Knowledge

Plücker formula

Source 📝

223:
has higher order singularities then these are counted as multiple double points according to an analysis of the nature of the singularity. For example an ordinary triple point is counted as 3 double points. Again, complex points and points at infinity are included in these counts. The corrected form
1202:
Curves are classified into types according to their Plücker invariants. The Plücker equations together with the restriction that the Plücker invariants must all be natural numbers greatly limits the number of possible types for curves of a given degree. Curves which are projectively equivalent have
40:, common to both the curve and its dual, is connected to the other invariants by similar formulae. These formulae, and the fact that each of the invariants must be a positive integer, place quite strict limitations on their possible values. 495:
inflections. If the cubic degenerates and gets a double point, then 6 points converge to the singular point and only 3 inflection remain along the singular curve. If the cubic degenerates and gets a cusp then only one inflection remains.
902: 686: 591: 793: 378: 1065: 295: 1185: 450: 1118: 115:
with multiplicities properly counted. (This includes complex points and points at infinity since the curves are taken to be subsets of the complex projective plane.) Similarly,
490: 976: 189: 691:
The four equations given so far are, in fact, dependent, so any three may be used to derive the remaining one. From them, given any three of the six invariants,
1203:
the same type, though curves of the same type are not, in general, projectively equivalent. Curves of degree 2, conic sections, have a single type given by
910:
Altogether there are four independent equations in 7 unknowns, and with them any three of these invariants can be used to compute the remaining four.
804: 597: 505: 28:, is one of a family of formulae, of a type first developed by Plücker in the 1830s, that relate certain numeric invariants of 136: 720: 310: 982: 230: 1124: 1703: 408: 1071: 1698: 922:
is non-singular, or equivalently δ and κ are 0, so the remaining invariants can be computed in terms of
1693: 1728: 461: 932: 145: 49: 205:, let δ be the number that are ordinary, i.e. that have distinct tangents (these are also called 53: 8: 1710: 1670: 1191: 37: 300:
Similarly, let δ be the number of ordinary double points, and κ the number of cusps of
216: 25: 396: 703: 48:
A curve in this context is defined by a non-degenerate algebraic equation in the
29: 1664: 1344: 1722: 198: 128: 68:. In the correspondence between the projective plane and its dual, points on 17: 87:
The first two invariants covered by the Plücker formulas are the degree
897:{\displaystyle g={1 \over 2}(d^{*}-1)(d^{*}-2)-\delta ^{*}-\kappa ^{*}} 65: 33: 388: 1335:
Curves of types (ii) and (iii) are the rational cubics and are call
681:{\displaystyle \kappa =3d^{*}(d^{*}-2)-6\delta ^{*}-8\kappa ^{*}.\,} 127:
that are lines through a given point on the plane; so for example a
1218:
For curves of degree 3 there are three possible types, given by:
1194:
is of genus 3 and has 28 bitangents and 24 points of inflection.
207: 120: 212: 1350:
For curves of degree 4 there are 10 possible types, given by:
499:
Note that the first two Plücker equations have dual versions:
1343:
respectively. Curves of type (i) are the nonsingular cubics (
586:{\displaystyle d=d^{*}(d^{*}-1)-2\delta ^{*}-3\kappa ^{*},\,} 383:
The geometric interpretation of an ordinary double point of
43: 788:{\displaystyle g={1 \over 2}(d-1)(d-2)-\delta -\kappa .} 373:{\displaystyle \kappa ^{*}=3d(d-2)-6\delta -8\kappa .\,} 1060:{\displaystyle \delta ^{*}={1 \over 2}d(d-2)(d-3)(d+3)} 387:
is a line that is tangent to the curve at two points (
1127: 1074: 985: 935: 807: 723: 600: 508: 464: 411: 313: 233: 148: 402:Consider for instance, the case of a smooth cubic: 699:, δ, δ, κ, κ, the remaining three can be computed. 1179: 1112: 1059: 970: 896: 787: 680: 585: 484: 444: 372: 289: 183: 52:. Lines in this plane correspond to points in the 290:{\displaystyle d^{*}=d(d-1)-2\delta -3\kappa .\,} 56:and the lines tangent to a given algebraic curve 1720: 391:) and the geometric interpretation of a cusp of 194:but this must be corrected for singular curves. 111:is the number of times a given line intersects 219:, i.e. having a single tangent (spinodes). If 918:An important special case is when the curve 60:correspond to points in an algebraic curve 304:. Then the second Plücker equation states 1109: 967: 710:, classically known as the deficiency of 677: 582: 481: 369: 286: 180: 139:, the first Plücker equation states that 1691: 1180:{\displaystyle g={1 \over 2}(d-1)(d-2).} 445:{\displaystyle d=3,\ \delta =\kappa =0} 1721: 1662: 913: 44:Plücker invariants and basic equations 1712:A Treatise on the Higher Plane Curves 1113:{\displaystyle \kappa ^{*}=3d(d-2)\,} 32:to corresponding invariants of their 926:only. In this case the results are: 455:The above formula shows that it has 224:is of the first Plücker equation is 798:This is equal to the dual quantity 215:, and let κ be the number that are 13: 14: 1740: 1190:So, for example, a non-singular 131:has degree and class both 2. If 485:{\displaystyle \kappa ^{*}=9\,} 1677: 1656: 1197: 1171: 1159: 1156: 1144: 1106: 1094: 1054: 1042: 1039: 1027: 1024: 1012: 971:{\displaystyle d^{*}=d(d-1)\,} 964: 952: 865: 846: 843: 824: 767: 755: 752: 740: 639: 620: 544: 525: 345: 333: 262: 250: 184:{\displaystyle d^{*}=d(d-1)\,} 177: 165: 1: 1649: 72:correspond to lines tangent 7: 1699:Encyclopedia of Mathematics 907:and is a positive integer. 36:. The invariant called the 10: 1745: 1692:Shokurov, V. V. (2001) , 99:, classically called the 50:complex projective plane 1663:Hilton, Harold (1920). 399:(stationary tangent). 80:can be identified with 1709:Salmon, George (1879) 1666:Plane Algebraic Curves 1181: 1114: 1061: 972: 898: 789: 682: 587: 486: 446: 374: 291: 185: 1182: 1115: 1062: 973: 899: 790: 683: 588: 487: 447: 375: 292: 186: 54:dual projective plane 1125: 1072: 983: 933: 805: 721: 714:, can be defined as 598: 506: 462: 409: 311: 231: 146: 1192:quartic plane curve 914:Non-singular curves 397:point of inflection 1694:"Plücker formulas" 1669:. Oxford. p.  1177: 1110: 1057: 968: 894: 785: 678: 583: 482: 442: 370: 287: 181: 1647: 1646: 1333: 1332: 1142: 1007: 822: 738: 426: 119:is the number of 107:. Geometrically, 76:, so the dual of 1736: 1729:Algebraic curves 1706: 1684: 1681: 1675: 1674: 1660: 1353: 1352: 1221: 1220: 1186: 1184: 1183: 1178: 1143: 1135: 1119: 1117: 1116: 1111: 1084: 1083: 1066: 1064: 1063: 1058: 1008: 1000: 995: 994: 977: 975: 974: 969: 945: 944: 903: 901: 900: 895: 893: 892: 880: 879: 858: 857: 836: 835: 823: 815: 794: 792: 791: 786: 739: 731: 687: 685: 684: 679: 673: 672: 657: 656: 632: 631: 619: 618: 592: 590: 589: 584: 578: 577: 562: 561: 537: 536: 524: 523: 491: 489: 488: 483: 474: 473: 451: 449: 448: 443: 424: 379: 377: 376: 371: 323: 322: 296: 294: 293: 288: 243: 242: 190: 188: 187: 182: 158: 157: 30:algebraic curves 1744: 1743: 1739: 1738: 1737: 1735: 1734: 1733: 1719: 1718: 1688: 1687: 1682: 1678: 1661: 1657: 1652: 1345:elliptic curves 1200: 1134: 1126: 1123: 1122: 1079: 1075: 1073: 1070: 1069: 999: 990: 986: 984: 981: 980: 940: 936: 934: 931: 930: 916: 888: 884: 875: 871: 853: 849: 831: 827: 814: 806: 803: 802: 730: 722: 719: 718: 668: 664: 652: 648: 627: 623: 614: 610: 599: 596: 595: 573: 569: 557: 553: 532: 528: 519: 515: 507: 504: 503: 469: 465: 463: 460: 459: 410: 407: 406: 318: 314: 312: 309: 308: 238: 234: 232: 229: 228: 213:isolated points 153: 149: 147: 144: 143: 95:and the degree 46: 22:Plücker formula 12: 11: 5: 1742: 1732: 1731: 1717: 1716: 1715:pp. 64ff. 1707: 1686: 1685: 1676: 1654: 1653: 1651: 1648: 1645: 1644: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1619: 1618: 1615: 1612: 1609: 1606: 1603: 1600: 1597: 1593: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1567: 1566: 1563: 1560: 1557: 1554: 1551: 1548: 1545: 1541: 1540: 1537: 1534: 1531: 1528: 1525: 1522: 1519: 1515: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1493: 1489: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1467: 1463: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1437: 1436: 1433: 1430: 1427: 1424: 1421: 1418: 1415: 1411: 1410: 1407: 1404: 1401: 1398: 1395: 1392: 1389: 1385: 1384: 1379: 1376: 1373: 1370: 1367: 1362: 1357: 1331: 1330: 1327: 1324: 1321: 1318: 1315: 1312: 1309: 1305: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1279: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1257: 1253: 1252: 1247: 1244: 1241: 1238: 1235: 1230: 1225: 1199: 1196: 1188: 1187: 1176: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1146: 1141: 1138: 1133: 1130: 1120: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1082: 1078: 1067: 1056: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1006: 1003: 998: 993: 989: 978: 966: 963: 960: 957: 954: 951: 948: 943: 939: 915: 912: 905: 904: 891: 887: 883: 878: 874: 870: 867: 864: 861: 856: 852: 848: 845: 842: 839: 834: 830: 826: 821: 818: 813: 810: 796: 795: 784: 781: 778: 775: 772: 769: 766: 763: 760: 757: 754: 751: 748: 745: 742: 737: 734: 729: 726: 689: 688: 676: 671: 667: 663: 660: 655: 651: 647: 644: 641: 638: 635: 630: 626: 622: 617: 613: 609: 606: 603: 593: 581: 576: 572: 568: 565: 560: 556: 552: 549: 546: 543: 540: 535: 531: 527: 522: 518: 514: 511: 493: 492: 480: 477: 472: 468: 453: 452: 441: 438: 435: 432: 429: 423: 420: 417: 414: 389:double tangent 381: 380: 368: 365: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 332: 329: 326: 321: 317: 298: 297: 285: 282: 279: 276: 273: 270: 267: 264: 261: 258: 255: 252: 249: 246: 241: 237: 192: 191: 179: 176: 173: 170: 167: 164: 161: 156: 152: 45: 42: 26:Julius Plücker 24:, named after 9: 6: 4: 3: 2: 1741: 1730: 1727: 1726: 1724: 1714: 1713: 1708: 1705: 1701: 1700: 1695: 1690: 1689: 1683:Hilton p. 264 1680: 1672: 1668: 1667: 1659: 1655: 1642: 1639: 1636: 1633: 1630: 1627: 1624: 1621: 1620: 1616: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1594: 1590: 1587: 1584: 1581: 1578: 1575: 1572: 1569: 1568: 1564: 1561: 1558: 1555: 1552: 1549: 1546: 1543: 1542: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1516: 1512: 1509: 1506: 1503: 1500: 1497: 1494: 1491: 1490: 1486: 1483: 1480: 1477: 1474: 1471: 1468: 1465: 1464: 1460: 1457: 1454: 1451: 1448: 1445: 1442: 1439: 1438: 1434: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1412: 1408: 1405: 1402: 1399: 1396: 1393: 1390: 1387: 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1366: 1363: 1361: 1358: 1355: 1354: 1351: 1348: 1346: 1342: 1338: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1307: 1306: 1302: 1299: 1296: 1293: 1290: 1287: 1284: 1281: 1280: 1276: 1273: 1270: 1267: 1264: 1261: 1258: 1255: 1254: 1251: 1248: 1245: 1242: 1239: 1236: 1234: 1231: 1229: 1226: 1223: 1222: 1219: 1216: 1214: 1210: 1206: 1195: 1193: 1174: 1168: 1165: 1162: 1153: 1150: 1147: 1139: 1136: 1131: 1128: 1121: 1103: 1100: 1097: 1091: 1088: 1085: 1080: 1076: 1068: 1051: 1048: 1045: 1036: 1033: 1030: 1021: 1018: 1015: 1009: 1004: 1001: 996: 991: 987: 979: 961: 958: 955: 949: 946: 941: 937: 929: 928: 927: 925: 921: 911: 908: 889: 885: 881: 876: 872: 868: 862: 859: 854: 850: 840: 837: 832: 828: 819: 816: 811: 808: 801: 800: 799: 782: 779: 776: 773: 770: 764: 761: 758: 749: 746: 743: 735: 732: 727: 724: 717: 716: 715: 713: 709: 705: 702:Finally, the 700: 698: 694: 674: 669: 665: 661: 658: 653: 649: 645: 642: 636: 633: 628: 624: 615: 611: 607: 604: 601: 594: 579: 574: 570: 566: 563: 558: 554: 550: 547: 541: 538: 533: 529: 520: 516: 512: 509: 502: 501: 500: 497: 478: 475: 470: 466: 458: 457: 456: 439: 436: 433: 430: 427: 421: 418: 415: 412: 405: 404: 403: 400: 398: 394: 390: 386: 366: 363: 360: 357: 354: 351: 348: 342: 339: 336: 330: 327: 324: 319: 315: 307: 306: 305: 303: 283: 280: 277: 274: 271: 268: 265: 259: 256: 253: 247: 244: 239: 235: 227: 226: 225: 222: 218: 214: 210: 209: 204: 200: 199:double points 195: 174: 171: 168: 162: 159: 154: 150: 142: 141: 140: 138: 137:singularities 134: 130: 129:conic section 126: 122: 118: 114: 110: 106: 102: 98: 94: 91:of the curve 90: 85: 83: 79: 75: 71: 67: 63: 59: 55: 51: 41: 39: 35: 31: 27: 23: 19: 1711: 1697: 1679: 1665: 1658: 1381: 1364: 1359: 1349: 1340: 1336: 1334: 1249: 1232: 1227: 1217: 1212: 1211:=2, δ=δ=κ=κ= 1208: 1204: 1201: 1189: 923: 919: 917: 909: 906: 797: 711: 707: 701: 696: 692: 690: 498: 494: 454: 401: 392: 384: 382: 301: 299: 220: 206: 202: 196: 193: 132: 124: 116: 112: 108: 104: 100: 96: 92: 88: 86: 81: 77: 73: 69: 61: 57: 47: 21: 15: 1198:Curve types 64:called the 34:dual curves 18:mathematics 1650:References 66:dual curve 1704:EMS Press 1166:− 1151:− 1101:− 1081:∗ 1077:κ 1034:− 1019:− 992:∗ 988:δ 959:− 942:∗ 890:∗ 886:κ 882:− 877:∗ 873:δ 869:− 860:− 855:∗ 838:− 833:∗ 780:κ 777:− 774:δ 771:− 762:− 747:− 670:∗ 666:κ 659:− 654:∗ 650:δ 643:− 634:− 629:∗ 616:∗ 602:κ 575:∗ 571:κ 564:− 559:∗ 555:δ 548:− 539:− 534:∗ 521:∗ 471:∗ 467:κ 434:κ 428:δ 364:κ 358:− 355:δ 349:− 340:− 320:∗ 316:κ 281:κ 275:− 272:δ 266:− 257:− 240:∗ 211:) or are 172:− 155:∗ 1723:Category 1341:cuspidal 121:tangents 197:Of the 135:has no 1570:(viii) 425:  1544:(vii) 1440:(iii) 1337:nodal 1308:(iii) 704:genus 395:is a 217:cusps 208:nodes 101:class 38:genus 1596:(ix) 1518:(vi) 1466:(iv) 1414:(ii) 1356:Type 1339:and 1282:(ii) 1224:Type 1215:=0. 20:, a 1671:201 1622:(x) 1492:(v) 1388:(i) 1347:). 1256:(i) 706:of 201:of 123:to 103:of 16:In 1725:: 1702:, 1696:, 1643:0 1617:0 1591:0 1565:0 1539:1 1513:1 1510:10 1487:1 1484:12 1461:2 1458:16 1452:10 1435:2 1432:18 1426:16 1420:10 1409:3 1406:24 1400:28 1394:12 1329:0 1303:0 1277:1 695:, 84:. 1673:. 1640:0 1637:3 1634:1 1631:0 1628:3 1625:4 1614:2 1611:2 1608:1 1605:1 1602:4 1599:4 1588:4 1585:1 1582:2 1579:2 1576:5 1573:4 1562:6 1559:0 1556:4 1553:3 1550:6 1547:4 1536:8 1533:2 1530:1 1527:0 1524:6 1521:4 1507:1 1504:4 1501:1 1498:7 1495:4 1481:0 1478:8 1475:2 1472:8 1469:4 1455:1 1449:0 1446:9 1443:4 1429:0 1423:1 1417:4 1403:0 1397:0 1391:4 1382:g 1378:κ 1375:κ 1372:δ 1369:δ 1365:d 1360:d 1326:1 1323:1 1320:0 1317:0 1314:3 1311:3 1300:3 1297:0 1294:0 1291:1 1288:4 1285:3 1274:9 1271:0 1268:0 1265:0 1262:6 1259:3 1250:g 1246:κ 1243:κ 1240:δ 1237:δ 1233:d 1228:d 1213:g 1209:d 1207:= 1205:d 1175:. 1172:) 1169:2 1163:d 1160:( 1157:) 1154:1 1148:d 1145:( 1140:2 1137:1 1132:= 1129:g 1107:) 1104:2 1098:d 1095:( 1092:d 1089:3 1086:= 1055:) 1052:3 1049:+ 1046:d 1043:( 1040:) 1037:3 1031:d 1028:( 1025:) 1022:2 1016:d 1013:( 1010:d 1005:2 1002:1 997:= 965:) 962:1 956:d 953:( 950:d 947:= 938:d 924:d 920:C 866:) 863:2 851:d 847:( 844:) 841:1 829:d 825:( 820:2 817:1 812:= 809:g 783:. 768:) 765:2 759:d 756:( 753:) 750:1 744:d 741:( 736:2 733:1 728:= 725:g 712:C 708:C 697:d 693:d 675:. 662:8 646:6 640:) 637:2 625:d 621:( 612:d 608:3 605:= 580:, 567:3 551:2 545:) 542:1 530:d 526:( 517:d 513:= 510:d 479:9 476:= 440:0 437:= 431:= 422:, 419:3 416:= 413:d 393:C 385:C 367:. 361:8 352:6 346:) 343:2 337:d 334:( 331:d 328:3 325:= 302:C 284:. 278:3 269:2 263:) 260:1 254:d 251:( 248:d 245:= 236:d 221:C 203:C 178:) 175:1 169:d 166:( 163:d 160:= 151:d 133:C 125:C 117:d 113:C 109:d 105:C 97:d 93:C 89:d 82:C 78:C 74:C 70:C 62:C 58:C

Index

mathematics
Julius Plücker
algebraic curves
dual curves
genus
complex projective plane
dual projective plane
dual curve
tangents
conic section
singularities
double points
nodes
isolated points
cusps
double tangent
point of inflection
genus
quartic plane curve
elliptic curves
Plane Algebraic Curves
201
"Plücker formulas"
Encyclopedia of Mathematics
EMS Press
A Treatise on the Higher Plane Curves
Category
Algebraic curves

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.