Knowledge

Point bar

Source 📝

20: 855: 124: 195:
where the radius of the bend is smallest, and slowest where the radius is greatest. The shallows around the point bar can become treacherous when the stream is rising. As the water depth increases over the shallows of the point bar, the vortex flow can extend closer toward the convex bank and the water speed at any point can increase dramatically in response to only a small increase in water depth.
172:
commences as the primary flow, a secondary flow also commences and flows partly across the floor of the stream toward the convex bank (the bank with the smaller radius). Sand, gravel and polished stones that have travelled with the stream for a great distance where the stream was following a straight course may finally come to rest in the point bar of the first stream bend.
176:
near the concave bank than near the convex bank. This pressure gradient drives the slower boundary layer across the floor of the stream toward the convex bank. The pressure gradient is capable of driving the boundary layer up the shallow sloping floor of the point bar, causing sand, gravel and polished stones to be swept and rolled up-hill.
263:
In the settled low-gradient parts of a meandering watercourse the water speed is slow, turbulence is low, and the water is not capable of holding coarse sand and gravel in suspension. In contrast, point bars comprise coarse sand, gravel, polished stones and other submerged objects. These materials
255:
In a steady-gradient section of a watercourse, sedimentation may occur where the water is saturated and the shallow bank has high flow resistance but does not agitate the suspension. Similarly, the fallacy has scant explanation as to why deposition occurs at a stream bend, and little or none occurs
175:
Due to the circular path of a stream around a bend the surface of the water is slightly higher near the concave bank (the bank with the larger radius) than near the convex bank. This slight slope on the water surface of the stream causes a slightly greater water pressure on the floor of the stream
194:
The point bar typically has a gently sloping floor with shallow water. The shallow water is mostly the accumulated boundary layer and does not have a fast speed. However, in the deepest parts of the stream where the stream is flowing freely, vortex flow prevails and the stream is flowing fastest
171:
Where a stream is following a straight course the slower boundary layer along the floor of the stream is also following the same straight course. It sweeps and rolls sand, gravel and polished stones downstream, along the floor of the stream. However, as the stream enters a bend and vortex flow
155:
along the floor of the stream does not flow parallel to the banks of the stream but flows partly across the floor of the stream toward the inside of the stream (where the radius of curvature is smallest). This movement of the boundary layer is capable of sweeping and rolling loose particles
219:
toward the inside of a bend. This fallacy relies on the erroneous notion that the momentum of the water is "always" slowest on the inside of the bend (where the radius is smallest) and fastest on the outside of the bend (where the radius is greatest), which ignores its increased
357:"In the absence of secondary flow, bend flow seeks to conserve angular momentum so that it tends to conform to that of a free vortex with high velocity at the smaller radius of the inner bank and lower velocity at the outer bank where radial acceleration is lower." 247:
Point bars typically have a gently sloping floor with shallow water. Clearly a higher proportion of the water in very shallow water does much more work to overcome friction above and below (especially in a countervailing breeze) which lowers its speed, see
264:
have not been carried in suspension and then dropped on the point bar – they have been swept and rolled into place by the secondary flow that exists across the floor/bed in the vicinity of a stream bend, which will be intensified if there is
240:. Any relatively steady gradient open flow not met with complex interactions with contrary flows, such as tides, or major obstacles, flows around a bend in a simple model of vortex flow, with relatively few variables and 163:
will quickly sweep the solid particles into a neat pile in the center of the bowl or cup. The primary flow (the vortex) might be expected to sweep the solid particles to the perimeter of the bowl or cup, but instead the
235:
flow being faster on the inner bank compensates for the greater height and therefore mass of water flowing downstream along the concave bank, and the rough, shallow bed usually provides per liter of water above more
415:"One of the important consequences of helical flow in meanders is that sediment eroded from the outside of a meander bend tends to be moved to the inner bank or point bar of the next downstream bend." 159:
This can be demonstrated at home. Partly fill a circular bowl or cup with water and sprinkle a little sand, rice or sugar into the water. Set the water in circular motion with a hand or spoon. The
252:. It is probably this close-quarters observation which led early geographers to believe in deposition by sedimentation of suspended matter rather than close-to-bed secondary currents. 89:
and the fact that the water speed is slow in the shallows of the point bar they are popular rest stops for boaters and rafters. However, camping on a point bar can be dangerous as a
147:, and the spinning motion of water as it escapes down a drain are all visible examples of vortex flow.) In the case of water flowing around a bend in a stream the 891: 115:
of the stream sweeps and rolls sand, gravel and small stones laterally across the floor of the stream and up the shallow sloping floor of the point bar.
139:
flow. In vortex flow the speed of the fluid is fastest where the radius of the flow is smallest, and slowest where the radius is greatest. (
840: 516: 256:
where the stream is following a straight course, with exception of a steep slope (river gradient) where the river has formed a natural
884: 1122: 1490: 381:
Chant, R. J. (2002). "Secondary circulation in a region of flow curvature: Relationship with tidal forcing and river discharge".
62:
streams. They are crescent-shaped and located on the inside of a stream bend, being very similar to, though often smaller than,
877: 191:
and may be deposited on the point bar only a small distance downstream from its original location in the concave bank.
427: 369: 156:
including sand, gravel, small stones and other submerged objects along the floor of the stream toward the point bar.
260:
or waterfall and may then deposit some of its load at the point of meeting a less steep section e.g. great meander.
2116: 1647: 549: 2111: 509: 1672: 325: 160: 93:
that raises the stream level by as little as a few inches (centimetres) can overwhelm a campsite in moments.
1813: 1763: 1657: 2091: 85:
and can accumulate driftwood and other debris during times of high water levels. Due to their near flat
2137: 1317: 2101: 2053: 1936: 858: 502: 128: 2086: 1803: 1768: 1610: 257: 249: 440: 2096: 1788: 1553: 672: 2162: 2157: 2147: 2142: 2038: 1896: 1447: 1332: 602: 283: 237: 27: 1876: 1723: 1685: 1134: 1073: 784: 779: 2106: 1828: 1652: 1412: 1269: 1219: 1013: 805: 452: 390: 331: 265: 208: 148: 112: 97: 8: 2002: 1997: 1798: 1642: 1264: 1117: 1038: 945: 456: 394: 73:
and typically reflects the overall capacity of the stream. They also have a very gentle
2152: 2028: 1941: 1906: 1758: 1274: 1179: 1083: 975: 908: 835: 789: 464: 23: 1748: 491:, 7th Edition. Prentice Hall: Upper Saddle River, New Jersey, 2002. pp. 277, 279. 334: – Relatively minor flow superimposed on the primary flow by inviscid assumptions 328: – Relatively minor flow superimposed on the primary flow by inviscid assumptions 2007: 1846: 1838: 1778: 1738: 1627: 1442: 1204: 1194: 980: 830: 667: 423: 365: 295: 140: 1921: 1823: 1728: 1477: 1327: 1322: 1299: 1239: 1068: 940: 597: 525: 460: 398: 221: 286: – Elevated region of sediment in a river that has been deposited by the flow 1926: 1886: 1881: 1485: 1372: 1367: 1151: 1088: 1058: 1023: 1018: 985: 950: 921: 825: 612: 574: 559: 304: 187:. The eroded material is swept and rolled across the floor of the stream by the 81:
very close to water level. Since they are low-lying, they are often overtaken by
417:
Hickin, Edward J. (2003), "Meandering Channels", in Middleton, Gerard V. (ed.),
359:
Hickin, Edward J. (2003), "Meandering Channels", in Middleton, Gerard V. (ed.),
292: – Outside bank of a water channel, which is continually undergoing erosion 1987: 1871: 1851: 1733: 1718: 1605: 1590: 1585: 1545: 1525: 1437: 1279: 1259: 1224: 1156: 1141: 1048: 970: 930: 815: 682: 632: 584: 544: 539: 212: 188: 165: 152: 55: 869: 2131: 2068: 2063: 2048: 2033: 1982: 1977: 1743: 1708: 1662: 1622: 1617: 1377: 1249: 1209: 955: 935: 820: 702: 662: 607: 2058: 1808: 1793: 1783: 1632: 1563: 1432: 1397: 1312: 1254: 1129: 1028: 990: 965: 753: 564: 316: 277: 184: 168:
along the floor of the bowl or cup sweeps the particles toward the center.
105: 1967: 1891: 1595: 1558: 1505: 1229: 1214: 1189: 1063: 769: 720: 687: 677: 569: 402: 241: 90: 70: 19: 2073: 1753: 1637: 1577: 1535: 1407: 1244: 1112: 1053: 1043: 960: 810: 774: 715: 642: 622: 310: 204: 135:
Any fluid, including water in a stream, can only flow around a bend in
86: 319: – List of definitions of terms and concepts related to geography 227:
Mass deposition of suspended solids rarely occurs on one bank save in
2043: 1992: 1962: 1931: 1861: 1773: 1530: 1402: 1342: 1289: 1284: 1184: 1107: 1097: 995: 637: 592: 78: 1713: 1680: 1357: 1199: 1166: 743: 617: 494: 289: 180: 101: 63: 43: 123: 2023: 1972: 1500: 1495: 1457: 1362: 1234: 1171: 730: 692: 627: 554: 144: 59: 47: 31: 203:
An old fallacy exists regarding the formation of point bars and
127:
Point bar at a river meander: the Cirque de la Madeleine in the
1818: 1690: 1515: 1510: 1462: 1452: 1422: 1347: 1102: 1033: 1005: 904: 710: 657: 652: 337: 232: 136: 82: 1916: 1901: 1856: 1600: 1573: 1520: 1387: 1382: 1352: 1337: 1146: 916: 900: 298: – Sediment processes associated with rivers and streams 51: 198: 1946: 1911: 1467: 1427: 1392: 748: 228: 1866: 1307: 738: 340: – Fluid flow revolving around an axis of rotation 321:
Pages displaying short descriptions of redirect targets
300:
Pages displaying short descriptions of redirect targets
268:
particularly from an irregular, scoured opposing bank.
307: – Cork-screw-like flow of water in a meander 58:. Point bars are found in abundance in mature or 2129: 26:erosion and point bar deposition as seen on the 899: 419:Encyclopedia of Sediments and Sedimentary Rocks 361:Encyclopedia of Sediments and Sedimentary Rocks 215:claiming the velocity and energy of the stream 885: 510: 238:agitation to maintain any suspended particles 69:Point bars are composed of sediment that is 841:List of rivers that have reversed direction 892: 878: 517: 503: 199:Fallacy regarding formation of point bars 122: 18: 1491:International scale of river difficulty 441:"Albert Einstein and Meandering Rivers" 46:that accumulates on the inside bend of 2130: 438: 416: 358: 280: – Marginal wear of a watercourse 207:which suggests they are formed by the 16:Landform related to streams and rivers 873: 498: 380: 524: 13: 487:Tarbuck, E. J. and F. K. Lutgens. 465:10.17704/eshi.7.1.yk72n55q84qxu5n6 42:is a depositional feature made of 14: 2174: 421:, New York: Springer, p. 432 363:, New York: Springer, p. 432 854: 853: 1648:Flooded grasslands and savannas 550:Drainage system (geomorphology) 383:Journal of Geophysical Research 326:Secondary flow in a bowl or cup 560:Strahler number (stream order) 432: 409: 374: 351: 211:(dropping) of a watercourse's 1: 481: 332:Secondary flow in river bends 313: – U-shaped lake or pool 111:Point bars are formed as the 1814:Universal Soil Loss Equation 1764:Hydrological transport model 1658:Storm Water Management Model 179:The concave bank is often a 118: 7: 271: 10: 2179: 1318:Antecedent drainage stream 96:A point bar is an area of 2082: 2054:River valley civilization 2016: 1955: 1937:Riparian-zone restoration 1837: 1699: 1671: 1572: 1544: 1476: 1298: 1165: 1082: 1004: 915: 849: 798: 762: 729: 701: 583: 532: 2117:Countries without rivers 2092:Rivers by discharge rate 1804:Runoff model (reservoir) 1769:Infiltration (hydrology) 439:Bowker, Kent A. (1988). 344: 1789:River Continuum Concept 1554:Agricultural wastewater 673:River channel migration 2112:River name etymologies 2039:Hydraulic civilization 1897:Floodplain restoration 1673:Point source pollution 1448:Sedimentary structures 603:Bar (river morphology) 284:Bar (river morphology) 132: 35: 1724:Discharge (hydrology) 1686:Industrial wastewater 1167:Sedimentary processes 785:Erosion and tectonics 780:Degradation (geology) 445:Earth Science History 250:Bernoulli's principle 126: 22: 1829:Volumetric flow rate 1413:Riffle-pool sequence 806:Deposition (geology) 533:Large-scale features 403:10.1029/2001JC001082 66:, or river islands. 2003:Whitewater kayaking 1998:Whitewater canoeing 1799:Runoff curve number 1643:Flood pulse concept 457:1988ESHis...7...45B 395:2002JGRC..107.3131C 129:Gorges de l'Ardèche 2029:Aquatic toxicology 1942:Stream restoration 1907:Infiltration basin 1759:Hydrological model 1275:Sediment transport 1098:Estavelle/Inversac 976:Subterranean river 836:Sediment transport 790:River rejuvenation 763:Regional processes 389:(C9): 14-1–14-11. 133: 36: 2138:Fluvial landforms 2125: 2124: 2102:Whitewater rivers 2008:Whitewater slalom 1839:River engineering 1739:Groundwater model 1700:River measurement 1628:Flood forecasting 1443:Sedimentary basin 1300:Fluvial landforms 1205:Bed material load 981:River bifurcation 867: 866: 668:River bifurcation 296:Fluvial processes 141:Tropical cyclones 2170: 2087:Rivers by length 1922:River morphology 1824:Wetted perimeter 1729:Drainage density 1240:Headward erosion 1069:Perennial stream 941:Blackwater river 894: 887: 880: 871: 870: 857: 856: 598:Avulsion (river) 526:River morphology 519: 512: 505: 496: 495: 475: 474: 472: 471: 436: 430: 422: 413: 407: 406: 378: 372: 364: 355: 322: 301: 222:angular momentum 2178: 2177: 2173: 2172: 2171: 2169: 2168: 2167: 2128: 2127: 2126: 2121: 2097:Drainage basins 2078: 2012: 1951: 1927:Retention basin 1887:Erosion control 1882:Detention basin 1833: 1749:Hjulström curve 1701: 1695: 1667: 1611:Non-water flood 1568: 1540: 1486:Helicoidal flow 1472: 1373:Fluvial terrace 1368:Floating island 1294: 1169: 1161: 1152:Rhythmic spring 1086: 1078: 1059:Stream gradient 1000: 986:River ecosystem 951:Channel pattern 919: 911: 898: 868: 863: 845: 826:Helicoidal flow 794: 758: 725: 697: 613:Channel pattern 585:Alluvial rivers 579: 575:River sinuosity 528: 523: 484: 479: 478: 469: 467: 437: 433: 414: 410: 379: 375: 356: 352: 347: 320: 305:Helicoidal flow 299: 274: 229:tidal estuaries 201: 183:and an area of 121: 17: 12: 11: 5: 2176: 2166: 2165: 2160: 2155: 2150: 2145: 2140: 2123: 2122: 2120: 2119: 2114: 2109: 2104: 2099: 2094: 2089: 2083: 2080: 2079: 2077: 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2026: 2020: 2018: 2014: 2013: 2011: 2010: 2005: 2000: 1995: 1990: 1988:Stone skipping 1985: 1980: 1975: 1970: 1965: 1959: 1957: 1953: 1952: 1950: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1872:Drop structure 1869: 1864: 1859: 1854: 1852:Balancing lake 1849: 1843: 1841: 1835: 1834: 1832: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1779:Playfair's law 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1734:Exner equation 1731: 1726: 1721: 1719:Bradshaw model 1716: 1711: 1705: 1703: 1697: 1696: 1694: 1693: 1688: 1683: 1677: 1675: 1669: 1668: 1666: 1665: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1615: 1614: 1613: 1608: 1606:Urban flooding 1598: 1593: 1591:Crevasse splay 1588: 1586:100-year flood 1582: 1580: 1570: 1569: 1567: 1566: 1561: 1556: 1550: 1548: 1546:Surface runoff 1542: 1541: 1539: 1538: 1533: 1528: 1526:Stream capture 1523: 1518: 1513: 1508: 1503: 1498: 1493: 1488: 1482: 1480: 1474: 1473: 1471: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1438:Rock-cut basin 1435: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1335: 1330: 1325: 1320: 1315: 1310: 1304: 1302: 1296: 1295: 1293: 1292: 1287: 1282: 1280:Suspended load 1277: 1272: 1270:Secondary flow 1267: 1262: 1260:Retrogradation 1257: 1252: 1247: 1242: 1237: 1232: 1227: 1225:Dissolved load 1222: 1217: 1212: 1207: 1202: 1197: 1192: 1187: 1182: 1176: 1174: 1163: 1162: 1160: 1159: 1157:Spring horizon 1154: 1149: 1144: 1142:Mineral spring 1139: 1138: 1137: 1127: 1126: 1125: 1123:list in the US 1120: 1110: 1105: 1100: 1094: 1092: 1080: 1079: 1077: 1076: 1071: 1066: 1061: 1056: 1051: 1049:Stream channel 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1010: 1008: 1002: 1001: 999: 998: 993: 988: 983: 978: 973: 971:Drainage basin 968: 963: 958: 953: 948: 943: 938: 933: 931:Alluvial river 927: 925: 913: 912: 897: 896: 889: 882: 874: 865: 864: 862: 861: 850: 847: 846: 844: 843: 838: 833: 831:Playfair's law 828: 823: 818: 816:Exner equation 813: 808: 802: 800: 796: 795: 793: 792: 787: 782: 777: 772: 766: 764: 760: 759: 757: 756: 754:Current ripple 751: 746: 741: 735: 733: 727: 726: 724: 723: 718: 713: 707: 705: 699: 698: 696: 695: 690: 685: 683:Slip-off slope 680: 675: 670: 665: 660: 655: 650: 645: 640: 635: 633:Meander cutoff 630: 625: 620: 615: 610: 605: 600: 595: 589: 587: 581: 580: 578: 577: 572: 567: 562: 557: 552: 547: 545:Drainage basin 542: 540:Alluvial plain 536: 534: 530: 529: 522: 521: 514: 507: 499: 493: 492: 483: 480: 477: 476: 431: 408: 373: 349: 348: 346: 343: 342: 341: 335: 329: 323: 314: 308: 302: 293: 287: 281: 273: 270: 213:suspended load 200: 197: 189:secondary flow 166:secondary flow 161:secondary flow 153:boundary layer 149:secondary flow 120: 117: 113:secondary flow 104:is an area of 56:slip-off slope 15: 9: 6: 4: 3: 2: 2175: 2164: 2163:Water streams 2161: 2159: 2158:River islands 2156: 2154: 2151: 2149: 2148:Sedimentology 2146: 2144: 2143:Geomorphology 2141: 2139: 2136: 2135: 2133: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2084: 2081: 2075: 2072: 2070: 2069:Surface water 2067: 2065: 2064:Sacred waters 2062: 2060: 2057: 2055: 2052: 2050: 2049:Riparian zone 2047: 2045: 2042: 2040: 2037: 2035: 2034:Body of water 2032: 2030: 2027: 2025: 2022: 2021: 2019: 2015: 2009: 2006: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1983:Riverboarding 1981: 1979: 1978:River surfing 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1960: 1958: 1954: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1844: 1842: 1840: 1836: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1706: 1704: 1702:and modelling 1698: 1692: 1689: 1687: 1684: 1682: 1679: 1678: 1676: 1674: 1670: 1664: 1663:Return period 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1623:Flood control 1621: 1619: 1618:Flood barrier 1616: 1612: 1609: 1607: 1604: 1603: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1583: 1581: 1579: 1575: 1571: 1565: 1562: 1560: 1557: 1555: 1552: 1551: 1549: 1547: 1543: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1483: 1481: 1479: 1475: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1309: 1306: 1305: 1303: 1301: 1297: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1250:Palaeochannel 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1210:Granular flow 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1177: 1175: 1173: 1168: 1164: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1140: 1136: 1133: 1132: 1131: 1128: 1124: 1121: 1119: 1116: 1115: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1095: 1093: 1090: 1085: 1081: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1011: 1009: 1007: 1003: 997: 994: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 962: 959: 957: 956:Channel types 954: 952: 949: 947: 944: 942: 939: 937: 936:Braided river 934: 932: 929: 928: 926: 923: 918: 914: 910: 906: 902: 895: 890: 888: 883: 881: 876: 875: 872: 860: 852: 851: 848: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 811:Water erosion 809: 807: 804: 803: 801: 797: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 767: 765: 761: 755: 752: 750: 747: 745: 742: 740: 737: 736: 734: 732: 728: 722: 719: 717: 714: 712: 709: 708: 706: 704: 703:Bedrock river 700: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 663:Riparian zone 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 608:Braided river 606: 604: 601: 599: 596: 594: 591: 590: 588: 586: 582: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 537: 535: 531: 527: 520: 515: 513: 508: 506: 501: 500: 497: 490: 486: 485: 466: 462: 458: 454: 450: 446: 442: 435: 429: 428:1-4020-0872-4 425: 420: 412: 404: 400: 396: 392: 388: 384: 377: 371: 370:1-4020-0872-4 367: 362: 354: 350: 339: 336: 333: 330: 327: 324: 318: 315: 312: 309: 306: 303: 297: 294: 291: 288: 285: 282: 279: 276: 275: 269: 267: 261: 259: 253: 251: 245: 243: 239: 234: 230: 225: 223: 218: 214: 210: 206: 196: 192: 190: 186: 182: 177: 173: 169: 167: 162: 157: 154: 150: 146: 142: 138: 130: 125: 116: 114: 109: 107: 103: 99: 94: 92: 88: 84: 80: 76: 72: 67: 65: 61: 57: 53: 49: 45: 41: 33: 29: 25: 21: 2107:Flash floods 2059:River cruise 1956:River sports 1809:Stream gauge 1794:Rouse number 1784:Relief ratio 1633:Flood-meadow 1564:Urban runoff 1478:Fluvial flow 1463:River valley 1433:River island 1417: 1398:Meander scar 1313:Alluvial fan 1255:Progradation 1130:Karst spring 1074:Winterbourne 1029:Chalk stream 991:River source 966:Distributary 647: 565:River valley 488: 468:. Retrieved 448: 444: 434: 418: 411: 386: 382: 376: 360: 353: 317:River pocket 278:Bank erosion 262: 254: 246: 242:coefficients 226: 216: 202: 193: 178: 174: 170: 158: 134: 110: 95: 74: 68: 39: 37: 28:Powder River 1968:Fly fishing 1892:Fish ladder 1877:Daylighting 1596:Flash flood 1559:First flush 1506:Plunge pool 1230:Downcutting 1215:Debris flow 1190:Aggradation 1064:Stream pool 770:Aggradation 721:Plunge pool 688:Stream pool 678:River mouth 570:River delta 231:; instead, 205:oxbow lakes 100:where as a 91:flash flood 71:well sorted 2132:Categories 2074:Wild river 1754:Hydrograph 1744:Hack's law 1709:Baer's law 1653:Inundation 1638:Floodplain 1578:stormwater 1536:Whitewater 1408:Oxbow lake 1245:Knickpoint 1220:Deposition 1113:Hot spring 1054:Streamflow 1044:Stream bed 961:Confluence 821:Hack's law 775:Base level 716:Knickpoint 643:Oxbow lake 623:Floodplain 482:References 470:2016-07-01 311:Oxbow lake 266:reflection 209:deposition 98:deposition 87:topography 60:meandering 54:below the 2153:Limnology 2044:Limnology 1993:Triathlon 1963:Canyoning 1932:Revetment 1862:Check dam 1774:Main stem 1531:Waterfall 1418:Point bar 1403:Mouth bar 1343:Billabong 1290:Water gap 1285:Wash load 1265:Saltation 1185:Anabranch 1108:Holy well 996:Tributary 799:Mechanics 648:Point bar 638:Mouth bar 593:Anabranch 451:(1): 45. 217:decreases 145:tornadoes 131:, France. 119:Formation 79:elevation 40:point bar 1847:Aqueduct 1714:Baseflow 1681:Effluent 1358:Cut bank 1323:Avulsion 1200:Bed load 1180:Abrasion 859:Category 744:Antidune 731:Bedforms 618:Cut bank 290:Cut bank 272:See also 181:cut bank 102:cut bank 64:towheads 44:alluvium 24:Cut bank 2024:Aquifer 2017:Related 1973:Rafting 1501:Meander 1496:Log jam 1458:Thalweg 1363:Estuary 1235:Erosion 1172:erosion 1084:Springs 1039:Current 1006:Streams 946:Channel 909:springs 905:streams 693:Thalweg 628:Meander 555:Estuary 453:Bibcode 391:Bibcode 185:erosion 151:in the 106:erosion 77:and an 48:streams 32:Montana 1819:WAFLEX 1691:Sewage 1574:Floods 1516:Riffle 1511:Rapids 1453:Strath 1423:Ravine 1348:Canyon 1103:Geyser 1034:Coulee 1019:Bourne 1014:Arroyo 917:Rivers 901:Rivers 711:Canyon 658:Rapids 653:Riffle 426:  368:  338:Vortex 233:vortex 137:vortex 83:floods 52:rivers 1917:Levee 1902:Flume 1857:Canal 1601:Flood 1521:Shoal 1388:Gully 1383:Gulch 1353:Chine 1338:Bayou 1195:Armor 1147:Ponor 922:lists 489:Earth 345:Notes 75:slope 1947:Weir 1912:Leat 1576:and 1468:Wadi 1428:Rill 1393:Glen 1378:Gill 1328:Bank 1170:and 1135:list 1118:list 1089:list 1024:Burn 907:and 749:Dune 424:ISBN 366:ISBN 50:and 1867:Dam 1333:Bar 1308:Ait 739:Ait 461:doi 399:doi 387:107 258:cut 30:in 2134:: 903:, 459:. 447:. 443:. 397:. 385:. 244:. 224:. 143:, 108:. 38:A 1091:) 1087:( 924:) 920:( 893:e 886:t 879:v 518:e 511:t 504:v 473:. 463:: 455:: 449:1 405:. 401:: 393:: 34:.

Index


Cut bank
Powder River
Montana
alluvium
streams
rivers
slip-off slope
meandering
towheads
well sorted
elevation
floods
topography
flash flood
deposition
cut bank
erosion
secondary flow

Gorges de l'Ardèche
vortex
Tropical cyclones
tornadoes
secondary flow
boundary layer
secondary flow
secondary flow
cut bank
erosion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.