Knowledge

Polynomial-time reduction

Source đź“ť

90:. The most frequently used of these are the many-one reductions, and in some cases the phrase "polynomial-time reduction" may be used to mean a polynomial-time many-one reduction. The most general reductions are the Turing reductions and the most restrictive are the many-one reductions with truth-table reductions occupying the space in between. 491:(the class of polynomial-time decision problems) may be reduced to every other nontrivial decision problem (where nontrivial means that not every input has the same output), by a polynomial-time many-one reduction. To transform an instance of problem 46:
it to inputs for the second problem and calling the subroutine one or more times. If both the time required to transform the first problem to the second, and the number of times the subroutine is called is
574:
do not involve reductions: reductions come into their study only in the definition of complete languages for these classes. However, in some cases a complexity class may be defined by reductions. If
782: 753: 720: 666: 62:, if no efficient algorithm exists for the first problem, none exists for the second either. Polynomial-time reductions are frequently used in complexity theory for defining both 312: 626: 390: 194: 722:
is the set of problems having a polynomial-time many-one reduction to the existential theory of the reals; it has several other complete problems such as determining the
227: 1104:. In particular, for the argument that every nontrivial problem in P has a polynomial-time many-one reduction to every other nontrivial problem, see p. 48. 17: 392:. Many-one reductions can be regarded as restricted variants of Turing reductions where the number of calls made to the subroutine for problem 465:-complete problem. Polynomial-time many-one reductions have been used to define complete problems for other complexity classes, including the 533:
itself, polynomial-time reductions cannot be used to define complete languages: if they were used in this way, every nontrivial problem in
1122: 54:
A polynomial-time reduction proves that the first problem is no more difficult than the second one, because whenever an efficient
1171: 1142: 1098: 1073: 1012: 936: 881: 78:
The three most common types of polynomial-time reduction, from the most to the least restrictive, are polynomial-time
967: 909: 828: 1201: 669: 31: 396:
is exactly one and the value returned by the reduction is the same value as the one returned by the subroutine.
723: 346:, and polynomial time outside of those subroutine calls. Polynomial-time Turing reductions are also known as 762: 733: 700: 646: 931:. 34th International Conference on Foundation of Software Technology and Theoretical Computer Science. 1124:
Graph Drawing, 17th International Symposium, GS 2009, Chicago, IL, USA, September 2009, Revised Papers
276: 798: 593: 357: 161: 995: 257:, such that the output for the original problem can be expressed as a function of the outputs for 199: 928:
Separating Cook Completeness from Karp-Levin Completeness under a Worst-Case Hardness Hypothesis
990: 43: 985:; Hay, L. (1988), "On truth-table reducibility to SAT and the difference hierarchy over NP", 547:
reductions are used for defining classes of complete problems for these classes, such as the
238: 122:, such that the transformed problem has the same output as the original problem. An instance 83: 694: 249:(both decision problems) is a polynomial time algorithm for transforming inputs to problem 42:
solving the second problem exists, then the first problem can be solved by transforming or
8: 538: 1127:, Lecture Notes in Computer Science, vol. 5849, Springer-Verlag, pp. 334–344, 503:
in polynomial time, and then use the solution to choose one of two instances of problem
99: 79: 1177: 1167: 1138: 1094: 1069: 1008: 963: 932: 926: 905: 877: 146:, and returning its output. Polynomial-time many-one reductions may also be known as 815:-complete if it is complete for this class; the graph isomorphism problem itself is 461:-complete by finding a single polynomial-time many-one reduction to it from a known 38:
is a method for solving one problem using another. One shows that if a hypothetical
1128: 1059: 1032: 1000: 727: 579: 405: 323: 111: 87: 67: 63: 1133: 1115: 1064: 806: 792: 542: 524: 518: 472: 466: 444: 1159: 955: 512: 486: 59: 840: 1195: 1181: 1028: 865: 869: 58:
exists for the second problem, one exists for the first problem as well. By
897: 351: 155: 1004: 453:
have polynomial-time many-one reductions to it. A problem that belongs to
982: 437: 270: 1051: 548: 48: 39: 1037:
Computers and Intractability: A Guide to the Theory of NP-Completeness
841:
MIT OpenCourseWare: 16. Complexity: P, NP, NP-completeness, Reductions
987:
Proceedings of Third Annual Structure in Complexity Theory Conference
335: 130:
can be solved by applying this transformation to produce an instance
55: 51:, then the first problem is polynomial-time reducible to the second. 114:) is a polynomial-time algorithm for transforming inputs to problem 269:
must be the same for all inputs, so that it can be expressed by a
811:, the same is true for every problem in this class. A problem is 673: 507:
with different answers. Therefore, for complexity classes within
476: 1054:(2011), "Complexity theory", in Blum, E. K.; Aho, A. V. (eds.), 902:
Complexity Theory: Exploring the Limits of Efficient Algorithms
681: 342:
using a polynomial number of calls to a subroutine for problem
354:. A reduction of this type may be denoted by the expression 273:. A reduction of this type may be denoted by the expression 925:
Mandal, Debasis; Pavan, A.; Venugopalan, Rajeswari (2014).
1164:
The Graph Isomorphism Problem: Its Structural Complexity
1089:
Greenlaw, Raymond; Hoover, James; Ruzzo, Walter (1995),
1056:
Computer Science: The Hardware, Software and Heart of It
1116:"Complexity of some geometric and topological problems" 924: 537:
would be complete. Instead, weaker reductions such as
1091:
Limits To Parallel computation; P-Completeness Theory
801:. Since graph isomorphism is known to belong both to 765: 736: 703: 649: 596: 360: 279: 202: 164: 797:
consists of the problems that can be reduced to the
1157: 1088: 960:Computational Complexity: A Conceptual Perspective 860: 858: 856: 819:-complete, as are several other related problems. 776: 747: 714: 660: 620: 384: 306: 221: 188: 1193: 864: 853: 962:, Cambridge University Press, pp. 59–60, 672:, a computational problem that is known to be 557: 1027: 27:Method for solving one problem using another 950: 948: 643:An example of this is the complexity class 640:may have other complete problems as well. 562:The definitions of the complexity classes 110:(both of which are usually required to be 1132: 1063: 994: 954: 918: 770: 741: 708: 654: 582:, then one can define a complexity class 253:into a fixed number of inputs to problem 232: 158:. A reduction of this type is denoted by 142:as the input to an algorithm for problem 1113: 945: 981: 896: 876:. Pearson Education. pp. 452–453. 14: 1194: 755:inherits the property of belonging to 685:, but is not known to be complete for 93: 73: 261:. The function that maps outputs for 777:{\displaystyle \exists \mathbb {R} } 748:{\displaystyle \exists \mathbb {R} } 715:{\displaystyle \exists \mathbb {R} } 661:{\displaystyle \exists \mathbb {R} } 317: 1050: 632:will automatically be complete for 24: 766: 737: 704: 650: 25: 18:Polynomial-time many-one reduction 1213: 834: 1079:. See in particular p. 255. 791:Similarly, the complexity class 307:{\displaystyle A\leq _{tt}^{P}B} 1151: 670:existential theory of the reals 621:{\displaystyle A\leq _{m}^{P}C} 399: 385:{\displaystyle A\leq _{T}^{P}B} 189:{\displaystyle A\leq _{m}^{P}B} 32:computational complexity theory 1107: 1082: 1044: 1021: 975: 890: 829:Karp's 21 NP-complete problems 13: 1: 846: 436:. For instance, a problem is 412:and reduction ≤ is a problem 408:for a given complexity class 1134:10.1007/978-3-642-11805-0_32 1065:10.1007/978-1-4614-1168-0_12 586:consisting of the languages 7: 822: 724:rectilinear crossing number 558:Defining complexity classes 222:{\displaystyle A\leq _{p}B} 10: 1218: 485:Every decision problem in 420:, such that every problem 148:polynomial transformations 1114:Schaefer, Marcus (2010), 799:graph isomorphism problem 693:, or any language in the 36:polynomial-time reduction 1162:; Torán, Jacobo (1993), 904:, Springer, p. 60, 118:into inputs to problem 1202:Reduction (complexity) 778: 749: 716: 662: 622: 386: 308: 233:Truth-table reductions 223: 190: 84:truth-table reductions 1005:10.1109/SCT.1988.5282 784:-complete problem is 779: 750: 717: 663: 623: 387: 309: 239:truth-table reduction 224: 191: 1058:, pp. 241–267, 989:, pp. 224–233, 763: 734: 701: 695:polynomial hierarchy 647: 594: 539:log-space reductions 457:can be proven to be 449:and all problems in 358: 338:that solves problem 277: 265:into the output for 200: 162: 614: 378: 300: 182: 94:Many-one reductions 80:many-one reductions 74:Types of reductions 70:for those classes. 1158:Köbler, Johannes; 774: 745: 730:. Each problem in 712: 658: 618: 600: 382: 364: 322:A polynomial-time 304: 283: 237:A polynomial-time 219: 186: 168: 100:many-one reduction 98:A polynomial-time 64:complexity classes 1173:978-0-8176-3680-7 1144:978-3-642-11804-3 1100:978-0-19-508591-4 1075:978-1-4614-1167-3 1029:Garey, Michael R. 1014:978-0-8186-0866-7 938:978-3-939897-77-4 883:978-0-321-37291-8 668:defined from the 443:if it belongs to 318:Turing reductions 112:decision problems 88:Turing reductions 68:complete problems 16:(Redirected from 1209: 1186: 1184: 1155: 1149: 1147: 1136: 1120: 1111: 1105: 1103: 1086: 1080: 1078: 1067: 1048: 1042: 1040: 1025: 1019: 1017: 998: 979: 973: 972: 952: 943: 942: 922: 916: 914: 894: 888: 887: 874:Algorithm Design 862: 783: 781: 780: 775: 773: 754: 752: 751: 746: 744: 728:undirected graph 721: 719: 718: 713: 711: 667: 665: 664: 659: 657: 628:. In this case, 627: 625: 624: 619: 613: 608: 580:decision problem 428:has a reduction 416:that belongs to 406:complete problem 391: 389: 388: 383: 377: 372: 324:Turing reduction 313: 311: 310: 305: 299: 294: 228: 226: 225: 220: 215: 214: 195: 193: 192: 187: 181: 176: 21: 1217: 1216: 1212: 1211: 1210: 1208: 1207: 1206: 1192: 1191: 1190: 1189: 1174: 1156: 1152: 1145: 1118: 1112: 1108: 1101: 1087: 1083: 1076: 1049: 1045: 1039:, W. H. Freeman 1026: 1022: 1015: 980: 976: 970: 956:Goldreich, Oded 953: 946: 939: 923: 919: 912: 895: 891: 884: 863: 854: 849: 837: 825: 769: 764: 761: 760: 740: 735: 732: 731: 707: 702: 699: 698: 653: 648: 645: 644: 609: 604: 595: 592: 591: 560: 402: 373: 368: 359: 356: 355: 348:Cook reductions 326:from a problem 320: 295: 287: 278: 275: 274: 241:from a problem 235: 210: 206: 201: 198: 197: 177: 172: 163: 160: 159: 152:Karp reductions 102:from a problem 96: 76: 28: 23: 22: 15: 12: 11: 5: 1215: 1205: 1204: 1188: 1187: 1172: 1166:, Birkhäuser, 1150: 1143: 1106: 1099: 1081: 1074: 1043: 1033:Johnson, D. S. 1020: 1013: 974: 968: 944: 937: 917: 910: 889: 882: 866:Kleinberg, Jon 851: 850: 848: 845: 844: 843: 836: 835:External links 833: 832: 831: 824: 821: 772: 768: 743: 739: 710: 706: 656: 652: 617: 612: 607: 603: 599: 559: 556: 401: 398: 381: 376: 371: 367: 363: 350:, named after 319: 316: 303: 298: 293: 290: 286: 282: 234: 231: 218: 213: 209: 205: 185: 180: 175: 171: 167: 154:, named after 95: 92: 75: 72: 60:contraposition 26: 9: 6: 4: 3: 2: 1214: 1203: 1200: 1199: 1197: 1183: 1179: 1175: 1169: 1165: 1161: 1160:Schöning, Uwe 1154: 1146: 1140: 1135: 1130: 1126: 1125: 1117: 1110: 1102: 1096: 1092: 1085: 1077: 1071: 1066: 1061: 1057: 1053: 1047: 1038: 1034: 1030: 1024: 1016: 1010: 1006: 1002: 997: 996:10.1.1.5.2387 992: 988: 984: 978: 971: 969:9781139472746 965: 961: 957: 951: 949: 940: 934: 930: 929: 921: 913: 911:9783540274773 907: 903: 899: 898:Wegener, Ingo 893: 885: 879: 875: 871: 867: 861: 859: 857: 852: 842: 839: 838: 830: 827: 826: 820: 818: 814: 810: 809: 804: 800: 796: 795: 789: 787: 758: 729: 725: 696: 692: 688: 684: 683: 678: 676: 671: 641: 639: 635: 631: 615: 610: 605: 601: 597: 589: 585: 581: 577: 573: 569: 565: 555: 553: 551: 546: 545: 540: 536: 532: 528: 527: 522: 521: 516: 515: 510: 506: 502: 498: 494: 490: 489: 483: 481: 479: 474: 471: 469: 464: 460: 456: 452: 448: 447: 442: 440: 435: 431: 427: 423: 419: 415: 411: 407: 397: 395: 379: 374: 369: 365: 361: 353: 349: 345: 341: 337: 333: 330:to a problem 329: 325: 315: 301: 296: 291: 288: 284: 280: 272: 268: 264: 260: 256: 252: 248: 245:to a problem 244: 240: 230: 216: 211: 207: 203: 183: 178: 173: 169: 165: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 117: 113: 109: 106:to a problem 105: 101: 91: 89: 85: 81: 71: 69: 65: 61: 57: 52: 50: 45: 41: 37: 33: 19: 1163: 1153: 1123: 1109: 1090: 1084: 1055: 1046: 1036: 1023: 986: 977: 959: 927: 920: 901: 892: 873: 816: 812: 807: 802: 793: 790: 785: 756: 690: 686: 680: 674: 642: 637: 633: 629: 587: 583: 575: 571: 567: 563: 561: 549: 543: 534: 530: 525: 519: 513: 508: 504: 500: 496: 492: 487: 484: 477: 467: 462: 458: 454: 450: 445: 438: 433: 429: 425: 421: 417: 413: 409: 403: 400:Completeness 393: 352:Stephen Cook 347: 343: 339: 331: 327: 321: 266: 262: 258: 254: 250: 246: 242: 236: 156:Richard Karp 151: 147: 143: 139: 135: 131: 127: 123: 119: 115: 107: 103: 97: 77: 53: 35: 29: 870:Tardos, Éva 759:, and each 482:languages. 271:truth table 134:of problem 126:of problem 1052:Aho, A. V. 983:Buss, S.R. 847:References 590:for which 554:problems. 49:polynomial 40:subroutine 1182:246882287 991:CiteSeerX 767:∃ 738:∃ 705:∃ 651:∃ 602:≤ 552:-complete 480:-complete 473:languages 470:-complete 441:-complete 366:≤ 336:algorithm 285:≤ 208:≤ 170:≤ 138:, giving 56:algorithm 1196:Category 1035:(1979), 958:(2008), 900:(2005), 872:(2006). 823:See also 511:such as 499:, solve 44:reducing 805:and co- 788:-hard. 679:and in 578:is any 572:EXPTIME 478:EXPTIME 1180:  1170:  1141:  1097:  1072:  1011:  993:  966:  935:  908:  880:  757:PSPACE 726:of an 691:PSPACE 682:PSPACE 636:, but 570:, and 568:PSPACE 529:, and 468:PSPACE 334:is an 86:, and 1119:(PDF) 677:-hard 1178:OCLC 1168:ISBN 1139:ISBN 1095:ISBN 1070:ISBN 1009:ISBN 964:ISBN 933:ISBN 906:ISBN 878:ISBN 475:and 66:and 34:, a 1129:doi 1060:doi 1001:doi 541:or 495:to 424:in 196:or 150:or 30:In 1198:: 1176:, 1137:, 1121:, 1093:, 1068:, 1031:; 1007:, 999:, 947:^ 868:; 855:^ 817:GI 813:GI 808:AM 803:NP 794:GI 786:NP 697:. 689:, 687:NP 675:NP 566:, 564:NP 544:NC 526:NC 523:, 520:NL 517:, 463:NP 459:NP 455:NP 451:NP 446:NP 439:NP 432:≤ 404:A 314:. 229:. 82:, 1185:. 1148:. 1131:: 1062:: 1041:. 1018:. 1003:: 941:. 915:. 886:. 771:R 742:R 709:R 655:R 638:C 634:C 630:C 616:C 611:P 606:m 598:A 588:A 584:C 576:C 550:P 535:P 531:P 514:L 509:P 505:B 501:A 497:B 493:A 488:P 434:P 430:A 426:C 422:A 418:C 414:P 410:C 394:B 380:B 375:P 370:T 362:A 344:B 340:A 332:B 328:A 302:B 297:P 292:t 289:t 281:A 267:A 263:B 259:B 255:B 251:A 247:B 243:A 217:B 212:p 204:A 184:B 179:P 174:m 166:A 144:B 140:y 136:B 132:y 128:A 124:x 120:B 116:A 108:B 104:A 20:)

Index

Polynomial-time many-one reduction
computational complexity theory
subroutine
reducing
polynomial
algorithm
contraposition
complexity classes
complete problems
many-one reductions
truth-table reductions
Turing reductions
many-one reduction
decision problems
Richard Karp
truth-table reduction
truth table
Turing reduction
algorithm
Stephen Cook
complete problem
NP-complete
NP
PSPACE-complete
languages
EXPTIME-complete
P
L
NL
NC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑