Knowledge

Porphyry copper deposit

Source 📝

395:
The subducting slab can be lifted by aseismic ridges, seamount chains, or oceanic plateaus – which can provide a favourable environment for the development of a porphyry deposit. This interaction between subduction zones and the aforementioned oceanic features can explain the development of multiple metallogenic belts in a given region; as each time the subduction zone interacts with one of these features it can lead to ore genesis. Finally, in oceanic island arcs, ridge subduction can lead to slab flattening or arc reversal; whereas, in continental arcs it can lead to periods of
35: 2162: 20: 270:
exploration methodology and model assumptions, as large examples are known in areas which were previously left only partially or under-explored partly due to their perceived older host rock ages, but which were then later found to contain large, world-class examples of much older porphyry copper deposits.
356:
magma and crustal magma. This progressively evolving magma will become enriched in volatiles, sulfur, and incompatible elements – an ideal combination for the generation of a magma capable of generating an ore deposit. From this point forward in the evolution of a porphyry deposit, ideal tectonic and
315:
conditions that results in sulfide minerals releasing ore minerals (copper, gold, molybdenum), which are then able to be transported to upper crustal levels. Mantle melting can also be induced by transitions from convergent to transform margins, as well as the steepening and trenchward retreat of the
207:
Porphyry deposits represent an important resource of copper; however, they are also important sources of gold and molybdenum – with porphyry deposits being the dominant source of the latter. In general, porphyry deposits are characterized by low grades of ore mineralization, a porphyritic intrusive
203:
in age and were emplaced at depths of approximately 1 to 6 kilometres with vertical thicknesses on average of 2 kilometres. Throughout the Phanerozoic an estimated 125,895 porphyry copper deposits were formed; however, 62% of them (78,106) have been removed by uplift and erosion. Thus, 38% (47,789)
1304:
Sillitoe, R.H. Major regional factors favoring large size, high hypogene grade, elevated gold content and supergene oxidation and enrichment of porphyry copper deposits. in Porphyry and hydrothermal copper and gold deposits: A global perspective. 1998. Glenside, South Australia: Australian Mineral
394:
above the flat-slab, and low heat flow. Upon a return to normal subduction, the hot asthenosphere will once again interact with the hydrated mantle, causing wet melting, crustal melting will ensue as mantle melts pass through, and lithospheric thinning and weakening due to the increased heat flow.
377:
of the magma along with volatile saturation and generation of magmatic-hydrothermal fluids, 4) compression restricts offshoots from developing into the surrounding rock, thus concentrating the fluid into a single stock, and 5) rapid uplift and erosion promotes decompression and efficient, eventual
105:
The first mining of low-grade copper porphyry deposits from large open pits coincided roughly with the introduction of steam shovels, the construction of railroads, and a surge in market demand near the start of the 20th century. Some mines exploit porphyry deposits that contain sufficient gold or
269:
of this type of deposit; as they are typically located in zones of highly active tectonic and geological processes, such as deformation, uplift, and erosion. It may be however, that the skewed distribution towards most deposits being less than 20 million years is at least partially an artifact of
402:
Arc reversal has been shown to slightly pre-date the formation of porphyry deposits in the south-west Pacific, after a collisional event. Arc reversal occurs due to collision between an island arc and either another island arc, a continent, or an oceanic plateau. The collision may result in the
410:
and lineaments are associated with some. The presence of intra-arc fault systems are beneficial, as they can localize porphyry development. Furthermore, some authors have indicated that the occurrence of intersections between continent-scale traverse fault zones and arc-parallel structures are
435: 369:, they are not the typical products in that environment. It is believed that tectonic change acts as a trigger for porphyry formation. There are five key factors that can give rise to porphyry development: 1) compression impeding magma ascent through crust, 2) a resultant larger shallow 264:
period, however notable exceptions are known. Most large-scale porphyry deposits have an age of less than 20 million years, however there are notable exceptions, such as the 438 million-year-old Cadia-Ridgeway deposit in New South Wales. This relatively young age reflects the
1294:
Sillitoe, R.H., Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia 1997. 44(3): pp.
351:
by dense, mafic magma as it ascends), and magma homogenization. The underplated magma will add a lot of heat to the base of the crust, thereby inducing crustal melting and assimilation of lower-crustal rocks, creating an area with intense interaction of the
310:
of the upper part of post-subduction, stalled slabs that are altered by seawater. Shallow subduction of young, buoyant slabs can result in the production of adakitic lavas via partial melting. Alternatively, metasomatised mantle wedges can produce highly
204:
remain in the crust, of which there are 574 known deposits that are at the surface. It is estimated that the Earth's porphyry copper deposits contain approximately 1.7×10 tonnes of copper, equivalent to more than 8,000 years of global mine production.
389:
that transitions from normal to flat and then back to normal subduction produces a series of effects that can lead to the generation of porphyry deposits. Initially, there will be decreased alkalic magmatism, horizontal shortening, hydration of the
198:
Porphyry copper deposits represent an important resource and the dominant source of copper that is mined today to satisfy global demand. Via compilation of geological data, it has been found that the majority of porphyry deposits are
282:
intrusions, although some of the largest gold-rich deposits are associated with high-K calc-alkaline magma compositions. Numerous world-class porphyry copper-gold deposits are hosted by high-K or shoshonitic intrusions, such as
235:
There also appear to be discrete time periods in which porphyry deposit formation was concentrated or preferred. For copper-molybdenum porphyry deposits, formation is broadly concentrated in three time periods:
216:. Porphyry deposits are formed in arc-related settings and are associated with subduction zone magmas. Porphyry deposits are clustered in discrete mineral provinces, which implies that there is some form of 1536:
Keith, J.D., Shanks III, W.C., Archibald, D.A., and Farrar, E., 1986, Volcanic and Intrusive History of the Pine Grove Porphyry Molybdenum System, Southwestern Utah: Economic Geology, v. 81, pp. 553–587
422:
It has been proposed that "misoriented" deep-seated faults that were inactive during magmatism are important zones where porphyry copper-forming magmas stagnate allowing them to achieve their typical
426:. At a given time differentiated magmas would burst violently out of these fault-traps and head to shallower places in the crust where porphyry copper deposits would be formed. 30:. It appears that the bottom of the pit is in the mixed oxide-sulfide zone, and that is also what the two haul trucks in the foreground are carrying. Click to enlarge photo. 547: 1483: 1274:
Müller D., Groves D.I. (2019) Potassic igneous rocks and associated gold-copper mineralization (5th ed.). Mineral Resource Reviews. Springer-Verlag Heidelberg, 398 pp
1231:
Cooke, D.R., P. Hollings, and J.L. Walshe, Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 2005. 100(5): pp. 801–818.
582: 468:
mineralization typically occurs between or within fragments. These breccia zones are typically hydrothermal in nature, and may be manifested as pebble dikes.
1499: 997:
John, D. A.; Taylor, R. D. (2016). "Chapter 7: By-Products of Porphyry Copper and Molybdenum Deposits". In Philip L. Verplanck and Murray W. Hitzman (ed.).
855: 748: 720: 1103: 86:-forming hairline fractures and veins. Because of their large volume, porphyry orebodies can be economic from copper concentrations as low as 0.15% 617: 793: 779: 519:
enrichment. This involves the metals in the upper portion being dissolved and carried down to below the water table, where they precipitate.
2112: 789: 592: 109:
Porphyry copper deposits are currently the largest source of copper ore. Most of the known porphyry deposits are concentrated in: western
1022: 1139: 1053: 1314:
Solomon, M., Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology, 1990. 18: p. 630-633.
2142: 2097: 1195:
Richards, J.P., Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 2003. 98: pp. 1515–1533.
1549:
Multi-Stage Construction of the Little Cottonwood Stock, Utah: Origin, Intrusion, Venting, Mineralization, and Mass Movement
357:
structural conditions are necessary to allow the transport of the magma and ensure its emplacement in upper-crustal levels.
2107: 923:
Copper is not the only metal that occurs in porphyry deposits. There are also porphyry ore deposits mined primarily for
1087: 1069: 220:
control or crustal influence affecting the location of porphyry formation. Porphyry deposits tend to occur in linear,
1484:"PT BUMI RESOURCES TBK : Stock Market News and Information | BUMI| ID1000068703 | MarketScreener" 339:, enriching it with volatiles and large ion lithophile elements (LILE). The current belief is that the generation of 2102: 512:
with sulfides. Closely spaced fractures of several orientations are usually associated with the highest grade ore.
2132: 1496: 1626: 1460: 1436: 406:
Porphyry deposits do not generally have any requisite structural controls for their formation; although major
2117: 1328: 63:
several kilometers below the deposit itself. Predating or associated with those fluids are vertical dikes of
776:
at >3 billion tonnes at 1 ppm Au, is one of the world's largest and richest porphyry deposits of any type
1414:
Sillitoe, R.H., 1985, Ore-Related Breccias in Volcanoplutonic Arcs: Economic Geology, v. 80, pp. 1467–1514.
1114: 908: 559: 1329:"Long-lived crustal damage zones associated with fault intersections in the high Andes of Central Chile" 1261: 2186: 1515: 932: 26:
open pit in 2012. The red rocks in the upper benches, and the outcrops in the background, are in the
1635: 56: 1604: 622: 1471: 464:
zones with angular or locally rounded fragments are commonly associated with the intrusives. The
423: 79: 327:
After dehydration, solute-rich fluids are released from the slab and metasomatise the overlying
306:
The magmas responsible for porphyry formation are conventionally thought to be generated by the
1029: 738: 266: 927:, many of which contain very little copper. Examples of porphyry molybdenum deposits are the 260:
gold deposits, they are generally from the time period ranging from the middle Miocene to the
2147: 2092: 1374:"A new model for the optimal structural context for giant porphyry copper deposit formation" 1387: 396: 382: 126: 41:
in 2005. The gray rocks visible in the pit are almost all in the primary-sulfide ore zone.
8: 2122: 1449:
Sulfur and Copper in Magma and Rocks: Ray Porphyry Copper Deposit, Pinal County, Arizona,
850: 810: 773: 715: 674: 516: 284: 38: 27: 1391: 1958: 1619: 1169: 1163:
Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits,
940: 64: 419:
porphyry copper deposits each of which lies at the intersection of two fault systems.
1866: 1456: 1432: 1378: 1133: 1047: 828: 729: 725: 177:. The greatest concentration of the largest copper porphyry deposits is in northern 981:, are sufficiently rich in gold that they are called copper-gold porphyry deposits. 1395: 1342: 1004: 978: 710: 692: 607: 455: 412: 353: 969:
Some porphyry copper deposits in oceanic crust environments, such as those in the
316:
subducted slab. However, the latest belief is that dehydration that occurs at the
2191: 2166: 1503: 1091: 1073: 859: 824: 814: 760: 687: 660: 524: 465: 407: 386: 307: 296: 182: 1327:
Piquer Romo, José Meulen; Yáñez, Gonzálo; Rivera, Orlando; Cooke, David (2019).
1066: 998: 1333: 877: 669: 634: 564: 509: 476: 447: 343:
magmas is multistage, and involves crustal melting and assimilation of primary
118: 75: 71: 67: 2180: 1612: 1347: 769: 734: 576: 374: 370: 366: 336: 288: 279: 229: 114: 110: 60: 1547: 70:
from which this deposit type derives its name. In later stages, circulating
34: 1837: 1084: 841: 706: 683: 665: 655: 602: 587: 348: 328: 23: 2137: 1921: 1897: 1664: 970: 928: 903: 820: 743: 697: 639: 612: 416: 411:
associated with porphyry formation. This is actually the case of Chile's
391: 292: 200: 889:
is one of the world's largest and richest Cu porphyry deposits, Mongolia
490:
alteration zone typically occurs closer to the center and may overprint.
278:
In general, the majority of large porphyry deposits are associated with
2065: 2041: 1933: 1902: 1849: 1752: 944: 924: 892: 886: 502: 317: 257: 237: 217: 174: 154: 91: 1639: 1008: 381:
Porphyry deposits are commonly developed in regions that are zones of
324:
transition affects most subducted slabs, rather than partial melting.
2053: 2034: 2022: 1982: 1975: 1970: 1963: 1950: 1873: 1813: 1801: 1776: 1764: 1757: 1740: 1704: 1400: 1373: 974: 951: 797: 597: 340: 300: 245: 209: 158: 130: 83: 19: 2070: 2058: 2046: 1861: 1769: 1733: 1728: 1716: 1697: 1681: 1676: 1634: 1601:
US Geological Survey, Scientific Investigations Report 2010-5090-D.
936: 912: 643: 515:
The upper portions of porphyry copper deposits may be subjected to
487: 344: 321: 312: 261: 253: 181:. Almost all mines exploiting large porphyry deposits produce from 1372:
Piquer, José; Sanchez-Alfaro, Pablo; Pérez-Flores, Pamela (2021).
786:, still under exploration, but likely to be bigger than Batu Hijau 434: 193: 2017: 1825: 1793: 1781: 1709: 1693: 959: 846: 764: 498: 472: 461: 451: 249: 213: 166: 146: 122: 1371: 2010: 2005: 1987: 1926: 1909: 1885: 1878: 1854: 1842: 1830: 1818: 1806: 1688: 955: 896: 881: 872: 701: 508:
Fractures are often filled or coated by sulfides, or by quartz
483: 241: 221: 170: 162: 150: 138: 134: 95: 87: 82:
typically enclose a core of disseminated ore minerals in often
49: 918: 2029: 1656: 403:
termination of subduction and thereby induce mantle melting.
225: 178: 142: 1590:
Dennis P. Cox, 1986, "Descriptive model of porphyry Cu," in
1938: 1914: 1890: 1745: 1721: 1599:
Porphyry copper assessment of Southeast Asia and Melanesia,
1523: 1326: 783: 678: 332: 99: 446:
The orebodies are associated with multiple intrusions and
1669: 1647: 817:, copper-gold deposit mined by open pit and block caving. 800:, at 292 million tonnes at 0.50 ppm gold and 0.47% copper 52: 1453:
Advances in the Geology of the Porphyry Copper Deposits
1429:
Advances in the Geology of the Porphyry Copper Deposits
505:
alteration is commonly associated with most of the ore.
1594:, US Geological Survey, Bulletin 1693, p. 76, 79. 1581:
Porphyry copper-gold deposits of the southwest Pacific
939:; the White Pine and Pine Grove deposits in Utah; the 442:
Characteristics of porphyry copper deposits include:
90:
and can have economic amounts of by-products such as
102:. In some mines, those metals are the main product. 1268: 438:
From Cox, (1986) US Geological Survey Bulletin 1693
360: 1322: 1320: 2178: 1367: 1365: 1000:Rare earth and critical elements in ore deposits 523:Porphyry copper deposits are typically mined by 347:magmas, magma storage at the base of the crust ( 365:Although porphyry deposits are associated with 194:Geological background and economic significance 1317: 273: 1620: 1362: 1570:, US Geological Survey Bulletin 1693, p.108. 1290: 1288: 1286: 1284: 1282: 1280: 827:, with 63 million tonnes at 1.1% Cu and 0.5 1259:Sillitoe, R.H., "Porphyry Copper Systems". 919:Porphyry-type ore deposits for other metals 1627: 1613: 1425:Geology of the Sierrita-Esperanza Deposit, 1255: 1253: 1251: 1249: 1247: 1245: 1243: 1241: 1239: 1237: 1191: 1189: 1187: 1185: 1183: 1181: 1179: 1177: 996: 1455:, The University of Arizona Press, 1982, 1431:, The University of Arizona Press, 1982, 1399: 1346: 1298: 1277: 950:The US Geological Survey has classed the 1583:, Mining Engineering, 1/1995, pp. 33–38. 1472:Tujuh Bukit – Indonesia | Intrepid Mines 1227: 1225: 1223: 1221: 1157: 1155: 1153: 1151: 1149: 433: 33: 18: 1308: 1234: 1219: 1217: 1215: 1213: 1211: 1209: 1207: 1205: 1203: 1201: 1174: 2179: 1552:(MS thesis). Brigham Young University. 1545: 1520:Mineral Resources On-Line Spatial Data 1423:West, Richard J. and Daniel M. Aiken, 1138:: CS1 maint: archived copy as title ( 1052:: CS1 maint: archived copy as title ( 458:composition with porphyritic textures. 188: 1608: 1146: 471:The deposits typically have an outer 208:complex that is surrounded by a vein 106:molybdenum, but little or no copper. 1198: 835: 530: 13: 2143:Volcanogenic massive sulfide (VMS) 1597:Michael L. Zientek, et al., 2013, 1003:. Vol. 18. pp. 137–164. 947:; and Endako in British Columbia. 429: 14: 2203: 1161:Kesler, S.E. and B.H. Wilkinson, 59:that originate from a voluminous 2160: 1564:Descriptive model of porphyry Sn 649: 383:low-angle (flat-slab) subduction 361:Tectonic and structural controls 2123:Magmatic nickel-copper-iron-PGE 2113:Kambalda-type komatiitic nickel 1573: 1556: 1539: 1530: 1508: 1490: 1476: 1465: 1441: 1417: 1408: 161:. Only a few are identified in 2133:Sedimentary exhalative (SedEx) 1096: 1078: 1060: 1015: 990: 301:Peschanka copper-gold prospect 1: 2108:Iron oxide copper gold (IOCG) 984: 224:-parallel belts (such as the 1168:, 2008, 36(3): pp. 255–258. 804: 754: 293:Northparkes copper-gold mine 137:and the area around eastern 55:bodies that are formed from 7: 909:Saindak Copper Gold Project 642:, southeast of the city of 297:Oyu Tolgoi copper-gold mine 274:Magmas and mantle processes 10: 2208: 2098:Carbonate-hosted lead-zinc 1497:Cobre Panama, Inmet Mining 574: 78:. Successive envelopes of 2156: 2085: 1998: 1949: 1792: 1655: 1646: 823:copper porphyry deposit, 553: 535: 289:Grasberg copper-gold mine 1348:10.5027/andgeoV46n2-3108 931:, Urad, Mt. Emmons, and 865: 570: 479:mineral alteration zone. 285:Bingham copper-gold mine 256:. For both porphyry and 46:Porphyry copper deposits 1638:, mineral mixtures and 1546:Jensen, Collin (2019). 628: 424:igneous differentiation 80:hydrothermal alteration 16:Type of copper ore body 1592:Mineral Deposit Models 1568:Mineral Deposit Models 1265:, 2010. 105: pp. 3–41. 739:Santa Rita, New Mexico 439: 267:preservation potential 74:may interact with the 42: 31: 2148:Orogenic gold deposit 2093:Banded iron formation 1562:Bruce L. Reed (1986) 1111:www.mawsonwest.com.au 964:porphyry tin deposits 437: 141:; scattered areas in 37: 22: 1579:R. L. Andrew (1995) 943:deposit in northern 935:deposits in central 397:flat slab subduction 173:; none are known in 127:Pacific Ring of Fire 2167:Minerals portal 2103:Heavy mineral sands 1486:. 5 September 2023. 1392:2021Geo....49..597P 851:Bougainville Copper 811:Cadia-Ridgeway Mine 716:San Manuel, Arizona 675:Bingham Canyon Mine 378:deposition of ore. 189:Geological overview 133:; southern central 57:hydrothermal fluids 39:Bingham Canyon mine 1502:2011-05-10 at the 1447:Banks, Norman G., 1090:2008-06-02 at the 1072:2008-06-02 at the 856:Wafi-Golpu project 497:zone of secondary 440: 43: 32: 2174: 2173: 2081: 2080: 1009:10.5382/Rev.18.07 749:Ray Mine, Arizona 730:Superior, Arizona 726:Resolution Copper 721:Sierrita, Arizona 212:and hydrothermal 2199: 2187:Economic geology 2165: 2164: 2163: 2118:Lateritic nickel 2074: 2062: 2050: 2038: 2026: 2014: 1991: 1979: 1967: 1942: 1930: 1918: 1906: 1894: 1882: 1870: 1858: 1846: 1834: 1822: 1810: 1785: 1773: 1761: 1749: 1737: 1725: 1713: 1701: 1685: 1673: 1653: 1652: 1629: 1622: 1615: 1606: 1605: 1584: 1577: 1571: 1560: 1554: 1553: 1543: 1537: 1534: 1528: 1527: 1512: 1506: 1494: 1488: 1487: 1480: 1474: 1469: 1463: 1445: 1439: 1421: 1415: 1412: 1406: 1405: 1403: 1401:10.1130/G48287.1 1369: 1360: 1359: 1357: 1355: 1350: 1324: 1315: 1312: 1306: 1302: 1296: 1292: 1275: 1272: 1266: 1262:Economic Geology 1257: 1232: 1229: 1196: 1193: 1172: 1159: 1144: 1143: 1137: 1129: 1127: 1125: 1119: 1113:. Archived from 1108: 1100: 1094: 1082: 1076: 1064: 1058: 1057: 1051: 1043: 1041: 1040: 1034: 1028:. Archived from 1027: 1019: 1013: 1012: 994: 979:Papua New Guinea 958:tin deposits in 836:Papua New Guinea 711:Safford, Arizona 693:Morenci, Arizona 531:Notable examples 456:quartz monzonite 299:in Mongolia and 2207: 2206: 2202: 2201: 2200: 2198: 2197: 2196: 2177: 2176: 2175: 2170: 2161: 2159: 2152: 2128:Porphyry copper 2077: 2068: 2056: 2044: 2032: 2020: 2008: 1994: 1985: 1973: 1961: 1945: 1936: 1924: 1912: 1900: 1888: 1876: 1864: 1852: 1840: 1828: 1816: 1804: 1788: 1779: 1767: 1755: 1743: 1731: 1719: 1707: 1691: 1679: 1667: 1642: 1633: 1587: 1578: 1574: 1561: 1557: 1544: 1540: 1535: 1531: 1514: 1513: 1509: 1504:Wayback Machine 1495: 1491: 1482: 1481: 1477: 1470: 1466: 1446: 1442: 1422: 1418: 1413: 1409: 1370: 1363: 1353: 1351: 1325: 1318: 1313: 1309: 1303: 1299: 1293: 1278: 1273: 1269: 1258: 1235: 1230: 1199: 1194: 1175: 1160: 1147: 1131: 1130: 1123: 1121: 1120:on 7 March 2010 1117: 1106: 1104:"Archived copy" 1102: 1101: 1097: 1092:Wayback Machine 1083: 1079: 1074:Wayback Machine 1065: 1061: 1045: 1044: 1038: 1036: 1032: 1025: 1023:"Archived copy" 1021: 1020: 1016: 995: 991: 987: 921: 868: 860:Wafi-Golpu mine 838: 825:New South Wales 815:New South Wales 807: 757: 688:Bisbee, Arizona 661:Bagdad, Arizona 652: 631: 579: 573: 560:Highland Valley 556: 538: 533: 432: 430:Characteristics 387:subduction zone 363: 308:partial melting 276: 196: 191: 76:magmatic fluids 72:meteoric fluids 68:intrusive rocks 28:leached capping 17: 12: 11: 5: 2205: 2195: 2194: 2189: 2172: 2171: 2157: 2154: 2153: 2151: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2115: 2110: 2105: 2100: 2095: 2089: 2087: 2083: 2082: 2079: 2078: 2076: 2075: 2063: 2051: 2039: 2027: 2015: 2002: 2000: 1996: 1995: 1993: 1992: 1980: 1968: 1955: 1953: 1947: 1946: 1944: 1943: 1931: 1919: 1907: 1895: 1883: 1871: 1859: 1847: 1835: 1823: 1811: 1798: 1796: 1790: 1789: 1787: 1786: 1774: 1762: 1750: 1738: 1726: 1714: 1702: 1686: 1674: 1661: 1659: 1650: 1644: 1643: 1632: 1631: 1624: 1617: 1609: 1603: 1602: 1595: 1586: 1585: 1572: 1555: 1538: 1529: 1507: 1489: 1475: 1464: 1451:Chapter 10 in 1440: 1427:Chapter 21 in 1416: 1407: 1386:(5): 597–601. 1361: 1341:(2): 223–239. 1334:Andean Geology 1316: 1307: 1297: 1276: 1267: 1233: 1197: 1173: 1145: 1095: 1077: 1059: 1014: 988: 986: 983: 920: 917: 916: 915: 906: 900: 890: 884: 878:Majdanpek mine 875: 867: 864: 863: 862: 853: 844: 837: 834: 833: 832: 818: 806: 803: 802: 801: 787: 777: 767: 756: 753: 752: 751: 746: 741: 732: 723: 718: 713: 704: 695: 690: 681: 672: 670:Butte, Montana 663: 658: 651: 648: 647: 646: 637: 630: 627: 626: 625: 623:Radomiro Tomić 620: 615: 610: 605: 600: 595: 590: 585: 583:Cerro Colorado 572: 569: 568: 567: 565:Gibraltar Mine 562: 555: 552: 551: 550: 545: 542: 537: 534: 532: 529: 521: 520: 513: 506: 491: 480: 469: 459: 431: 428: 373:, 3) enhanced 362: 359: 295:in Australia, 291:in Indonesia, 275: 272: 195: 192: 190: 187: 157:; and eastern 119:Southeast Asia 15: 9: 6: 4: 3: 2: 2204: 2193: 2190: 2188: 2185: 2184: 2182: 2169: 2168: 2155: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2090: 2088: 2086:Deposit types 2084: 2072: 2067: 2064: 2060: 2055: 2052: 2048: 2043: 2040: 2036: 2031: 2028: 2024: 2019: 2016: 2012: 2007: 2004: 2003: 2001: 1997: 1989: 1984: 1981: 1977: 1972: 1969: 1965: 1960: 1957: 1956: 1954: 1952: 1948: 1940: 1935: 1932: 1928: 1923: 1920: 1916: 1911: 1908: 1904: 1899: 1896: 1892: 1887: 1884: 1880: 1875: 1872: 1868: 1863: 1860: 1856: 1851: 1848: 1844: 1839: 1836: 1832: 1827: 1824: 1820: 1815: 1812: 1808: 1803: 1800: 1799: 1797: 1795: 1791: 1783: 1778: 1775: 1771: 1766: 1763: 1759: 1754: 1751: 1747: 1742: 1739: 1735: 1730: 1727: 1723: 1718: 1715: 1711: 1706: 1703: 1699: 1695: 1690: 1687: 1683: 1678: 1675: 1671: 1666: 1663: 1662: 1660: 1658: 1654: 1651: 1649: 1645: 1641: 1637: 1630: 1625: 1623: 1618: 1616: 1611: 1610: 1607: 1600: 1596: 1593: 1589: 1588: 1582: 1576: 1569: 1565: 1559: 1551: 1550: 1542: 1533: 1525: 1521: 1517: 1511: 1505: 1501: 1498: 1493: 1485: 1479: 1473: 1468: 1462: 1458: 1454: 1450: 1444: 1438: 1434: 1430: 1426: 1420: 1411: 1402: 1397: 1393: 1389: 1385: 1381: 1380: 1375: 1368: 1366: 1349: 1344: 1340: 1336: 1335: 1330: 1323: 1321: 1311: 1301: 1291: 1289: 1287: 1285: 1283: 1281: 1271: 1264: 1263: 1256: 1254: 1252: 1250: 1248: 1246: 1244: 1242: 1240: 1238: 1228: 1226: 1224: 1222: 1220: 1218: 1216: 1214: 1212: 1210: 1208: 1206: 1204: 1202: 1192: 1190: 1188: 1186: 1184: 1182: 1180: 1178: 1171: 1167: 1164: 1158: 1156: 1154: 1152: 1150: 1141: 1135: 1116: 1112: 1105: 1099: 1093: 1089: 1086: 1081: 1075: 1071: 1068: 1063: 1055: 1049: 1035:on 2009-05-10 1031: 1024: 1018: 1010: 1006: 1002: 1001: 993: 989: 982: 980: 976: 972: 967: 965: 961: 957: 953: 948: 946: 942: 938: 934: 930: 926: 914: 910: 907: 905: 901: 898: 894: 891: 888: 885: 883: 879: 876: 874: 870: 869: 861: 857: 854: 852: 848: 845: 843: 840: 839: 830: 826: 822: 819: 816: 812: 809: 808: 799: 795: 791: 788: 785: 781: 778: 775: 771: 768: 766: 762: 759: 758: 750: 747: 745: 742: 740: 736: 733: 731: 727: 724: 722: 719: 717: 714: 712: 708: 705: 703: 699: 696: 694: 691: 689: 685: 682: 680: 676: 673: 671: 667: 664: 662: 659: 657: 654: 653: 650:United States 645: 641: 638: 636: 633: 632: 624: 621: 619: 618:Los Pelambres 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 580: 578: 577:Domeyko Fault 566: 563: 561: 558: 557: 549: 546: 543: 540: 539: 528: 526: 518: 514: 511: 507: 504: 500: 496: 492: 489: 485: 481: 478: 474: 470: 467: 463: 460: 457: 453: 449: 445: 444: 443: 436: 427: 425: 420: 418: 414: 409: 404: 400: 398: 393: 388: 384: 379: 376: 375:fractionation 372: 371:magma chamber 368: 367:arc volcanism 358: 355: 350: 346: 342: 338: 337:asthenosphere 334: 330: 325: 323: 319: 314: 309: 304: 302: 298: 294: 290: 286: 281: 280:calc-alkaline 271: 268: 263: 259: 255: 251: 248:, and middle 247: 243: 239: 233: 231: 230:South America 227: 223: 219: 215: 211: 205: 202: 186: 184: 180: 176: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 115:North America 112: 107: 103: 101: 97: 93: 89: 85: 81: 77: 73: 69: 66: 62: 61:magma chamber 58: 54: 51: 47: 40: 36: 29: 25: 21: 2158: 2127: 1838:Chalcopyrite 1640:ore deposits 1636:Ore minerals 1598: 1591: 1580: 1575: 1567: 1563: 1558: 1548: 1541: 1532: 1519: 1510: 1492: 1478: 1467: 1452: 1448: 1443: 1428: 1424: 1419: 1410: 1383: 1377: 1352:. Retrieved 1338: 1332: 1310: 1300: 1270: 1260: 1165: 1162: 1122:. Retrieved 1115:the original 1110: 1098: 1080: 1062: 1037:. Retrieved 1030:the original 1017: 999: 992: 968: 963: 949: 922: 707:Safford Mine 684:Lavender Pit 666:Berkeley Pit 656:Ajo, Arizona 588:Chuquicamata 522: 494: 441: 421: 405: 401: 380: 364: 349:underplating 329:mantle wedge 326: 305: 277: 234: 206: 197: 125:– along the 108: 104: 45: 44: 24:Morenci mine 1922:Pentlandite 1898:Molybdenite 1665:Cassiterite 1305:Foundation. 1085:Base Metals 1067:Base Metals 971:Philippines 904:Philippines 871:Coclesito, 821:Northparkes 794:Cabang Kiri 780:Tujuh Bukit 744:Ely, Nevada 698:Pebble Mine 640:Cerro Verde 613:El Teniente 608:El Salvador 548:Santo Tomas 417:El Teniente 413:Los Bronces 392:lithosphere 303:in Russia. 201:Phanerozoic 65:porphyritic 2181:Categories 2066:Wolframite 2042:Sperrylite 1951:Carbonates 1934:Sphalerite 1903:molybdenum 1850:Chalcocite 1753:Pyrolusite 1461:0816507309 1437:0816507309 1124:12 January 1039:2009-08-31 985:References 945:New Mexico 925:molybdenum 893:La Caridad 887:Oyu Tolgoi 790:Sungai Mak 774:West Papua 761:Batu Hijau 593:Collahuasi 575:See also: 544:La Caridad 503:orthoclase 493:A central 318:blueschist 258:epithermal 238:Palaeocene 218:geodynamic 175:Antarctica 155:CIS states 153:, and the 92:molybdenum 2054:Scheelite 2035:beryllium 2023:aluminium 1983:Malachite 1976:magnesium 1971:Magnesite 1964:magnesium 1874:Cobaltite 1814:Argentite 1802:Acanthite 1777:Uraninite 1765:Tantalite 1758:manganese 1741:Magnetite 1705:Columbite 1516:"Saindak" 975:Indonesia 952:Chorolque 933:Henderson 805:Australia 798:Gorontalo 755:Indonesia 635:Toquepala 598:Escondida 527:methods. 517:supergene 341:andesitic 246:Oligocene 244:, Eocene- 210:stockwork 183:open pits 159:Australia 131:Caribbean 84:stockwork 2071:tungsten 2059:tungsten 2047:platinum 1959:Dolomite 1862:Cinnabar 1794:Sulfides 1770:tantalum 1734:titanium 1729:Ilmenite 1717:Hematite 1698:tantalum 1682:chromium 1677:Chromite 1500:Archived 1295:373–388. 1170:Abstract 1134:cite web 1088:Archived 1070:Archived 1048:cite web 937:Colorado 913:Pakistan 899:, Mexico 770:Grasberg 735:El Chino 644:Arequipa 525:open-pit 495:potassic 488:sericite 477:chlorite 345:basaltic 322:eclogite 313:oxidized 287:in USA, 254:Pliocene 214:breccias 2138:Uranium 2018:Bauxite 1867:mercury 1826:Bornite 1782:uranium 1710:niobium 1694:niobium 1388:Bibcode 1379:Geology 1354:June 9, 1166:Geology 960:Bolivia 902:Dizon, 847:Panguna 842:Ok Tedi 765:Sumbawa 603:El Abra 541:Cananea 499:biotite 473:epidote 466:sulfide 462:Breccia 452:diorite 250:Miocene 167:Namibia 147:Mideast 123:Oceania 2192:Copper 2011:barium 2006:Baryte 1988:copper 1927:nickel 1910:Pyrite 1886:Galena 1879:cobalt 1855:copper 1843:copper 1831:copper 1819:silver 1807:silver 1689:Coltan 1657:Oxides 1459:  1435:  977:, and 956:Catavi 941:Questa 929:Climax 897:Sonora 882:Serbia 873:Panama 702:Alaska 554:Canada 536:Mexico 484:quartz 408:faults 354:mantle 335:-like 262:Recent 242:Eocene 222:orogen 171:Zambia 163:Africa 151:Russia 145:, the 139:Turkey 135:Europe 129:; the 98:, and 96:silver 88:copper 50:copper 2030:Beryl 1999:Other 1566:, in 1118:(PDF) 1107:(PDF) 1033:(PDF) 1026:(PDF) 866:Other 571:Chile 510:veins 448:dikes 226:Andes 179:Chile 165:, in 143:China 111:South 1939:zinc 1915:iron 1891:lead 1746:iron 1722:iron 1696:and 1648:Ores 1524:USGS 1457:ISBN 1433:ISBN 1356:2019 1140:link 1126:2022 1054:link 954:and 792:and 784:Java 679:Utah 629:Peru 501:and 415:and 385:. A 333:MORB 169:and 121:and 117:and 113:and 100:gold 48:are 1670:tin 1396:doi 1343:doi 1005:doi 962:as 831:Au. 829:ppm 454:to 450:of 331:of 232:). 228:in 53:ore 2183:: 1522:. 1518:. 1394:. 1384:49 1382:. 1376:. 1364:^ 1339:46 1337:. 1331:. 1319:^ 1279:^ 1236:^ 1200:^ 1176:^ 1148:^ 1136:}} 1132:{{ 1109:. 1050:}} 1046:{{ 973:, 966:. 911:, 895:, 880:, 813:, 796:, 782:, 772:, 763:, 737:, 728:, 709:, 700:, 686:, 677:, 668:, 486:– 482:A 475:– 399:. 185:. 149:, 94:, 2073:) 2069:( 2061:) 2057:( 2049:) 2045:( 2037:) 2033:( 2025:) 2021:( 2013:) 2009:( 1990:) 1986:( 1978:) 1974:( 1966:) 1962:( 1941:) 1937:( 1929:) 1925:( 1917:) 1913:( 1905:) 1901:( 1893:) 1889:( 1881:) 1877:( 1869:) 1865:( 1857:) 1853:( 1845:) 1841:( 1833:) 1829:( 1821:) 1817:( 1809:) 1805:( 1784:) 1780:( 1772:) 1768:( 1760:) 1756:( 1748:) 1744:( 1736:) 1732:( 1724:) 1720:( 1712:) 1708:( 1700:) 1692:( 1684:) 1680:( 1672:) 1668:( 1628:e 1621:t 1614:v 1526:. 1404:. 1398:: 1390:: 1358:. 1345:: 1142:) 1128:. 1056:) 1042:. 1011:. 1007:: 858:/ 849:/ 320:- 252:- 240:-

Index


Morenci mine
leached capping

Bingham Canyon mine
copper
ore
hydrothermal fluids
magma chamber
porphyritic
intrusive rocks
meteoric fluids
magmatic fluids
hydrothermal alteration
stockwork
copper
molybdenum
silver
gold
South
North America
Southeast Asia
Oceania
Pacific Ring of Fire
Caribbean
Europe
Turkey
China
Mideast
Russia

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.