Knowledge

Platt scaling

Source 📝

1078: 1687:, which produce distorted probability distributions. It is particularly effective for max-margin methods such as SVMs and boosted trees, which show sigmoidal distortions in their predicted probabilities, but has less of an effect with well- 1297: 1401: 1074:, i.e. a classification that not only gives an answer, but also a degree of certainty about the answer. Some classification models do not provide such a probability, or give poor probability estimates. 1553: 1617: 1652:
to a model of out-of-sample data that has a uniform prior over the labels. The constants 1 and 2, on the numerator and denominator respectively, are derived from the application of
1195: 1136: 1430: 1072: 866: 904: 1751: 1795: 1775: 1710:
model to an ill-calibrated probability model. This has been shown to work better than Platt scaling, in particular when enough training data is available.
861: 851: 692: 899: 856: 707: 438: 1713:
Platt scaling can also be applied to deep neural network classifiers. For image classification, such as CIFAR-100, small networks like
939: 742: 1206: 1333: 818: 367: 876: 639: 174: 2026: 894: 1664: 727: 702: 651: 1488: 1660: 775: 770: 423: 433: 71: 1864: 1679:
Platt scaling has been shown to be effective for SVMs as well as other types of classification models, including
973: 1567: 932: 828: 592: 413: 2021: 1475: 1459: 803: 505: 281: 1896: 969: 760: 697: 607: 585: 428: 418: 1680: 911: 823: 808: 269: 91: 1968: 1648:
are the number of positive and negative samples, respectively. This transformation follows by applying
965: 871: 798: 548: 443: 231: 164: 124: 1869:"Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods" 1200:
Platt scaling is an algorithm to solve the aforementioned problem. It produces probability estimates
1143: 1084: 925: 531: 299: 169: 1806: 1688: 553: 473: 396: 314: 144: 106: 101: 61: 56: 1718: 1330:
parameters that are learned by the algorithm. Note that predictions can now be made according to
977: 500: 349: 249: 76: 1684: 680: 656: 558: 319: 294: 254: 66: 1922: 1406: 1034: 1696: 997: 634: 456: 408: 264: 179: 51: 1327: 563: 513: 1960: 8: 1728: 1707: 1692: 1668: 985: 666: 602: 573: 478: 304: 237: 223: 209: 184: 134: 86: 46: 1780: 1760: 1653: 644: 568: 354: 149: 1004:, we want to determine whether they belong to one of two classes, arbitrarily labeled 984:, but can be applied to other classification models. Platt scaling works by fitting a 1432:
the probability estimates contain a correction compared to the old decision function
1304: 1012:. We assume that the classification problem will be solved by a real-valued function 737: 580: 493: 289: 259: 204: 199: 154: 96: 1977: 1939: 1905: 1868: 1754: 1462:
method that optimizes on the same training set as that for the original classifier
953: 765: 518: 468: 378: 362: 332: 194: 189: 139: 129: 27: 981: 793: 597: 463: 403: 1998: 1924: 1649: 1471: 813: 344: 81: 1982: 1944: 2015: 1923:
Olivier Chapelle; Vladimir Vapnik; Olivier Bousquet; Sayan Mukherjee (2002).
1827: 1797:
is optimized on a held-out calibration set to minimize the calibration loss.
1721:
has high accuracy but is overconfident in predictions. A 2017 paper proposed
1700: 732: 661: 543: 274: 159: 1909: 1467: 538: 32: 1997:
Guo, Chuan; Pleiss, Geoff; Sun, Yu; Weinberger, Kilian Q. (2017-07-17).
1725:, which simply multiplies the output logits of a network by a constant 687: 383: 309: 1961:"A note on Platt's probabilistic outputs for support vector machines" 1478:
can be used, but Platt additionally suggests transforming the labels
846: 627: 2003:
Proceedings of the 34th International Conference on Machine Learning
1077: 622: 1717:
have good calibration but low accuracy, and large networks like
1706:
An alternative approach to probability calibration is to fit an
1292:{\displaystyle \mathrm {P} (y=1|x)={\frac {1}{1+\exp(Af(x)+B)}}} 373: 1714: 617: 612: 339: 1396:{\displaystyle y=1{\text{ iff }}P(y=1|x)>{\frac {1}{2}};} 1031:. For many problems, it is convenient to get a probability 1925:"Choosing multiple parameters for support vector machines" 1809:: probabilistic alternative to the support vector machine 905:
List of datasets in computer vision and image processing
1996: 1959:
Lin, Hsuan-Tien; Lin, Chih-Jen; Weng, Ruby C. (2007).
1898:
Predicting good probabilities with supervised learning
1894: 1783: 1763: 1731: 1570: 1491: 1409: 1336: 1209: 1146: 1087: 1037: 1895:Niculescu-Mizil, Alexandru; Caruana, Rich (2005). 1789: 1769: 1745: 1611: 1547: 1424: 1395: 1291: 1189: 1130: 1066: 2013: 1841:is arbitrarily chosen to be either zero, or one. 1548:{\displaystyle t_{+}={\frac {N_{+}+1}{N_{+}+2}}} 900:List of datasets for machine-learning research 933: 1890: 1888: 1886: 1999:"On Calibration of Modern Neural Networks" 1958: 1612:{\displaystyle t_{-}={\frac {1}{N_{-}+2}}} 964:is a way of transforming the outputs of a 940: 926: 1981: 1943: 1859: 1857: 1883: 1307:transformation of the classifier scores 1076: 1667:was later proposed that should be more 2014: 1854: 16:Machine learning calibration technique 1863: 970:probability distribution over classes 1873:Advances in Large Margin Classifiers 895:Glossary of artificial intelligence 13: 1663:to optimize the parameters, but a 1659:Platt himself suggested using the 1211: 14: 2038: 1081:Standard logistic function where 980:, replacing an earlier method by 988:model to a classifier's scores. 1190:{\displaystyle L=1,k=1,x_{0}=0} 1131:{\displaystyle L=1,k=1,x_{0}=0} 1990: 1952: 1916: 1820: 1374: 1367: 1354: 1283: 1274: 1268: 1259: 1235: 1228: 1215: 1061: 1054: 1041: 1016:, by predicting a class label 991: 315:Relevance vector machine (RVM) 1: 1848: 1777:is set to 1. After training, 1661:Levenberg–Marquardt algorithm 972:. The method was invented by 804:Computational learning theory 368:Expectation–maximization (EM) 761:Coefficient of determination 608:Convolutional neural network 320:Support vector machine (SVM) 7: 1800: 1674: 912:Outline of machine learning 809:Empirical risk minimization 10: 2043: 2027:Statistical classification 549:Feedforward neural network 300:Artificial neural networks 1983:10.1007/s10994-007-5018-6 532:Artificial neural network 1813: 1807:Relevance vector machine 1482:to target probabilities 1470:to this set, a held-out 1425:{\displaystyle B\neq 0,} 1067:{\displaystyle P(y=1|x)} 996:Consider the problem of 841:Journals and conferences 788:Mathematical foundations 698:Temporal difference (TD) 554:Recurrent neural network 474:Conditional random field 397:Dimensionality reduction 145:Dimensionality reduction 107:Quantum machine learning 102:Neuromorphic engineering 62:Self-supervised learning 57:Semi-supervised learning 1945:10.1023/a:1012450327387 1910:10.1145/1102351.1102430 1685:naive Bayes classifiers 978:support vector machines 250:Apprenticeship learning 1791: 1771: 1747: 1697:multilayer perceptrons 1619:for negative samples, 1613: 1555:for positive samples ( 1549: 1458:are estimated using a 1426: 1397: 1293: 1191: 1138: 1132: 1068: 799:Bias–variance tradeoff 681:Reinforcement learning 657:Spiking neural network 67:Reinforcement learning 1792: 1772: 1748: 1614: 1550: 1427: 1398: 1294: 1192: 1133: 1080: 1069: 998:binary classification 635:Neural radiance field 457:Structured prediction 180:Structured prediction 52:Unsupervised learning 2022:Probabilistic models 1781: 1761: 1729: 1568: 1489: 1407: 1334: 1207: 1144: 1085: 1035: 966:classification model 824:Statistical learning 722:Learning with humans 514:Local outlier factor 1757:. During training, 1746:{\displaystyle 1/T} 1723:temperature scaling 1708:isotonic regression 1693:logistic regression 986:logistic regression 667:Electrochemical RAM 574:reservoir computing 305:Logistic regression 224:Supervised learning 210:Multimodal learning 185:Feature engineering 130:Generative modeling 92:Rule-based learning 87:Curriculum learning 47:Supervised learning 22:Part of a series on 2005:. PMLR: 1321–1330. 1787: 1767: 1753:before taking the 1743: 1669:numerically stable 1609: 1545: 1460:maximum likelihood 1422: 1393: 1289: 1187: 1139: 1128: 1064: 976:in the context of 235: • 150:Density estimation 1790:{\displaystyle T} 1770:{\displaystyle T} 1654:Laplace smoothing 1607: 1543: 1388: 1349: 1287: 962:Platt calibration 950: 949: 755:Model diagnostics 738:Human-in-the-loop 581:Boltzmann machine 494:Anomaly detection 290:Linear regression 205:Ontology learning 200:Grammar induction 175:Semantic analysis 170:Association rules 155:Anomaly detection 97:Neuro-symbolic AI 2034: 2007: 2006: 1994: 1988: 1987: 1985: 1969:Machine Learning 1965: 1956: 1950: 1949: 1947: 1932:Machine Learning 1929: 1920: 1914: 1913: 1903: 1892: 1881: 1880: 1861: 1842: 1840: 1830:. The label for 1824: 1796: 1794: 1793: 1788: 1776: 1774: 1773: 1768: 1752: 1750: 1749: 1744: 1739: 1683:models and even 1665:Newton algorithm 1647: 1638: 1625: 1618: 1616: 1615: 1610: 1608: 1606: 1599: 1598: 1585: 1580: 1579: 1561: 1554: 1552: 1551: 1546: 1544: 1542: 1535: 1534: 1524: 1517: 1516: 1506: 1501: 1500: 1481: 1476:cross-validation 1465: 1457: 1453: 1446: 1431: 1429: 1428: 1423: 1402: 1400: 1399: 1394: 1389: 1381: 1370: 1350: 1347: 1325: 1321: 1317: 1298: 1296: 1295: 1290: 1288: 1286: 1242: 1231: 1214: 1196: 1194: 1193: 1188: 1180: 1179: 1137: 1135: 1134: 1129: 1121: 1120: 1073: 1071: 1070: 1065: 1057: 1030: 1015: 1011: 1007: 1003: 954:machine learning 942: 935: 928: 889:Related articles 766:Confusion matrix 519:Isolation forest 464:Graphical models 243: 242: 195:Learning to rank 190:Feature learning 28:Machine learning 19: 18: 2042: 2041: 2037: 2036: 2035: 2033: 2032: 2031: 2012: 2011: 2010: 1995: 1991: 1963: 1957: 1953: 1927: 1921: 1917: 1901: 1893: 1884: 1862: 1855: 1851: 1846: 1845: 1831: 1825: 1821: 1816: 1803: 1782: 1779: 1778: 1762: 1759: 1758: 1735: 1730: 1727: 1726: 1691:models such as 1677: 1646: 1640: 1637: 1631: 1620: 1594: 1590: 1589: 1584: 1575: 1571: 1569: 1566: 1565: 1556: 1530: 1526: 1525: 1512: 1508: 1507: 1505: 1496: 1492: 1490: 1487: 1486: 1479: 1472:calibration set 1463: 1455: 1451: 1450:The parameters 1433: 1408: 1405: 1404: 1380: 1366: 1348: iff  1346: 1335: 1332: 1331: 1323: 1319: 1308: 1246: 1241: 1227: 1210: 1208: 1205: 1204: 1175: 1171: 1145: 1142: 1141: 1116: 1112: 1086: 1083: 1082: 1053: 1036: 1033: 1032: 1017: 1013: 1009: 1005: 1001: 994: 946: 917: 916: 890: 882: 881: 842: 834: 833: 794:Kernel machines 789: 781: 780: 756: 748: 747: 728:Active learning 723: 715: 714: 683: 673: 672: 598:Diffusion model 534: 524: 523: 496: 486: 485: 459: 449: 448: 404:Factor analysis 399: 389: 388: 372: 335: 325: 324: 245: 244: 228: 227: 226: 215: 214: 120: 112: 111: 77:Online learning 42: 30: 17: 12: 11: 5: 2040: 2030: 2029: 2024: 2009: 2008: 1989: 1976:(3): 267–276. 1951: 1915: 1882: 1852: 1850: 1847: 1844: 1843: 1818: 1817: 1815: 1812: 1811: 1810: 1802: 1799: 1786: 1766: 1742: 1738: 1734: 1701:random forests 1676: 1673: 1644: 1635: 1628: 1627: 1605: 1602: 1597: 1593: 1588: 1583: 1578: 1574: 1563: 1541: 1538: 1533: 1529: 1523: 1520: 1515: 1511: 1504: 1499: 1495: 1421: 1418: 1415: 1412: 1392: 1387: 1384: 1379: 1376: 1373: 1369: 1365: 1362: 1359: 1356: 1353: 1345: 1342: 1339: 1301: 1300: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1245: 1240: 1237: 1234: 1230: 1226: 1223: 1220: 1217: 1213: 1186: 1183: 1178: 1174: 1170: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1127: 1124: 1119: 1115: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1063: 1060: 1056: 1052: 1049: 1046: 1043: 1040: 993: 990: 948: 947: 945: 944: 937: 930: 922: 919: 918: 915: 914: 909: 908: 907: 897: 891: 888: 887: 884: 883: 880: 879: 874: 869: 864: 859: 854: 849: 843: 840: 839: 836: 835: 832: 831: 826: 821: 816: 814:Occam learning 811: 806: 801: 796: 790: 787: 786: 783: 782: 779: 778: 773: 771:Learning curve 768: 763: 757: 754: 753: 750: 749: 746: 745: 740: 735: 730: 724: 721: 720: 717: 716: 713: 712: 711: 710: 700: 695: 690: 684: 679: 678: 675: 674: 671: 670: 664: 659: 654: 649: 648: 647: 637: 632: 631: 630: 625: 620: 615: 605: 600: 595: 590: 589: 588: 578: 577: 576: 571: 566: 561: 551: 546: 541: 535: 530: 529: 526: 525: 522: 521: 516: 511: 503: 497: 492: 491: 488: 487: 484: 483: 482: 481: 476: 471: 460: 455: 454: 451: 450: 447: 446: 441: 436: 431: 426: 421: 416: 411: 406: 400: 395: 394: 391: 390: 387: 386: 381: 376: 370: 365: 360: 352: 347: 342: 336: 331: 330: 327: 326: 323: 322: 317: 312: 307: 302: 297: 292: 287: 279: 278: 277: 272: 267: 257: 255:Decision trees 252: 246: 232:classification 222: 221: 220: 217: 216: 213: 212: 207: 202: 197: 192: 187: 182: 177: 172: 167: 162: 157: 152: 147: 142: 137: 132: 127: 125:Classification 121: 118: 117: 114: 113: 110: 109: 104: 99: 94: 89: 84: 82:Batch learning 79: 74: 69: 64: 59: 54: 49: 43: 40: 39: 36: 35: 24: 23: 15: 9: 6: 4: 3: 2: 2039: 2028: 2025: 2023: 2020: 2019: 2017: 2004: 2000: 1993: 1984: 1979: 1975: 1971: 1970: 1962: 1955: 1946: 1941: 1937: 1933: 1926: 1919: 1911: 1907: 1900: 1899: 1891: 1889: 1887: 1878: 1874: 1870: 1866: 1860: 1858: 1853: 1838: 1834: 1829: 1828:sign function 1823: 1819: 1808: 1805: 1804: 1798: 1784: 1764: 1756: 1740: 1736: 1732: 1724: 1720: 1716: 1711: 1709: 1704: 1702: 1698: 1694: 1690: 1686: 1682: 1672: 1670: 1666: 1662: 1657: 1655: 1651: 1643: 1634: 1623: 1603: 1600: 1595: 1591: 1586: 1581: 1576: 1572: 1564: 1559: 1539: 1536: 1531: 1527: 1521: 1518: 1513: 1509: 1502: 1497: 1493: 1485: 1484: 1483: 1477: 1473: 1469: 1461: 1448: 1444: 1440: 1436: 1419: 1416: 1413: 1410: 1390: 1385: 1382: 1377: 1371: 1363: 1360: 1357: 1351: 1343: 1340: 1337: 1329: 1315: 1311: 1306: 1280: 1277: 1271: 1265: 1262: 1256: 1253: 1250: 1247: 1243: 1238: 1232: 1224: 1221: 1218: 1203: 1202: 1201: 1198: 1184: 1181: 1176: 1172: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1125: 1122: 1117: 1113: 1109: 1106: 1103: 1100: 1097: 1094: 1091: 1088: 1079: 1075: 1058: 1050: 1047: 1044: 1038: 1028: 1024: 1020: 1000:: for inputs 999: 989: 987: 983: 979: 975: 971: 967: 963: 959: 958:Platt scaling 955: 943: 938: 936: 931: 929: 924: 923: 921: 920: 913: 910: 906: 903: 902: 901: 898: 896: 893: 892: 886: 885: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 844: 838: 837: 830: 827: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 800: 797: 795: 792: 791: 785: 784: 777: 774: 772: 769: 767: 764: 762: 759: 758: 752: 751: 744: 741: 739: 736: 734: 733:Crowdsourcing 731: 729: 726: 725: 719: 718: 709: 706: 705: 704: 701: 699: 696: 694: 691: 689: 686: 685: 682: 677: 676: 668: 665: 663: 662:Memtransistor 660: 658: 655: 653: 650: 646: 643: 642: 641: 638: 636: 633: 629: 626: 624: 621: 619: 616: 614: 611: 610: 609: 606: 604: 601: 599: 596: 594: 591: 587: 584: 583: 582: 579: 575: 572: 570: 567: 565: 562: 560: 557: 556: 555: 552: 550: 547: 545: 544:Deep learning 542: 540: 537: 536: 533: 528: 527: 520: 517: 515: 512: 510: 508: 504: 502: 499: 498: 495: 490: 489: 480: 479:Hidden Markov 477: 475: 472: 470: 467: 466: 465: 462: 461: 458: 453: 452: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 401: 398: 393: 392: 385: 382: 380: 377: 375: 371: 369: 366: 364: 361: 359: 357: 353: 351: 348: 346: 343: 341: 338: 337: 334: 329: 328: 321: 318: 316: 313: 311: 308: 306: 303: 301: 298: 296: 293: 291: 288: 286: 284: 280: 276: 275:Random forest 273: 271: 268: 266: 263: 262: 261: 258: 256: 253: 251: 248: 247: 240: 239: 234: 233: 225: 219: 218: 211: 208: 206: 203: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 160:Data cleaning 158: 156: 153: 151: 148: 146: 143: 141: 138: 136: 133: 131: 128: 126: 123: 122: 116: 115: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 72:Meta-learning 70: 68: 65: 63: 60: 58: 55: 53: 50: 48: 45: 44: 38: 37: 34: 29: 26: 25: 21: 20: 2002: 1992: 1973: 1967: 1954: 1935: 1931: 1918: 1897: 1876: 1872: 1836: 1832: 1822: 1722: 1712: 1705: 1678: 1658: 1641: 1632: 1629: 1621: 1557: 1449: 1442: 1438: 1434: 1313: 1309: 1302: 1199: 1140: 1026: 1022: 1018: 995: 961: 957: 951: 819:PAC learning 506: 355: 350:Hierarchical 282: 236: 230: 1938:: 131–159. 1879:(3): 61–74. 1865:Platt, John 1650:Bayes' rule 1468:overfitting 1466:. To avoid 992:Description 703:Multi-agent 640:Transformer 539:Autoencoder 295:Naive Bayes 33:data mining 2016:Categories 1849:References 1689:calibrated 974:John Platt 688:Q-learning 586:Restricted 384:Mean shift 333:Clustering 310:Perceptron 238:regression 140:Clustering 135:Regression 1596:− 1577:− 1414:≠ 1257:⁡ 847:ECML PKDD 829:VC theory 776:ROC curve 708:Self-play 628:DeepDream 469:Bayes net 260:Ensembles 41:Paradigms 1904:. ICML. 1867:(1999). 1801:See also 1675:Analysis 1326:are two 1318:, where 1305:logistic 1303:i.e., a 270:Boosting 119:Problems 1755:softmax 1715:LeNet-5 1681:boosted 1437:= sign( 1021:= sign( 968:into a 852:NeurIPS 669:(ECRAM) 623:AlexNet 265:Bagging 1719:ResNet 1699:, and 1630:Here, 1562:), and 1328:scalar 982:Vapnik 645:Vision 501:RANSAC 379:OPTICS 374:DBSCAN 358:-means 165:AutoML 1964:(PDF) 1928:(PDF) 1902:(PDF) 1839:) = 0 1814:Notes 867:IJCAI 693:SARSA 652:Mamba 618:LeNet 613:U-Net 439:t-SNE 363:Fuzzy 340:BIRCH 1826:See 1639:and 1624:= -1 1454:and 1378:> 1322:and 1008:and 877:JMLR 862:ICLR 857:ICML 743:RLHF 559:LSTM 345:CURE 31:and 1978:doi 1940:doi 1906:doi 1560:= 1 1474:or 1403:if 1254:exp 960:or 952:In 603:SOM 593:GAN 569:ESN 564:GRU 509:-NN 444:SDL 434:PGD 429:PCA 424:NMF 419:LDA 414:ICA 409:CCA 285:-NN 2018:: 2001:. 1974:68 1972:. 1966:. 1936:46 1934:. 1930:. 1885:^ 1877:10 1875:. 1871:. 1856:^ 1703:. 1695:, 1671:. 1656:. 1447:. 1445:)) 1197:. 1029:)) 1010:−1 1006:+1 956:, 872:ML 1986:. 1980:: 1948:. 1942:: 1912:. 1908:: 1837:x 1835:( 1833:f 1785:T 1765:T 1741:T 1737:/ 1733:1 1645:− 1642:N 1636:+ 1633:N 1626:. 1622:y 1604:2 1601:+ 1592:N 1587:1 1582:= 1573:t 1558:y 1540:2 1537:+ 1532:+ 1528:N 1522:1 1519:+ 1514:+ 1510:N 1503:= 1498:+ 1494:t 1480:y 1464:f 1456:B 1452:A 1443:x 1441:( 1439:f 1435:y 1420:, 1417:0 1411:B 1391:; 1386:2 1383:1 1375:) 1372:x 1368:| 1364:1 1361:= 1358:y 1355:( 1352:P 1344:1 1341:= 1338:y 1324:B 1320:A 1316:) 1314:x 1312:( 1310:f 1299:, 1284:) 1281:B 1278:+ 1275:) 1272:x 1269:( 1266:f 1263:A 1260:( 1251:+ 1248:1 1244:1 1239:= 1236:) 1233:x 1229:| 1225:1 1222:= 1219:y 1216:( 1212:P 1185:0 1182:= 1177:0 1173:x 1169:, 1166:1 1163:= 1160:k 1157:, 1154:1 1151:= 1148:L 1126:0 1123:= 1118:0 1114:x 1110:, 1107:1 1104:= 1101:k 1098:, 1095:1 1092:= 1089:L 1062:) 1059:x 1055:| 1051:1 1048:= 1045:y 1042:( 1039:P 1027:x 1025:( 1023:f 1019:y 1014:f 1002:x 941:e 934:t 927:v 507:k 356:k 283:k 241:) 229:(

Index

Machine learning
data mining
Supervised learning
Unsupervised learning
Semi-supervised learning
Self-supervised learning
Reinforcement learning
Meta-learning
Online learning
Batch learning
Curriculum learning
Rule-based learning
Neuro-symbolic AI
Neuromorphic engineering
Quantum machine learning
Classification
Generative modeling
Regression
Clustering
Dimensionality reduction
Density estimation
Anomaly detection
Data cleaning
AutoML
Association rules
Semantic analysis
Structured prediction
Feature engineering
Feature learning
Learning to rank

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑