Knowledge

Plastocyanin

Source 📝

26: 220: 392: 441: 514:, which can be found in oceanic environments. It was surprising to find these organisms containing the protein plastocyanin because the concentration of copper dissolved in the ocean is usually low (between 0.4 – 50 nM). However, the concentration of copper in the oceans is comparatively higher compared to the concentrations of other metals such as 428:
Cu(II) site instead of a perfectly symmetric tetrahedral geometry. A feature of the entatic state is a protein environment that is capable of preventing ligand dissociation even at a high enough temperature to break the metal-ligand bond. In the case of plastocyanin, it has been experimentally determined through
485:
bond (2.1Å), increasing its electron donating strength. Overall, plastocyanin exhibits a lower reorganization energy due to the entatic state of the protein ligand enforcing the same distorted tetrahedral geometry in both the Cu(II) and Cu(I) oxidation states, enabling it to perform electron transfer
427:
between Cu(I) and Cu(II), and it was first theorized that its entatic state was a result of the protein imposing an undistorted tetrahedral geometry preferred by ordinary Cu(I) complexes onto the oxidized Cu(II) site. However, a highly distorted tetrahedral geometry is induced upon the oxidized
295:
While the molecular surface of the protein near the copper binding site varies slightly, all plastocyanins have a hydrophobic surface surrounding the exposed histidine of the copper binding site. In plant plastocyanins, acidic residues are located on either side of the highly conserved
419:. This distorted geometry is less stable than ideal tetrahedral geometry due to its lower ligand field stabilization as a result of the trigonal distortion. This unusual geometry is induced by the rigid “pre-organized” conformation of the ligand donors by the protein, which is an 364:
where it increases the energy of the reactants, decreasing the amount of energy needed for the redox reaction to occur. Another way to rephrase the function of plastocyanin is that it can facilitate the electron transfer reaction by providing a small
522:. Other organisms that live in the ocean, such as other phytoplankton species, have adapted to where they do not need as high of concentrations of these low concentration metals (Fe and Zn) to facilitate photosynthesis and grow. 744:
Anderson GP, Sanderson DG, Lee CH, Durell S, Anderson LB, Gross EL (December 1987). "The effect of ethylenediamine chemical modification of plastocyanin on the rate of cytochrome f oxidation and P-700+ reduction".
436:
bond that should dissociate at physiological temperature due to increased entropy. However, this bond does not dissociate due to the constraints of the protein environment dominating over the entropic forces.
460:
In ordinary copper complexes involved in Cu(I)/Cu(II) redox coupling without a constraining protein environment, their ligand geometry changes significantly, and typically corresponds to the presence of a
486:
at a faster rate. The reorganization energy of blue copper proteins such as plastocyanin from 0.7 to 1.2 eV (68-116 kJ/mol) compared to 2.4 eV (232 kJ/mol) in an ordinary copper complex such as .
360:) reaction. Plastocyanin is believed to work less like an enzyme where enzymes decrease the transition energy needed to transfer the electron. Plastocyanin works more on the principles of 911:
Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L (February 2004). "Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins".
340:
After dissociation, CuPc diffuses through the lumen space until recognition/binding occurs with P700, at which point P700 oxidizes CuPc according to the following reaction:
253:, spinach, and French bean plants have been characterized crystallographically. In all cases the binding site is generally conserved. Bound to the copper center are four 324:
patch is always present. These hydrophobic and acidic patches are believed to be the recognition/binding sites for the other proteins involved in electron transfer.
277:) than Cu-S (Met) (282 pm) bond. The elongated Cu-thioether bond appears to destabilise the Cu state thereby enhancing its oxidizing power. The blue colour (597 1006:
Randall DW, Gamelin DR, LaCroix LB, Solomon EI (February 2000). "Electronic structure contributions to electron transfer in blue Cu and Cu(A)".
316:
plastocyanins and variations among different bacterial species is large. Many cyanobacterial plastocyanins have 107 amino acids. Although the
273:. The geometry of the copper binding site is described as a ‘distorted tetrahedral’. The Cu-S (Cys) contact is much shorter (207 308:, contain similar acidic residues but are shaped differently from those of plant plastocyanins—they lack residues 57 and 58. In 1114: 990: 701: 474: 89: 1124:
Sato K, Kohzuma T, Dennison C (February 2003). "Active-site structure and electron-transfer reactivity of plastocyanins".
1178: 121: 412: 1168: 1049:
Peers G, Price NM (May 2006). "Copper-containing plastocyanin used for electron transport by an oceanic diatom".
416: 717:
Gewirth AA, Solomon EI (June 1988). "Electronic structure of plastocyanin: excited state spectral features".
465:. However, the Jahn-Teller distorting force is not present in plastocyanin due to a large splitting of the d 332:
Plastocyanin (CuPc) is reduced (an electron is added) by cytochrome f according to the following reaction:
232: 592:
Redinbo MR, Yeates TO, Merchant S (February 1994). "Plastocyanin: structural and functional analysis".
109: 102: 114: 1173: 211:. Cytochrome f acts as an electron donor while P700+ accepts electrons from reduced plastocyanin. 151:. Specifically, it falls into the group of small type I blue copper proteins called "cupredoxins". 1163: 429: 780:
Ratajczak R, Mitchell R, Haehnel W (1988). "Properties of the oxidizing site of Photosystem I".
462: 190: 168: 366: 228: 1058: 541:"Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes" 481:
bond (2.9Å) with decreased electron donation strength. This bond also shortens the Cu(I)-S
25: 8: 377: 203:
and P700 are both membrane-bound proteins with exposed residues on the lumen-side of the
1062: 223:
The copper site in plastocyanin, with the four amino acids that bind the metal labelled.
1082: 1031: 885: 860: 836: 811: 666: 641: 617: 565: 540: 381: 1141: 1110: 1074: 1023: 986: 963: 946:
Solomon EI, Hadt RG (2011). "Recent advances in understanding blue copper proteins".
928: 890: 841: 793: 762: 758: 697: 671: 609: 570: 373: 136: 94: 38: 1035: 1133: 1086: 1066: 1015: 955: 920: 880: 872: 831: 823: 789: 754: 726: 661: 653: 621: 601: 560: 552: 70: 384:
simulations. This method was used to determine that plastocyanin has an entatic
692:, Guss JM (2001). "Plastocyanin". In Bode W, Messerschmidt A, Cygler M (eds.). 372:
To study the properties of the redox reaction of plastocyanin, methods such as
182: 160: 148: 144: 140: 959: 227:
Plastocyanin was the first of the blue copper proteins to be characterised by
219: 1157: 967: 503: 499: 495: 420: 385: 369:, which has been measured to about 16–28 kcal/mol (67–117 kJ/mol). 361: 309: 186: 77: 1145: 1078: 1027: 932: 924: 876: 845: 689: 657: 574: 391: 208: 164: 1019: 894: 766: 675: 613: 98: 356:
A catalyst's function is to increase the speed of the electron transfer (
321: 235: 1070: 730: 440: 312:, the distribution of charged residues on the surface is different from 910: 605: 556: 348:
The redox potential is about 370 mV and the isoelectric pH is about 4.
313: 270: 31: 1137: 827: 477:). Additionally, the structure of plastocyanin exhibits a long Cu(I)-S 396: 42: 399:
showing the distorted tetrahedral geometry with the elongated Cu(I)-S
278: 274: 262: 258: 204: 696:. Vol. 2. Chichester: John Wiley & Sons. pp. 1153–69. 444:
Copper site of Plastocyanin showing the large splitting of the Cu d
305: 297: 281:
peak absorption) is assigned to a charge transfer transition from S
266: 65: 812:"A QM/MM study of the nature of the entatic state in plastocyanin" 82: 254: 250: 1109:. Sausalito, Calif: University Science Books. pp. 237–242. 292:
In the reduced form of plastocyanin, His-87 becomes protonated.
861:"Crystal structure of spinach plastocyanin at 1.7 A resolution" 642:"Crystal structure of spinach plastocyanin at 1.7 A resolution" 507: 317: 239: 163:, plastocyanin functions as an electron transfer agent between 139:. It is found in a variety of plants, where it participates in 579:(for an overview of the various types of blue copper proteins) 494:
Usually, plastocyanin can be found in organisms that contain
424: 357: 301: 246: 1005: 304:
plastocyanins, and those from vascular plants in the family
519: 515: 743: 983:
Biological Inorganic Chemistry: Structure and reactivity
779: 858: 639: 591: 1105:
Berg JM, Lippard SJ (1994). "Blue Copper Proteins".
859:
Xue Y, Okvist M, Hansson O, Young S (October 1998).
640:
Xue Y, Okvist M, Hansson O, Young S (October 1998).
1123: 747:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
423:. Plastocyanin performs electron transfer with the 809: 415:, however plastocyanin has a trigonally distorted 1155: 411:Four-coordinate copper complexes often exhibit 716: 135:is a copper-containing protein that mediates 810:Hurd CA, Besley NA, Robinson D (June 2017). 538: 388:of about 10 kcal/mol (42 kJ/mol). 265:residues (His37 and His87), the thiolate of 1104: 945: 688: 320:patches are not conserved in bacteria, the 1048: 852: 506:. Plastocyanin has also been found in the 24: 1008:Journal of Biological Inorganic Chemistry 985:. University Science Books. p. 253. 884: 835: 665: 594:Journal of Bioenergetics and Biomembranes 564: 1126:Journal of the American Chemical Society 439: 390: 218: 980: 245:Structures of the protein from poplar, 1156: 906: 904: 805: 803: 539:Choi M, Davidson VL (February 2011). 432:that there is a long and weak Cu(I)-S 147:, a family of intensely blue-colored 143:. The protein is a prototype of the 1107:Principles of bioinorganic chemistry 635: 633: 631: 587: 585: 901: 13: 1097: 816:Journal of Computational Chemistry 800: 14: 1190: 628: 582: 475:Blue Copper Protein Entatic State 395:Copper site of Plastocyanin from 502:, as well as algae that contain 351: 231:. It features an eight-stranded 1042: 999: 974: 939: 489: 948:Coordination Chemistry Reviews 773: 737: 710: 682: 532: 1: 525: 794:10.1016/0005-2728(88)90038-2 759:10.1016/0005-2728(87)90117-4 463:Jahn-Teller distorting force 327: 214: 7: 694:Handbook of metalloproteins 154: 10: 1195: 1179:Electron-transfer proteins 960:10.1016/j.ccr.2010.12.008 129:Electron transfer protein 120: 108: 88: 76: 64: 56: 51: 23: 18: 430:absorption spectroscopy 1169:Coordination complexes 925:10.1002/chin.200420281 877:10.1002/pro.5560071006 782:Biochim. Biophys. Acta 658:10.1002/pro.5560071006 512:Thalassiosira oceanica 457: 413:square planar geometry 408: 224: 1020:10.1007/s007750050003 443: 403:and shortened Cu(I)-S 394: 367:reorganization energy 269:and the thioether of 229:X-ray crystallography 222: 417:tetrahedral geometry 145:blue copper proteins 1071:10.1038/nature04630 1063:2006Natur.441..341P 731:10.1021/ja00220a015 378:molecular mechanics 981:Bertini G (2007). 606:10.1007/BF00763219 557:10.1039/c0mt00061b 458: 409: 382:molecular dynamics 225: 1138:10.1021/ja021005u 1116:978-0-935702-72-9 1057:(7091): 341–344. 992:978-1-891389-43-6 828:10.1002/jcc.24666 822:(16): 1431–1437. 703:978-0-471-62743-2 652:(10): 2099–2105. 374:quantum mechanics 137:electron-transfer 127: 126: 1186: 1149: 1132:(8): 2101–2112. 1120: 1091: 1090: 1046: 1040: 1039: 1003: 997: 996: 978: 972: 971: 954:(7–8): 774–789. 943: 937: 936: 913:Chemical Reviews 908: 899: 898: 888: 871:(10): 2099–105. 856: 850: 849: 839: 807: 798: 797: 777: 771: 770: 741: 735: 734: 714: 708: 707: 686: 680: 679: 669: 637: 626: 625: 589: 580: 578: 568: 536: 45: 28: 16: 15: 1194: 1193: 1189: 1188: 1187: 1185: 1184: 1183: 1174:Copper proteins 1154: 1153: 1152: 1117: 1100: 1098:Further reading 1095: 1094: 1047: 1043: 1004: 1000: 993: 979: 975: 944: 940: 909: 902: 865:Protein Science 857: 853: 808: 801: 778: 774: 742: 738: 715: 711: 704: 687: 683: 646:Protein Science 638: 629: 590: 583: 537: 533: 528: 492: 484: 480: 472: 468: 455: 451: 447: 435: 406: 402: 354: 344:CuPc → CuPc + e 336:CuPc + e → CuPc 330: 288: 284: 238:containing one 217: 197: 185:and P700+ from 175: 157: 149:metalloproteins 130: 47: 37: 12: 11: 5: 1192: 1182: 1181: 1176: 1171: 1166: 1164:Photosynthesis 1151: 1150: 1121: 1115: 1101: 1099: 1096: 1093: 1092: 1041: 998: 991: 973: 938: 919:(2): 419–458. 900: 851: 799: 788:(2): 306–318. 772: 753:(3): 386–398. 736: 725:(12): 3811–9. 709: 702: 681: 627: 581: 551:(2): 140–151. 530: 529: 527: 524: 491: 488: 482: 478: 473:orbitals (See 470: 466: 453: 449: 445: 433: 404: 400: 362:entatic states 353: 350: 346: 345: 338: 337: 329: 326: 286: 282: 261:groups of two 216: 213: 195: 183:photosystem II 173: 161:photosynthesis 156: 153: 141:photosynthesis 128: 125: 124: 122:UniProt Family 118: 117: 112: 106: 105: 92: 86: 85: 80: 74: 73: 68: 62: 61: 58: 54: 53: 49: 48: 36:plastocyanin, 29: 21: 20: 9: 6: 4: 3: 2: 1191: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1161: 1159: 1147: 1143: 1139: 1135: 1131: 1127: 1122: 1118: 1112: 1108: 1103: 1102: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1045: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1002: 994: 988: 984: 977: 969: 965: 961: 957: 953: 949: 942: 934: 930: 926: 922: 918: 914: 907: 905: 896: 892: 887: 882: 878: 874: 870: 866: 862: 855: 847: 843: 838: 833: 829: 825: 821: 817: 813: 806: 804: 795: 791: 787: 783: 776: 768: 764: 760: 756: 752: 748: 740: 732: 728: 724: 720: 719:J Am Chem Soc 713: 705: 699: 695: 691: 685: 677: 673: 668: 663: 659: 655: 651: 647: 643: 636: 634: 632: 623: 619: 615: 611: 607: 603: 599: 595: 588: 586: 576: 572: 567: 562: 558: 554: 550: 546: 542: 535: 531: 523: 521: 517: 513: 509: 505: 504:chlorophyll c 501: 500:cyanobacteria 497: 496:chlorophyll b 487: 476: 464: 442: 438: 431: 426: 422: 421:entatic state 418: 414: 398: 393: 389: 387: 386:strain energy 383: 379: 375: 370: 368: 363: 359: 352:Entatic state 349: 343: 342: 341: 335: 334: 333: 325: 323: 319: 315: 311: 310:cyanobacteria 307: 303: 299: 293: 290: 280: 276: 272: 268: 264: 260: 256: 252: 248: 243: 241: 237: 234: 230: 221: 212: 210: 206: 202: 200: 194: 188: 187:photosystem I 184: 180: 178: 172: 166: 162: 152: 150: 146: 142: 138: 134: 123: 119: 116: 113: 111: 107: 104: 100: 96: 93: 91: 87: 84: 81: 79: 75: 72: 69: 67: 63: 59: 55: 50: 44: 40: 35: 33: 27: 22: 17: 1129: 1125: 1106: 1054: 1050: 1044: 1014:(1): 16–29. 1011: 1007: 1001: 982: 976: 951: 947: 941: 916: 912: 868: 864: 854: 819: 815: 785: 781: 775: 750: 746: 739: 722: 718: 712: 693: 684: 649: 645: 600:(1): 49–66. 597: 593: 548: 544: 534: 511: 493: 490:In the ocean 459: 410: 371: 355: 347: 339: 331: 294: 291: 244: 233:antiparallel 226: 209:chloroplasts 207:membrane of 198: 192: 176: 170: 165:cytochrome f 158: 133:Plastocyanin 132: 131: 60:Plastocyanin 30: 19:Plastocyanin 545:Metallomics 322:hydrophobic 191:Cytochrome 169:cytochrome 52:Identifiers 1158:Categories 690:Freeman HC 526:References 314:eukaryotic 275:picometers 32:Phormidium 968:0010-8545 456:orbitals. 328:Reactions 263:histidine 259:imidazole 215:Structure 205:thylakoid 71:IPR002387 34:laminosum 1146:12590538 1079:16572122 1036:20628012 1028:10766432 933:14871131 846:27859435 575:21258692 397:PDB 1AG6 380:(QM/MM) 306:Apiaceae 298:tyrosine 242:center. 236:β-barrel 155:Function 66:InterPro 46:​. 1087:4379844 1059:Bibcode 895:9792096 886:2143848 837:5434870 767:3689779 676:9792096 667:2143848 622:2662584 614:8027022 566:6916721 255:ligands 251:parsley 201:complex 179:complex 167:of the 115:cd04219 1144:  1113:  1085:  1077:  1051:Nature 1034:  1026:  989:  966:  931:  893:  883:  844:  834:  765:  700:  674:  664:  620:  612:  573:  563:  508:diatom 407:bonds. 318:acidic 300:-83. 257:: the 240:copper 103:SUPFAM 57:Symbol 1083:S2CID 1032:S2CID 618:S2CID 469:and d 467:x2-y2 448:and S 446:x2-y2 425:redox 358:redox 302:Algal 285:to Cu 271:Met92 267:Cys84 247:algae 181:from 99:SCOPe 90:SCOP2 1142:PMID 1111:ISBN 1075:PMID 1024:PMID 987:ISBN 964:ISSN 929:PMID 891:PMID 842:PMID 763:PMID 698:ISBN 672:PMID 610:PMID 571:PMID 520:iron 518:and 516:zinc 498:and 287:dx-y 95:3BQV 83:3BQV 78:CATH 43:3BQV 1134:doi 1130:125 1067:doi 1055:441 1016:doi 956:doi 952:255 921:doi 917:104 881:PMC 873:doi 832:PMC 824:doi 790:doi 786:933 755:doi 751:894 727:doi 723:110 662:PMC 654:doi 602:doi 561:PMC 553:doi 483:Cys 479:Met 450:Cys 434:Met 405:Cys 401:Met 189:. 159:In 110:CDD 39:PDB 1160:: 1140:. 1128:. 1081:. 1073:. 1065:. 1053:. 1030:. 1022:. 1010:. 962:. 950:. 927:. 915:. 903:^ 889:. 879:. 867:. 863:. 840:. 830:. 820:38 818:. 814:. 802:^ 784:. 761:. 749:. 721:. 670:. 660:. 648:. 644:. 630:^ 616:. 608:. 598:26 596:. 584:^ 569:. 559:. 547:. 543:. 510:, 471:xy 454:xy 376:/ 289:. 283:pπ 279:nm 249:, 101:/ 97:/ 41:: 1148:. 1136:: 1119:. 1089:. 1069:: 1061:: 1038:. 1018:: 1012:5 995:. 970:. 958:: 935:. 923:: 897:. 875:: 869:7 848:. 826:: 796:. 792:: 769:. 757:: 733:. 729:: 706:. 678:. 656:: 650:7 624:. 604:: 577:. 555:: 549:3 452:d 199:f 196:6 193:b 177:f 174:6 171:b

Index


Phormidium
PDB
3BQV
InterPro
IPR002387
CATH
3BQV
SCOP2
3BQV
SCOPe
SUPFAM
CDD
cd04219
UniProt Family
electron-transfer
photosynthesis
blue copper proteins
metalloproteins
photosynthesis
cytochrome f
cytochrome b6f complex
photosystem II
photosystem I
Cytochrome b6f complex
thylakoid
chloroplasts

X-ray crystallography
antiparallel

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.