Knowledge

Plug flow reactor model

Source 📝

20: 142:
In the simplest case of a PFR model, several key assumptions must be made in order to simplify the problem, some of which are outlined below. Note that not all of these assumptions are necessary, however the removal of these assumptions does increase the complexity of the problem. The PFR model can
1232:
When a tracer is injected into a reactor at a location more than two or three particle diameters downstream from the entrance and measured some distance upstream from the exit, the system can be described by the dispersion model with combinations of open or close boundary conditions. For such a
1093:
reactors do not satisfy the idealized flow patterns, back mix flow or plug flow deviation from ideal behavior can be due to channeling of fluid through the vessel, recycling of fluid within the vessel or due to the presence of stagnant region or dead zone of fluid in the vessel. Real plug flow
58:
Fluid going through a PFR may be modeled as flowing through the reactor as a series of infinitely thin coherent "plugs", each with a uniform composition, traveling in the axial direction of the reactor, with each plug having a different composition from the ones before and after it. The key
957:
PFRs are used to model the chemical transformation of compounds as they are transported in systems resembling "pipes". The "pipe" can represent a variety of engineered or natural conduits through which liquids or gases flow. (e.g. rivers, pipelines, regions between two mountains, etc.)
138:
The PFR model works well for many fluids: liquids, gases, and slurries. Although turbulent flow and axial diffusion cause a degree of mixing in the axial direction in real reactors, the PFR model is appropriate when these effects are sufficiently small that they can be ignored.
1119:
The RTD is determined experimentally by injecting an inert chemical, molecule, or atom, called a tracer, into the reactor at some time t = 0 and then measuring the tracer concentration, C, in the effluent stream as a function of time.
143:
be used to model multiple reactions as well as reactions involving changing temperatures, pressures and densities of the flow. Although these complications are ignored in what follows, they are often relevant to industrial processes.
1373: 1085:
of a reactor is a characteristic of the mixing that occurs in the chemical reactor. There is no axial mixing in a plug-flow reactor, and this omission is reflected in the RTD which is exhibited by this class of reactors.
485: 2086: 1739: 1897: 1227: 305: 1812: 783: 2283:
Colli, A. N.; Bisang, J. M. (September 2015). "Study of the influence of boundary conditions, non ideal stimulus and dynamics of sensors on the evaluation of residence time distributions".
164:(reasonable for some liquids but a 20% error for polymerizations; valid for gases only if there is no pressure drop, no net change in the number of moles, nor any large temperature change) 2446:
Colli, A. N.; Bisang, J. M. (August 2011). "Evaluation of the hydrodynamic behaviour of turbulence promoters in parallel plate electrochemical reactors by means of the dispersion model".
2241:
Colli, A. N.; Bisang, J. M. (August 2011). "Evaluation of the hydrodynamic behaviour of turbulence promoters in parallel plate electrochemical reactors by means of the dispersion model".
933: 63:
in the radial direction but not in the axial direction (forwards or backwards). Each plug of differential volume is considered as a separate entity, effectively an infinitesimally small
706: 1944: 539: 1162: 1580: 1433: 571: 1985: 1005: 1233:
system where there is no discontinuity in type of flow at the point of tracer injection or at the point of tracer measurement, the variance for open-open system is:
2098:
As mentioned before, there are also other boundary conditions that can be applied to the dispersion model giving different relationships for the dispersion number.
1492: 1049: 1025: 814: 117: 93: 1514: 1463: 979: 1242: 404: 1996: 1598: 2483:
Colli, A. N.; Bisang, J. M. (December 2011). "Generalized study of the temporal behaviour in recirculating electrochemical reactor systems".
1821: 1123:
The RTD curve of fluid leaving a vessel is called the E-Curve. This curve is normalized in such a way that the area under it is unity:
1066:). Typically these types of reactors are called packed bed reactors or PBR's. Sometimes the tube will be a tube in a shell and tube 2425:. Vol. 3: Chemical and Biochemical Reactors and Process Control (4th ed.). New Delhi: Asian Books Pvt.Lt. pp. 87–92. 2430: 2382: 2332: 2225: 1176: 205: 95:) of the plug is a function of its position in the reactor. In the ideal PFR, the residence time distribution is therefore a 155: 1753: 725: 869: 2176: 586: 64: 1909: 2348: 796:. Generally, as the temperature increases so does the rate at which the reaction occurs. Residence time, 2398:
Adeniyi, O. D.; Abdulkareem, A. S.; Odigure, Joseph Obofoni; Aweh, E. A.; Nwokoro, U. T. (October 2003).
2191: 1094:
reactors with non-ideal behavior have also been modelled. To predict the exact behavior of a vessel as a
1082: 961:
An ideal plug flow reactor has a fixed residence time: Any fluid (plug) that enters the reactor at time
490: 72: 51:
in continuous, flowing systems of cylindrical geometry. The PFR model is used to predict the behavior of
2522:
Plug flow Tube Reactor –S2S (A gate way for the plant and process safety ), Copyright -2003 by PHP –Nuke
1132: 55:
of such design, so that key reactor variables, such as the dimensions of the reactor, can be estimated.
2537: 2400:"Mathematical Modeling and Simulation of a Non-Ideal Plug Flow Reactor in a Saponification Pilot Plant" 1526: 199:
Accumulation is 0 under steady state; therefore, the above mass balance can be re-written as follows:
1387: 2374: 1102:, the most widely used method for the study of axial dispersion, is usually used in the form of: 1051:. A real plug flow reactor has a residence time distribution that is a narrow pulse around the 547: 1949: 1589:
of a continuous distribution measured at a finite number of equidistant locations is given by:
1027:
is the residence time of the reactor. The residence time distribution function is therefore a
132: 2136:
The main problems lies in difficult and sometimes critical start-up and shut down operations.
2421:
Coulson, J M; Richardson, J F (1991). "2 - Flow Characteristics of Reactors—Flow Modelling".
984: 128: 2366: 2181: 1470: 1034: 1028: 1010: 799: 102: 96: 78: 8: 2367: 1368:{\displaystyle (\sigma _{\theta })^{2}=(\sigma _{t})^{2}/\tau ^{2}=2/P_{e}+8/(P_{e})^{2}} 68: 2342: 1499: 1448: 964: 816:, is the average amount of time a discrete quantity of reagent spends inside the tank. 793: 1438:
which represents the ratio of rate of transport by convection to rate of transport by
175:
A material balance on the differential volume of a fluid element, or plug, on species
2426: 2399: 2378: 2328: 2221: 1073:
When a plug flow model can not be applied, the dispersion model is usually employed.
830: 168: 48: 2496: 2459: 2296: 2254: 2500: 2492: 2463: 2455: 2300: 2292: 2258: 2250: 1099: 1095: 52: 1906:) can be evaluated from the experimental data on C vs. t and for known values of 1052: 949:
at the inlet to the reactor, appearing from the integration boundary condition.
2171: 1067: 60: 2531: 2122: 373: 480:{\displaystyle u={\frac {\dot {v}}{A_{t}}}={\frac {4{\dot {v}}}{\pi D^{2}}}} 2186: 2113: 2327:(3rd ed.). New Delhi - 110 001: Prentice Hall of India. p. 812. 2081:{\displaystyle D_{L}/LU={-1+{\sqrt {1+8(\sigma _{\theta })^{2}}} \over 8}} 1734:{\displaystyle (\sigma _{t})^{2}=\sum t_{i}^{2}C_{i}/\sum C_{i}-\sum ^{2}} 2108:
From the safety technical point of view the PFR has the advantages that
851:
After integration of Equation 3 using the above assumptions, solving for
2505: 2468: 2305: 2263: 1059: 823: 131:, the solution for which can be calculated providing that appropriate 1439: 1090: 150: 2144:
Plug flow reactors are used for some of the following applications:
1892:{\displaystyle (\sigma _{\theta })^{2}=(\sigma _{t})^{2}/\tau ^{2}} 1586: 1063: 840: 161: 576:
On application of the above to Equation 1, the mass balance on
382:
is the volumetric source/sink term (the reaction rate), mol/ms.
59:
assumption is that as a plug flows through a PFR, the fluid is
2414: 2397: 859:
we get an explicit equation for the concentration of species
1167:
The mean age of the exit stream or mean residence time is:
19: 1516:= superficial velocity (m/s) based on empty cross-section 715:→ 0 is applied to Equation 2 the mass balance on species 2278: 2276: 2274: 1222:{\displaystyle \tau =\int tE\partial t=\sum tE\nabla t} 300:{\displaystyle F_{i}(x)-F_{i}(x+dx)+A_{t}dx\nu _{i}r=0} 71:
to zero volume. As it flows down the tubular PFR, the
2476: 2439: 2360: 2358: 2271: 2234: 1999: 1952: 1912: 1824: 1756: 1601: 1529: 1502: 1473: 1451: 1390: 1245: 1179: 1135: 1037: 1013: 987: 967: 872: 802: 728: 589: 550: 493: 407: 208: 105: 81: 826:
conditions, or constant temperature (k is constant)
171:
occurring in the bulk of the fluid (homogeneously).
2391: 2373:(Third ed.). John Wiley & Sons. pp.  2355: 2080: 1979: 1938: 1891: 1806: 1733: 1574: 1508: 1486: 1457: 1427: 1367: 1221: 1156: 1098:, RTD or stimulus response technique is used. The 1043: 1019: 999: 973: 927: 808: 777: 700: 565: 533: 479: 299: 111: 87: 2420: 788:The temperature dependence of the reaction rate, 2529: 1807:{\displaystyle \tau =\sum t_{i}C_{i}/\sum C_{i}} 778:{\displaystyle u{\frac {dC_{i}}{dx}}=\nu _{i}r} 1076: 366:is the tube transverse cross sectional area, m 2318: 2316: 1058:A typical plug flow reactor could be a tube 928:{\displaystyle C_{A}(x)=C_{A0}e^{-k\tau }\,} 711:When like terms are cancelled and the limit 2482: 2445: 2404:Assumption University Journal of Technology 2282: 2240: 701:{\displaystyle A_{t}u+A_{t}dx\nu _{i}r=0\,} 127:The stationary PFR is governed by ordinary 2364: 2313: 2504: 2467: 2325:Elements of Chemical Reaction Engineering 2304: 2262: 2211: 2209: 2207: 1744:Where mean residence time τ is given by: 1494:= effective dispersion coefficient ( m/s) 924: 697: 530: 2198: 1520:Vessel dispersion number is defined as: 323:the differential thickness of fluid plug 23:Schematic diagram of a plug flow reactor 18: 2518: 2516: 2215: 1939:{\displaystyle (\sigma _{\theta })^{2}} 1062:with some solid material (frequently a 390:(m/s) and the concentration of species 2530: 2322: 2204: 2154:Homogeneous or heterogeneous reactions 2220:. New York: Oxford University Press. 2218:The Engineering of Chemical Reactions 2095:can be estimated (L = packed height) 952: 317:is the reactor tube axial position, m 2513: 2091:Thus axial dispersion coefficient D 534:{\displaystyle F_{i}=A_{t}uC_{i}\,} 13: 1213: 1195: 1157:{\displaystyle \int E\partial t=1} 1142: 343:is the molar flow rate of species 14: 2549: 1987:can be obtained from eq. (3) as: 1083:residence-time distribution (RTD) 1575:{\displaystyle 1/P_{e}=D_{L}/LU} 945:is the concentration of species 2497:10.1016/j.electacta.2011.09.058 2460:10.1016/j.electacta.2011.06.047 2297:10.1016/j.electacta.2015.07.019 2255:10.1016/j.electacta.2011.06.047 2177:Continuous stirred-tank reactor 2139: 122: 65:continuous stirred tank reactor 2061: 2047: 1974: 1953: 1927: 1913: 1865: 1851: 1839: 1825: 1722: 1680: 1616: 1602: 1428:{\displaystyle P_{e}=LU/D_{L}} 1356: 1342: 1286: 1272: 1260: 1246: 981:will exit the reactor at time 889: 883: 656: 653: 638: 622: 616: 603: 398:(mol/m) can be introduced as: 256: 241: 225: 219: 47:) is a model used to describe 1: 2369:Chemical Reaction Engineering 1055:residence time distribution. 792:, can be estimated using the 573:is the volumetric flow rate. 7: 2365:Levenspiel, Octave (1998). 2192:Oscillatory baffled reactor 2164: 1465:= characteristic length (m) 1077:Residence-time distribution 863:as a function of position: 10: 2554: 2216:Schmidt, Lanny D. (1998). 2160:High-temperature reactions 566:{\displaystyle {\dot {v}}} 386:The flow linear velocity, 374:stoichiometric coefficient 37:continuous tubular reactor 2323:Fogler, H. Scott (2004). 1980:{\displaystyle (1/P_{e})} 2347:: CS1 maint: location ( 1946:, the dispersion number 16:Reactor simulation model 2118:It is well controllable 1000:{\displaystyle t+\tau } 357:is the tube diameter, m 29:plug flow reactor model 2148:Large-scale production 2125:areas can be installed 2082: 1981: 1940: 1893: 1808: 1735: 1576: 1510: 1488: 1459: 1429: 1369: 1223: 1158: 1045: 1021: 1001: 975: 929: 810: 779: 702: 567: 535: 481: 330:refers to the species 301: 129:differential equations 113: 99:with a value equal to 89: 24: 2199:Reference and sources 2157:Continuous production 2083: 1982: 1941: 1894: 1809: 1736: 1577: 1511: 1489: 1487:{\displaystyle D_{L}} 1460: 1430: 1370: 1224: 1159: 1046: 1044:{\displaystyle \tau } 1022: 1020:{\displaystyle \tau } 1002: 976: 930: 829:single, irreversible 811: 809:{\displaystyle \tau } 780: 703: 568: 536: 482: 302: 114: 112:{\displaystyle \tau } 90: 88:{\displaystyle \tau } 22: 2423:Chemical Engineering 2182:Laminar flow reactor 1997: 1950: 1910: 1822: 1754: 1599: 1527: 1500: 1471: 1449: 1388: 1243: 1177: 1133: 1035: 1029:Dirac delta function 1011: 985: 965: 870: 841:first-order reaction 800: 726: 587: 548: 491: 405: 206: 103: 97:Dirac delta function 79: 45:piston flow reactors 2485:Electrochimica Acta 2448:Electrochimica Acta 2285:Electrochimica Acta 2243:Electrochimica Acta 1645: 133:boundary conditions 35:, sometimes called 2078: 1977: 1936: 1889: 1804: 1731: 1631: 1572: 1506: 1484: 1455: 1425: 1365: 1219: 1154: 1041: 1017: 997: 971: 953:Operation and uses 925: 806: 794:Arrhenius equation 775: 698: 563: 531: 477: 297: 109: 85: 49:chemical reactions 25: 2538:Chemical reactors 2454:(21): 7312–7318. 2432:978-0-08-057154-6 2384:978-0-471-25424-9 2334:978-81-203-2234-9 2249:(21): 7312–7318. 2227:978-0-19-510588-9 2112:It operates in a 2076: 2070: 1509:{\displaystyle U} 1458:{\displaystyle L} 974:{\displaystyle t} 757: 560: 475: 456: 436: 424: 53:chemical reactors 2545: 2523: 2520: 2511: 2510: 2508: 2480: 2474: 2473: 2471: 2443: 2437: 2436: 2418: 2412: 2411: 2395: 2389: 2388: 2372: 2362: 2353: 2352: 2346: 2338: 2320: 2311: 2310: 2308: 2280: 2269: 2268: 2266: 2238: 2232: 2231: 2213: 2087: 2085: 2084: 2079: 2077: 2072: 2071: 2069: 2068: 2059: 2058: 2037: 2025: 2014: 2009: 2008: 1986: 1984: 1983: 1978: 1973: 1972: 1963: 1945: 1943: 1942: 1937: 1935: 1934: 1925: 1924: 1898: 1896: 1895: 1890: 1888: 1887: 1878: 1873: 1872: 1863: 1862: 1847: 1846: 1837: 1836: 1813: 1811: 1810: 1805: 1803: 1802: 1790: 1785: 1784: 1775: 1774: 1740: 1738: 1737: 1732: 1730: 1729: 1720: 1719: 1707: 1702: 1701: 1692: 1691: 1673: 1672: 1660: 1655: 1654: 1644: 1639: 1624: 1623: 1614: 1613: 1581: 1579: 1578: 1573: 1565: 1560: 1559: 1547: 1546: 1537: 1515: 1513: 1512: 1507: 1493: 1491: 1490: 1485: 1483: 1482: 1464: 1462: 1461: 1456: 1434: 1432: 1431: 1426: 1424: 1423: 1414: 1400: 1399: 1374: 1372: 1371: 1366: 1364: 1363: 1354: 1353: 1341: 1330: 1329: 1320: 1309: 1308: 1299: 1294: 1293: 1284: 1283: 1268: 1267: 1258: 1257: 1228: 1226: 1225: 1220: 1163: 1161: 1160: 1155: 1100:tracer technique 1096:chemical reactor 1050: 1048: 1047: 1042: 1026: 1024: 1023: 1018: 1006: 1004: 1003: 998: 980: 978: 977: 972: 934: 932: 931: 926: 923: 922: 907: 906: 882: 881: 815: 813: 812: 807: 784: 782: 781: 776: 771: 770: 758: 756: 748: 747: 746: 733: 707: 705: 704: 699: 687: 686: 671: 670: 637: 636: 615: 614: 599: 598: 572: 570: 569: 564: 562: 561: 553: 540: 538: 537: 532: 529: 528: 516: 515: 503: 502: 486: 484: 483: 478: 476: 474: 473: 472: 459: 458: 457: 449: 442: 437: 435: 434: 425: 417: 415: 347:at the position 306: 304: 303: 298: 287: 286: 271: 270: 240: 239: 218: 217: 179:of axial length 118: 116: 115: 110: 94: 92: 91: 86: 2553: 2552: 2548: 2547: 2546: 2544: 2543: 2542: 2528: 2527: 2526: 2521: 2514: 2481: 2477: 2444: 2440: 2433: 2419: 2415: 2396: 2392: 2385: 2363: 2356: 2340: 2339: 2335: 2321: 2314: 2281: 2272: 2239: 2235: 2228: 2214: 2205: 2201: 2196: 2167: 2142: 2094: 2064: 2060: 2054: 2050: 2036: 2026: 2024: 2010: 2004: 2000: 1998: 1995: 1994: 1968: 1964: 1959: 1951: 1948: 1947: 1930: 1926: 1920: 1916: 1911: 1908: 1907: 1905: 1883: 1879: 1874: 1868: 1864: 1858: 1854: 1842: 1838: 1832: 1828: 1823: 1820: 1819: 1798: 1794: 1786: 1780: 1776: 1770: 1766: 1755: 1752: 1751: 1725: 1721: 1715: 1711: 1703: 1697: 1693: 1687: 1683: 1668: 1664: 1656: 1650: 1646: 1640: 1635: 1619: 1615: 1609: 1605: 1600: 1597: 1596: 1561: 1555: 1551: 1542: 1538: 1533: 1528: 1525: 1524: 1501: 1498: 1497: 1478: 1474: 1472: 1469: 1468: 1450: 1447: 1446: 1442:or dispersion. 1419: 1415: 1410: 1395: 1391: 1389: 1386: 1385: 1359: 1355: 1349: 1345: 1337: 1325: 1321: 1316: 1304: 1300: 1295: 1289: 1285: 1279: 1275: 1263: 1259: 1253: 1249: 1244: 1241: 1240: 1178: 1175: 1174: 1134: 1131: 1130: 1079: 1036: 1033: 1032: 1012: 1009: 1008: 986: 983: 982: 966: 963: 962: 955: 943: 912: 908: 899: 895: 877: 873: 871: 868: 867: 856: 846: 836: 801: 798: 797: 766: 762: 749: 742: 738: 734: 732: 727: 724: 723: 682: 678: 666: 662: 632: 628: 610: 606: 594: 590: 588: 585: 584: 552: 551: 549: 546: 545: 524: 520: 511: 507: 498: 494: 492: 489: 488: 468: 464: 460: 448: 447: 443: 441: 430: 426: 416: 414: 406: 403: 402: 397: 376:, dimensionless 364: 340: 282: 278: 266: 262: 235: 231: 213: 209: 207: 204: 203: 125: 104: 101: 100: 80: 77: 76: 61:perfectly mixed 17: 12: 11: 5: 2551: 2541: 2540: 2525: 2524: 2512: 2475: 2438: 2431: 2413: 2390: 2383: 2354: 2333: 2312: 2270: 2233: 2226: 2202: 2200: 2197: 2195: 2194: 2189: 2184: 2179: 2174: 2172:Flow chemistry 2168: 2166: 2163: 2162: 2161: 2158: 2155: 2152: 2151:Fast reactions 2149: 2141: 2138: 2134: 2133: 2131: 2127: 2126: 2119: 2116: 2106: 2105: 2103: 2092: 2089: 2088: 2075: 2067: 2063: 2057: 2053: 2049: 2046: 2043: 2040: 2035: 2032: 2029: 2023: 2020: 2017: 2013: 2007: 2003: 1992: 1976: 1971: 1967: 1962: 1958: 1955: 1933: 1929: 1923: 1919: 1915: 1903: 1900: 1899: 1886: 1882: 1877: 1871: 1867: 1861: 1857: 1853: 1850: 1845: 1841: 1835: 1831: 1827: 1817: 1814: 1801: 1797: 1793: 1789: 1783: 1779: 1773: 1769: 1765: 1762: 1759: 1749: 1742: 1741: 1728: 1724: 1718: 1714: 1710: 1706: 1700: 1696: 1690: 1686: 1682: 1679: 1676: 1671: 1667: 1663: 1659: 1653: 1649: 1643: 1638: 1634: 1630: 1627: 1622: 1618: 1612: 1608: 1604: 1594: 1583: 1582: 1571: 1568: 1564: 1558: 1554: 1550: 1545: 1541: 1536: 1532: 1518: 1517: 1505: 1495: 1481: 1477: 1466: 1454: 1436: 1435: 1422: 1418: 1413: 1409: 1406: 1403: 1398: 1394: 1383: 1376: 1375: 1362: 1358: 1352: 1348: 1344: 1340: 1336: 1333: 1328: 1324: 1319: 1315: 1312: 1307: 1303: 1298: 1292: 1288: 1282: 1278: 1274: 1271: 1266: 1262: 1256: 1252: 1248: 1238: 1230: 1229: 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1182: 1172: 1165: 1164: 1153: 1150: 1147: 1144: 1141: 1138: 1128: 1117: 1116: 1113: 1110: 1107: 1078: 1075: 1068:heat exchanger 1040: 1016: 996: 993: 990: 970: 954: 951: 941: 921: 918: 915: 911: 905: 902: 898: 894: 891: 888: 885: 880: 876: 854: 849: 848: 844: 838: 834: 827: 805: 774: 769: 765: 761: 755: 752: 745: 741: 737: 731: 696: 693: 690: 685: 681: 677: 674: 669: 665: 661: 658: 655: 652: 649: 646: 643: 640: 635: 631: 627: 624: 621: 618: 613: 609: 605: 602: 597: 593: 559: 556: 542: 541: 527: 523: 519: 514: 510: 506: 501: 497: 471: 467: 463: 455: 452: 446: 440: 433: 429: 423: 420: 413: 410: 395: 384: 383: 377: 367: 362: 358: 352: 338: 334: 324: 318: 296: 293: 290: 285: 281: 277: 274: 269: 265: 261: 258: 255: 252: 249: 246: 243: 238: 234: 230: 227: 224: 221: 216: 212: 197: 196: 173: 172: 165: 158: 153: 124: 121: 108: 84: 73:residence time 15: 9: 6: 4: 3: 2: 2550: 2539: 2536: 2535: 2533: 2519: 2517: 2507: 2502: 2498: 2494: 2490: 2486: 2479: 2470: 2465: 2461: 2457: 2453: 2449: 2442: 2434: 2428: 2424: 2417: 2409: 2405: 2401: 2394: 2386: 2380: 2376: 2371: 2370: 2361: 2359: 2350: 2344: 2336: 2330: 2326: 2319: 2317: 2307: 2302: 2298: 2294: 2290: 2286: 2279: 2277: 2275: 2265: 2260: 2256: 2252: 2248: 2244: 2237: 2229: 2223: 2219: 2212: 2210: 2208: 2203: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2169: 2159: 2156: 2153: 2150: 2147: 2146: 2145: 2137: 2132: 2129: 2128: 2124: 2123:heat transfer 2120: 2117: 2115: 2111: 2110: 2109: 2104: 2101: 2100: 2099: 2096: 2073: 2065: 2055: 2051: 2044: 2041: 2038: 2033: 2030: 2027: 2021: 2018: 2015: 2011: 2005: 2001: 1993: 1990: 1989: 1988: 1969: 1965: 1960: 1956: 1931: 1921: 1917: 1884: 1880: 1875: 1869: 1859: 1855: 1848: 1843: 1833: 1829: 1818: 1815: 1799: 1795: 1791: 1787: 1781: 1777: 1771: 1767: 1763: 1760: 1757: 1750: 1747: 1746: 1745: 1726: 1716: 1712: 1708: 1704: 1698: 1694: 1688: 1684: 1677: 1674: 1669: 1665: 1661: 1657: 1651: 1647: 1641: 1636: 1632: 1628: 1625: 1620: 1610: 1606: 1595: 1592: 1591: 1590: 1588: 1569: 1566: 1562: 1556: 1552: 1548: 1543: 1539: 1534: 1530: 1523: 1522: 1521: 1503: 1496: 1479: 1475: 1467: 1452: 1445: 1444: 1443: 1441: 1420: 1416: 1411: 1407: 1404: 1401: 1396: 1392: 1384: 1381: 1380: 1379: 1360: 1350: 1346: 1338: 1334: 1331: 1326: 1322: 1317: 1313: 1310: 1305: 1301: 1296: 1290: 1280: 1276: 1269: 1264: 1254: 1250: 1239: 1236: 1235: 1234: 1216: 1210: 1207: 1204: 1201: 1198: 1192: 1189: 1186: 1183: 1180: 1173: 1170: 1169: 1168: 1151: 1148: 1145: 1139: 1136: 1129: 1126: 1125: 1124: 1121: 1114: 1111: 1108: 1105: 1104: 1103: 1101: 1097: 1092: 1087: 1084: 1074: 1071: 1069: 1065: 1061: 1056: 1054: 1038: 1030: 1014: 994: 991: 988: 968: 959: 950: 948: 944: 936: 919: 916: 913: 909: 903: 900: 896: 892: 886: 878: 874: 864: 862: 858: 842: 839: 832: 828: 825: 822: 821: 820: 817: 803: 795: 791: 786: 772: 767: 763: 759: 753: 750: 743: 739: 735: 729: 720: 718: 714: 709: 694: 691: 688: 683: 679: 675: 672: 667: 663: 659: 650: 647: 644: 641: 633: 629: 625: 619: 611: 607: 600: 595: 591: 581: 579: 574: 557: 554: 525: 521: 517: 512: 508: 504: 499: 495: 469: 465: 461: 453: 450: 444: 438: 431: 427: 421: 418: 411: 408: 401: 400: 399: 393: 389: 381: 378: 375: 371: 368: 365: 359: 356: 353: 350: 346: 342: 335: 333: 329: 325: 322: 319: 316: 313: 312: 311: 308: 294: 291: 288: 283: 279: 275: 272: 267: 263: 259: 253: 250: 247: 244: 236: 232: 228: 222: 214: 210: 200: 194: 193: 192: 190: 186: 182: 178: 170: 166: 163: 159: 157: 154: 152: 149: 148: 147: 146:Assumptions: 144: 140: 136: 134: 130: 120: 106: 98: 82: 74: 70: 66: 62: 56: 54: 50: 46: 42: 38: 34: 30: 21: 2488: 2484: 2478: 2451: 2447: 2441: 2422: 2416: 2407: 2403: 2393: 2368: 2324: 2288: 2284: 2246: 2242: 2236: 2217: 2187:Microreactor 2143: 2140:Applications 2135: 2114:steady state 2107: 2097: 2090: 1901: 1743: 1584: 1519: 1437: 1377: 1231: 1166: 1122: 1118: 1115:Random input 1112:Cyclic input 1088: 1080: 1072: 1057: 960: 956: 946: 939: 937: 865: 860: 852: 850: 818: 789: 787: 721: 716: 712: 710: 582: 577: 575: 543: 391: 387: 385: 379: 369: 360: 354: 348: 344: 336: 331: 327: 320: 314: 309: 201: 198: 188: 184: 180: 176: 174: 156:Steady state 145: 141: 137: 126: 123:PFR modeling 57: 44: 40: 36: 32: 28: 26: 2506:11336/74029 2491:: 406–416. 2469:11336/74207 2410:(2): 65–74. 2306:11336/45663 2291:: 463–471. 2264:11336/74207 1106:Pulse input 195:= - + - 135:are known. 2102:Advantages 1109:Step input 824:isothermal 326:the index 2343:cite book 2056:θ 2052:σ 2028:− 1922:θ 1918:σ 1881:τ 1856:σ 1834:θ 1830:σ 1792:∑ 1764:∑ 1758:τ 1709:∑ 1678:∑ 1675:− 1662:∑ 1629:∑ 1607:σ 1440:diffusion 1302:τ 1277:σ 1255:θ 1251:σ 1214:∇ 1205:∑ 1196:∂ 1187:∫ 1181:τ 1143:∂ 1137:∫ 1091:plug flow 1039:τ 1015:τ 995:τ 920:τ 914:− 804:τ 764:ν 680:ν 626:− 580:becomes: 558:˙ 462:π 454:˙ 422:˙ 280:ν 229:− 160:Constant 151:Plug flow 107:τ 83:τ 2532:Category 2165:See also 2130:Concerns 1587:variance 1064:catalyst 1007:, where 843:(r = k C 831:reaction 819:Assume: 719:becomes 183:between 169:reaction 69:limiting 1902:Thus (σ 1378:Where, 372:is the 351:, mol/s 310:where: 191:gives: 167:Single 162:density 2429:  2381:  2377:–265. 2331:  2224:  2121:Large 1060:packed 938:where 544:where 189:x + dx 1089:Real 837:= -1) 487:and 43:, or 2427:ISBN 2379:ISBN 2349:link 2329:ISBN 2222:ISBN 1585:The 1081:The 1053:mean 187:and 27:The 2501:hdl 2493:doi 2464:hdl 2456:doi 2375:260 2301:hdl 2293:doi 2289:176 2259:hdl 2251:doi 1991:(8) 1816:(7) 1748:(6) 1593:(5) 1382:(4) 1237:(3) 1171:(2) 1127:(1) 1031:at 866:4. 857:(x) 722:3. 583:2. 394:, C 341:(x) 202:1. 41:CTR 33:PFR 2534:: 2515:^ 2499:. 2489:58 2487:. 2462:. 2452:56 2450:. 2406:. 2402:. 2357:^ 2345:}} 2341:{{ 2315:^ 2299:. 2287:. 2273:^ 2257:. 2247:56 2245:. 2206:^ 1070:. 942:A0 935:, 833:(ν 785:, 713:dx 708:. 321:dx 307:. 181:dx 119:. 67:, 39:, 2509:. 2503:: 2495:: 2472:. 2466:: 2458:: 2435:. 2408:7 2387:. 2351:) 2337:. 2309:. 2303:: 2295:: 2267:. 2261:: 2253:: 2230:. 2093:L 2074:8 2066:2 2062:) 2048:( 2045:8 2042:+ 2039:1 2034:+ 2031:1 2022:= 2019:U 2016:L 2012:/ 2006:L 2002:D 1975:) 1970:e 1966:P 1961:/ 1957:1 1954:( 1932:2 1928:) 1914:( 1904:θ 1885:2 1876:/ 1870:2 1866:) 1860:t 1852:( 1849:= 1844:2 1840:) 1826:( 1800:i 1796:C 1788:/ 1782:i 1778:C 1772:i 1768:t 1761:= 1727:2 1723:] 1717:i 1713:C 1705:/ 1699:i 1695:C 1689:i 1685:t 1681:[ 1670:i 1666:C 1658:/ 1652:i 1648:C 1642:2 1637:i 1633:t 1626:= 1621:2 1617:) 1611:t 1603:( 1570:U 1567:L 1563:/ 1557:L 1553:D 1549:= 1544:e 1540:P 1535:/ 1531:1 1504:U 1480:L 1476:D 1453:L 1421:L 1417:D 1412:/ 1408:U 1405:L 1402:= 1397:e 1393:P 1361:2 1357:) 1351:e 1347:P 1343:( 1339:/ 1335:8 1332:+ 1327:e 1323:P 1318:/ 1314:2 1311:= 1306:2 1297:/ 1291:2 1287:) 1281:t 1273:( 1270:= 1265:2 1261:) 1247:( 1217:t 1211:E 1208:t 1202:= 1199:t 1193:E 1190:t 1184:= 1152:1 1149:= 1146:t 1140:E 992:+ 989:t 969:t 947:A 940:C 917:k 910:e 904:0 901:A 897:C 893:= 890:) 887:x 884:( 879:A 875:C 861:A 855:A 853:C 847:) 845:A 835:A 790:r 773:r 768:i 760:= 754:x 751:d 744:i 740:C 736:d 730:u 717:i 695:0 692:= 689:r 684:i 676:x 673:d 668:t 664:A 660:+ 657:] 654:) 651:x 648:d 645:+ 642:x 639:( 634:i 630:C 623:) 620:x 617:( 612:i 608:C 604:[ 601:u 596:t 592:A 578:i 555:v 526:i 522:C 518:u 513:t 509:A 505:= 500:i 496:F 470:2 466:D 451:v 445:4 439:= 432:t 428:A 419:v 412:= 409:u 396:i 392:i 388:u 380:r 370:ν 363:t 361:A 355:D 349:x 345:i 339:i 337:F 332:i 328:i 315:x 295:0 292:= 289:r 284:i 276:x 273:d 268:t 264:A 260:+ 257:) 254:x 251:d 248:+ 245:x 242:( 237:i 233:F 226:) 223:x 220:( 215:i 211:F 185:x 177:i 75:( 31:(

Index


chemical reactions
chemical reactors
perfectly mixed
continuous stirred tank reactor
limiting
residence time
Dirac delta function
differential equations
boundary conditions
Plug flow
Steady state
density
reaction
stoichiometric coefficient
Arrhenius equation
isothermal
reaction
first-order reaction
Dirac delta function
mean
packed
catalyst
heat exchanger
residence-time distribution (RTD)
plug flow
chemical reactor
tracer technique
diffusion
variance

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.