 1753: 1729: 1709: 1644: 1606: 1582: 1551: 1494: 1470: 1446: 1422: 1398: 1374: 1318: 1112: 1036: 1012: 979: 884: 860: 836: 792: 755: 671: 635: 611: 570: 514: 437: 315: 285: 247: 217: 187: 154: 130: 1534:{\displaystyle \cap _{n>0}{\mathfrak {m}}^{n}=0} 598:{\displaystyle {\mathfrak {q}}={\mathfrak {p}}^{2}} 1870: 1816: 1798:-primary if and only if there exists some integer 1790: 1766: 1739: 1715: 1695: 1630: 1592: 1568: 1533: 1480: 1456: 1432: 1408: 1384: 1337: 1157: 1098: 1022: 998: 965: 870: 846: 822: 778: 741: 657: 621: 597: 556: 500: 325: 297: 271: 233: 203: 173: 140: 2119: 1945: 2014: 854:is not primary. The primary decomposition of 360:is prime if and only if every zero divisor in 272:{\displaystyle x,y\in {\sqrt {\mathfrak {q}}}} 1690: 1668: 1625: 1613: 1696:{\displaystyle K/\langle x^{2},xy\rangle } 118: 2028: 298:{\displaystyle {\sqrt {\mathfrak {q}}}} 73: > 0. For example, in the 2120: 1631:{\displaystyle m=\langle x,y\rangle } 174:{\displaystyle xy\in {\mathfrak {q}}} 2089:Algèbre noethĂ©rienne non commutative 1981:The Quarterly Journal of Mathematics 1970: 1930: 1416:-primary but an infinite product of 234:{\displaystyle y\in {\mathfrak {q}}} 204:{\displaystyle x\in {\mathfrak {q}}} 1955:Introduction to Commutative Algebra 1834: 1783: 1732: 1585: 1569:{\displaystyle {\mathfrak {m}}^{n}} 1555: 1514: 1473: 1449: 1425: 1401: 1377: 1015: 863: 839: 815: 771: 734: 718: 650: 639: 614: 584: 573: 517: 318: 289: 263: 226: 196: 166: 133: 13: 1312:a prime ideal, then the kernel of 1261:-primary ideals need be powers of 14: 2144: 2103: 2087:Lesieur, L.; Croisot, R. (1963), 1921:Atiyah–Macdonald, Corollary 10.21 999:{\displaystyle ({\overline {x}})} 111:of a Noetherian ring is primary. 344:is primary if and only if every 2113:at Encyclopaedia of Mathematics 1791:{\displaystyle {\mathfrak {p}}} 1740:{\displaystyle {\mathfrak {p}}} 1593:{\displaystyle {\mathfrak {m}}} 1481:{\displaystyle {\mathfrak {m}}} 1457:{\displaystyle {\mathfrak {p}}} 1433:{\displaystyle {\mathfrak {p}}} 1409:{\displaystyle {\mathfrak {p}}} 1385:{\displaystyle {\mathfrak {p}}} 1023:{\displaystyle {\mathfrak {p}}} 871:{\displaystyle {\mathfrak {q}}} 847:{\displaystyle {\mathfrak {q}}} 622:{\displaystyle {\mathfrak {p}}} 409:, and this ideal is called the 326:{\displaystyle {\mathfrak {q}}} 141:{\displaystyle {\mathfrak {q}}} 1957:, Westview Press, p. 50, 1924: 1915: 1906: 1897: 1888: 1660: 1648: 1322: 1152: 1113: 1093: 1037: 993: 980: 960: 904: 898: 885: 551: 525: 501:{\displaystyle R=k/(xy-z^{2})} 495: 473: 465: 447: 1: 1939: 1368:A finite nonempty product of 1361:, is the intersection of all 1190:-primary ideal: all elements 405:is necessarily a prime ideal 397:is a primary ideal, then the 2030:10.1016/0021-8693(69)90004-0 1882: 1147: 1134: 1121: 1088: 1075: 1065: 1046: 988: 955: 942: 932: 913: 893: 799: 761: 701: 687: 677: 546: 533: 7: 1440:-primary ideals may not be 10: 2149: 1933:, Ch. IV, § 2, Exercise 3. 1543:Krull intersection theorem 1338:{\displaystyle A\to A_{P}} 1218:-primary ideal containing 1168:An ideal whose radical is 15: 1297:, however it contains P². 383:in the commutative case). 1293:, but is not a power of 1186:contained in a smallest 148:is primary if, whenever 84:) is a primary ideal if 16:Not to be confused with 1947:Atiyah, Michael Francis 1277:-primary for the ideal 386:Every primary ideal is 119:Examples and properties 1872: 1818: 1817:{\displaystyle n>0} 1792: 1768: 1741: 1717: 1697: 1632: 1594: 1570: 1535: 1482: 1458: 1434: 1410: 1386: 1339: 1172:, however, is primary. 1159: 1100: 1024: 1000: 967: 872: 848: 824: 780: 743: 659: 623: 599: 558: 502: 411:associated prime ideal 327: 299: 273: 235: 205: 175: 142: 105:Lasker–Noether theorem 65:is also an element of 2055:Mathematica Pannonica 1993:10.1093/qmath/22.1.73 1873: 1819: 1793: 1769: 1767:{\displaystyle Q_{i}} 1742: 1718: 1698: 1633: 1595: 1571: 1536: 1483: 1459: 1435: 1411: 1387: 1340: 1160: 1101: 1025: 1001: 968: 873: 849: 830:for all n > 0, so 825: 781: 744: 660: 624: 600: 559: 503: 417:. In this situation, 328: 300: 274: 236: 206: 176: 143: 101:primary decomposition 2133:Ideals (ring theory) 1828: 1802: 1778: 1751: 1727: 1707: 1642: 1604: 1580: 1549: 1492: 1468: 1444: 1420: 1396: 1372: 1316: 1110: 1034: 1010: 977: 882: 858: 834: 790: 753: 669: 633: 609: 568: 512: 435: 313: 283: 245: 215: 185: 152: 128: 2128:Commutative algebra 1973:Algèbre commutative 1392:-primary ideals is 1209: ∉  1199: ∈  107:. Consequently, an 29:commutative algebra 2017:Journal of Algebra 1868: 1814: 1788: 1764: 1737: 1713: 1693: 1638:of the local ring 1628: 1590: 1566: 1531: 1478: 1454: 1430: 1406: 1382: 1335: 1257:-primary. Not all 1155: 1096: 1020: 996: 963: 868: 844: 820: 776: 739: 655: 619: 595: 554: 498: 368:is actually zero.) 323: 295: 269: 231: 201: 171: 138: 2083:, Ladislas Fuchs 1983:, Second Series, 1964:978-0-201-40751-8 1716:{\displaystyle y} 1150: 1137: 1124: 1091: 1078: 1068: 1049: 991: 958: 945: 935: 916: 896: 802: 764: 704: 690: 680: 643: 549: 536: 293: 267: 109:irreducible ideal 53:is an element of 2140: 2099: 2081:On primal ideals 2077: 2049: 2032: 2011: 1975: 1967: 1934: 1928: 1922: 1919: 1913: 1910: 1904: 1901: 1895: 1892: 1877: 1875: 1874: 1869: 1867: 1866: 1857: 1856: 1844: 1843: 1838: 1837: 1823: 1821: 1820: 1815: 1797: 1795: 1794: 1789: 1787: 1786: 1773: 1771: 1770: 1765: 1763: 1762: 1747:-primary ideals 1746: 1744: 1743: 1738: 1736: 1735: 1722: 1720: 1719: 1714: 1702: 1700: 1699: 1694: 1680: 1679: 1667: 1637: 1635: 1634: 1629: 1599: 1597: 1596: 1591: 1589: 1588: 1575: 1573: 1572: 1567: 1565: 1564: 1559: 1558: 1540: 1538: 1537: 1532: 1524: 1523: 1518: 1517: 1510: 1509: 1487: 1485: 1484: 1479: 1477: 1476: 1463: 1461: 1460: 1455: 1453: 1452: 1439: 1437: 1436: 1431: 1429: 1428: 1415: 1413: 1412: 1407: 1405: 1404: 1391: 1389: 1388: 1383: 1381: 1380: 1365:-primary ideals. 1344: 1342: 1341: 1336: 1334: 1333: 1237: 1227: 1223: 1217: 1213: 1203: 1193: 1189: 1182: 1178: 1164: 1162: 1161: 1156: 1151: 1143: 1138: 1130: 1125: 1117: 1105: 1103: 1102: 1097: 1092: 1084: 1079: 1071: 1069: 1061: 1056: 1055: 1050: 1042: 1029: 1027: 1026: 1021: 1019: 1018: 1005: 1003: 1002: 997: 992: 984: 972: 970: 969: 964: 959: 951: 946: 938: 936: 928: 923: 922: 917: 909: 897: 889: 877: 875: 874: 869: 867: 866: 853: 851: 850: 845: 843: 842: 829: 827: 826: 821: 819: 818: 809: 808: 803: 795: 785: 783: 782: 777: 775: 774: 765: 757: 748: 746: 745: 740: 738: 737: 728: 727: 722: 721: 711: 710: 705: 697: 691: 683: 681: 673: 664: 662: 661: 656: 654: 653: 644: 642: 637: 628: 626: 625: 620: 618: 617: 604: 602: 601: 596: 594: 593: 588: 587: 577: 576: 563: 561: 560: 555: 550: 542: 537: 529: 521: 520: 507: 505: 504: 499: 494: 493: 472: 332: 330: 329: 324: 322: 321: 304: 302: 301: 296: 294: 292: 287: 278: 276: 275: 270: 268: 266: 261: 240: 238: 237: 232: 230: 229: 210: 208: 207: 202: 200: 199: 180: 178: 177: 172: 170: 169: 147: 145: 144: 139: 137: 136: 75:ring of integers 40:commutative ring 2148: 2147: 2143: 2142: 2141: 2139: 2138: 2137: 2118: 2117: 2106: 1965: 1951:Macdonald, I.G. 1942: 1937: 1929: 1925: 1920: 1916: 1911: 1907: 1902: 1898: 1893: 1889: 1885: 1862: 1858: 1852: 1848: 1839: 1833: 1832: 1831: 1829: 1826: 1825: 1803: 1800: 1799: 1782: 1781: 1779: 1776: 1775: 1758: 1754: 1752: 1749: 1748: 1731: 1730: 1728: 1725: 1724: 1708: 1705: 1704: 1675: 1671: 1663: 1643: 1640: 1639: 1605: 1602: 1601: 1584: 1583: 1581: 1578: 1577: 1560: 1554: 1553: 1552: 1550: 1547: 1546: 1519: 1513: 1512: 1511: 1499: 1495: 1493: 1490: 1489: 1472: 1471: 1469: 1466: 1465: 1448: 1447: 1445: 1442: 1441: 1424: 1423: 1421: 1418: 1417: 1400: 1399: 1397: 1394: 1393: 1376: 1375: 1373: 1370: 1369: 1345:, the map from 1329: 1325: 1317: 1314: 1313: 1306:Noetherian ring 1289:) in the ring 1235: 1225: 1219: 1215: 1214:. The smallest 1205: 1195: 1191: 1187: 1180: 1176: 1142: 1129: 1116: 1111: 1108: 1107: 1083: 1070: 1060: 1051: 1041: 1040: 1035: 1032: 1031: 1014: 1013: 1011: 1008: 1007: 983: 978: 975: 974: 950: 937: 927: 918: 908: 907: 888: 883: 880: 879: 862: 861: 859: 856: 855: 838: 837: 835: 832: 831: 814: 813: 804: 794: 793: 791: 788: 787: 770: 769: 756: 754: 751: 750: 733: 732: 723: 717: 716: 715: 706: 696: 695: 682: 672: 670: 667: 666: 649: 648: 638: 636: 634: 631: 630: 613: 612: 610: 607: 606: 589: 583: 582: 581: 572: 571: 569: 566: 565: 541: 528: 516: 515: 513: 510: 509: 489: 485: 468: 436: 433: 432: 336:A proper ideal 317: 316: 314: 311: 310: 288: 286: 284: 281: 280: 262: 260: 246: 243: 242: 225: 224: 216: 213: 212: 195: 194: 186: 183: 182: 165: 164: 153: 150: 149: 132: 131: 129: 126: 125: 121: 97:Noetherian ring 27:, specifically 21: 12: 11: 5: 2146: 2136: 2135: 2130: 2116: 2115: 2105: 2104:External links 2102: 2101: 2100: 2084: 2078: 2050: 2012: 1976: 1968: 1963: 1941: 1938: 1936: 1935: 1923: 1914: 1905: 1896: 1886: 1884: 1881: 1880: 1879: 1865: 1861: 1855: 1851: 1847: 1842: 1836: 1813: 1810: 1807: 1785: 1761: 1757: 1734: 1712: 1692: 1689: 1686: 1683: 1678: 1674: 1670: 1666: 1662: 1659: 1656: 1653: 1650: 1647: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1587: 1563: 1557: 1530: 1527: 1522: 1516: 1508: 1505: 1502: 1498: 1475: 1451: 1427: 1403: 1379: 1366: 1332: 1328: 1324: 1321: 1298: 1281: = ( 1243: 1242: 1241: 1240: 1239: 1231:symbolic power 1224:is called the 1173: 1154: 1149: 1146: 1141: 1136: 1133: 1128: 1123: 1120: 1115: 1095: 1090: 1087: 1082: 1077: 1074: 1067: 1064: 1059: 1054: 1048: 1045: 1039: 1017: 995: 990: 987: 982: 962: 957: 954: 949: 944: 941: 934: 931: 926: 921: 915: 912: 906: 903: 900: 895: 892: 887: 865: 841: 817: 812: 807: 801: 798: 773: 768: 763: 760: 736: 731: 726: 720: 714: 709: 703: 700: 694: 689: 686: 679: 676: 665:, but we have 652: 647: 641: 616: 592: 586: 580: 575: 553: 548: 545: 540: 535: 532: 527: 524: 519: 497: 492: 488: 484: 481: 478: 475: 471: 467: 464: 461: 458: 455: 452: 449: 446: 443: 440: 421:is said to be 391: 384: 369: 334: 320: 291: 265: 259: 256: 253: 250: 228: 223: 220: 198: 193: 190: 168: 163: 160: 157: 135: 120: 117: 45:is said to be 9: 6: 4: 3: 2: 2145: 2134: 2131: 2129: 2126: 2125: 2123: 2114: 2112: 2111:Primary ideal 2108: 2107: 2098: 2094: 2090: 2085: 2082: 2079: 2076: 2072: 2068: 2064: 2060: 2056: 2051: 2048: 2044: 2040: 2036: 2031: 2026: 2022: 2018: 2013: 2010: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1977: 1974: 1969: 1966: 1960: 1956: 1952: 1948: 1944: 1943: 1932: 1927: 1918: 1909: 1900: 1891: 1887: 1863: 1859: 1853: 1849: 1845: 1840: 1811: 1808: 1805: 1759: 1755: 1710: 1687: 1684: 1681: 1676: 1672: 1664: 1657: 1654: 1651: 1645: 1622: 1619: 1616: 1610: 1607: 1561: 1545:) where each 1544: 1528: 1525: 1520: 1506: 1503: 1500: 1496: 1367: 1364: 1360: 1356: 1352: 1348: 1330: 1326: 1319: 1311: 1307: 1303: 1299: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1233: 1232: 1222: 1212: 1208: 1202: 1198: 1185: 1179:with radical 1175:Every ideal 1174: 1171: 1167: 1166: 1144: 1139: 1131: 1126: 1118: 1085: 1080: 1072: 1062: 1057: 1052: 1043: 1030:-primary and 985: 952: 947: 939: 929: 924: 919: 910: 901: 890: 810: 805: 796: 766: 758: 729: 724: 712: 707: 698: 692: 684: 674: 645: 629:is prime and 590: 578: 543: 538: 530: 522: 490: 486: 482: 479: 476: 469: 462: 459: 456: 453: 450: 444: 441: 438: 430: 429: 427: 425: 420: 416: 412: 408: 404: 400: 396: 392: 389: 385: 382: 381:radical ideal 379:(also called 378: 374: 370: 367: 363: 359: 355: 351: 347: 343: 339: 335: 308: 257: 254: 251: 248: 221: 218: 191: 188: 161: 158: 155: 123: 122: 116: 112: 110: 106: 102: 98: 93: 91: 87: 83: 79: 76: 72: 68: 64: 60: 56: 52: 48: 44: 41: 37: 34: 30: 26: 19: 2110: 2088: 2061:(1): 17–28, 2058: 2054: 2020: 2016: 1984: 1980: 1972: 1954: 1926: 1917: 1908: 1899: 1890: 1362: 1358: 1354: 1351:localization 1346: 1309: 1301: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1229: 1220: 1210: 1206: 1200: 1196: 1183: 1169: 423: 422: 418: 414: 406: 402: 394: 365: 361: 357: 353: 349: 346:zero divisor 341: 337: 305:denotes the 113: 94: 90:prime number 85: 81: 77: 70: 66: 62: 58: 54: 50: 49:if whenever 46: 42: 35: 22: 373:prime ideal 69:, for some 31:, a proper 25:mathematics 18:Prime ideal 2122:Categories 1971:Bourbaki, 1940:References 1824:such that 1194:such that 1165:-primary. 181:, we have 2067:0865-2090 2039:0021-8693 2023:: 10–47, 2001:0033-5606 1987:: 73–83, 1883:Footnotes 1850:∩ 1846:⊂ 1691:⟩ 1669:⟨ 1626:⟩ 1614:⟨ 1497:∩ 1323:→ 1204:for some 1148:¯ 1135:¯ 1122:¯ 1089:¯ 1076:¯ 1066:¯ 1047:¯ 989:¯ 956:¯ 943:¯ 933:¯ 914:¯ 902:∩ 894:¯ 800:¯ 762:¯ 713:∈ 702:¯ 688:¯ 678:¯ 547:¯ 534:¯ 483:− 377:semiprime 279:. (Here 258:∈ 222:∈ 192:∈ 162:∈ 1953:(1969), 1931:Bourbaki 811:∉ 767:∉ 426:-primary 2097:0155861 2075:2215638 2047:0245608 2009:0286822 1349:to the 1285:,  1269:,  1170:maximal 973:; here 605:, then 399:radical 307:radical 47:primary 2095:  2073:  2065:  2045:  2037:  2007:  1999:  1961:  786:, and 564:, and 388:primal 99:has a 1304:is a 1273:) is 88:is a 57:then 38:of a 33:ideal 2063:ISSN 2035:ISSN 1997:ISSN 1959:ISBN 1809:> 1504:> 1308:and 371:Any 2025:doi 1989:doi 1774:is 1576:is 1357:at 1353:of 1300:If 1253:is 1245:If 1234:of 1228:th 1106:is 1006:is 878:is 413:of 401:of 393:If 348:in 340:of 309:of 241:or 211:or 80:, ( 61:or 23:In 2124:: 2093:MR 2071:MR 2069:, 2059:17 2057:, 2043:MR 2041:, 2033:, 2021:13 2019:, 2005:MR 2003:, 1995:, 1985:22 1949:; 1488:, 1197:ax 1184:is 749:, 508:, 428:. 333:.) 92:. 51:xy 2027:: 1991:: 1878:. 1864:i 1860:Q 1854:i 1841:n 1835:p 1812:0 1806:n 1784:p 1760:i 1756:Q 1733:p 1711:y 1688:y 1685:x 1682:, 1677:2 1673:x 1665:/ 1661:] 1658:y 1655:, 1652:x 1649:[ 1646:K 1623:y 1620:, 1617:x 1611:= 1608:m 1586:m 1562:n 1556:m 1541:( 1529:0 1526:= 1521:n 1515:m 1507:0 1501:n 1474:m 1450:p 1426:p 1402:p 1378:p 1363:P 1359:P 1355:A 1347:A 1331:P 1327:A 1320:A 1310:P 1302:A 1295:P 1291:k 1287:y 1283:x 1279:P 1275:P 1271:y 1267:x 1263:P 1259:P 1255:P 1251:P 1247:P 1238:. 1236:P 1226:n 1221:P 1216:P 1211:P 1207:x 1201:Q 1192:a 1188:P 1181:P 1177:Q 1153:) 1145:z 1140:, 1132:y 1127:, 1119:x 1114:( 1094:) 1086:y 1081:, 1073:z 1063:x 1058:, 1053:2 1044:x 1038:( 1016:p 994:) 986:x 981:( 961:) 953:y 948:, 940:z 930:x 925:, 920:2 911:x 905:( 899:) 891:x 886:( 864:q 840:q 816:q 806:n 797:y 772:q 759:x 735:q 730:= 725:2 719:p 708:2 699:z 693:= 685:y 675:x 651:p 646:= 640:q 615:p 591:2 585:p 579:= 574:q 552:) 544:z 539:, 531:x 526:( 523:= 518:p 496:) 491:2 487:z 480:y 477:x 474:( 470:/ 466:] 463:z 460:, 457:y 454:, 451:x 448:[ 445:k 442:= 439:R 424:P 419:Q 415:Q 407:P 403:Q 395:Q 390:. 366:P 364:/ 362:R 358:P 354:Q 352:/ 350:R 342:R 338:Q 319:q 290:q 264:q 255:y 252:, 249:x 227:q 219:y 197:q 189:x 167:q 159:y 156:x 134:q 86:p 82:p 78:Z 71:n 67:Q 63:y 59:x 55:Q 43:A 36:Q 20:.

Index

Prime ideal
mathematics
commutative algebra
ideal
commutative ring
ring of integers
prime number
Noetherian ring
primary decomposition
Lasker–Noether theorem
irreducible ideal
radical
zero divisor
prime ideal
semiprime
radical ideal
primal
radical
associated prime ideal
symbolic power
Noetherian ring
localization
Krull intersection theorem
Bourbaki
Atiyah, Michael Francis
Macdonald, I.G.
ISBN
978-0-201-40751-8
doi
10.1093/qmath/22.1.73

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑