Knowledge

Photonic metamaterial

Source 📝

1024:. For example, in 1995, Guerra fabricated a transparent grating with 50 nm lines and spaces, and then coupled this (what would be later called) photonic metamaterial with an immersion objective to resolve a silicon grating having 50 nm lines and spaces, far beyond the diffraction limit for the 650 nm wavelength illumination in air. And in 2002, Guerra et al. published their demonstrated use of subwavelength nano-optics (photonic metamaterials) for optical data storage at densities well above the diffraction limit. As of 2015, metamaterial antennas were commercially available. 36: 1323:(plastic) and a palladium screen on top. The screen has sub-wavelength cutouts that block the various wavelengths. A polyimide layer caps the whole absorber. It can absorb 90 percent of infrared radiation at up to a 55 degree angle to the screen. The layers do not need accurate alignment. The polyimide cap protects the screen and helps reduce any impedance mismatch that might occur when the wave crosses from the air into the device. 1009: 1211:, are "effectively" homogeneous, with corresponding "effective" parameters that include "effective" ε and μ and apply to the slab as a whole. Individual inclusions or cells may have values different from the slab. However, there are cases where the effective medium approximation does not hold and one needs to be aware of its applicability. 1352:
from that of the entrance grates, bending incident light so that external light could not enter the block from that side. Around 30 times more light passed through in the forward direction than in reverse. The intervening blocks reduced the need for precise alignment of the two grates with respect to each other.
1355:
Such structures hold potential for applications in optical communication—for instance, they could be integrated into photonic computer chips that split or combine signals carried by light waves. Other potential applications include biosensing using nanoscale particles to deflect light to angles steep
1351:
grates with sub-wavelength spacings bent incoming red or green light waves enough that they could enter and propagate inside the block. On the opposite side of the block, another set of grates allowed light to exit, angled away from its original direction. The spacing of the exit grates was different
1179:
PMs display a magnetic response with useful magnitude at optical frequencies. This includes negative permeability, despite the absence of magnetic materials. Analogous to ordinary optical material, PMs can be treated as an effective medium that is characterized by effective medium parameters ε(ω) and
1517:
surface, it is relatively difficult to stack these bulk structures due to alignment tolerance requirements. A stacking technique for SRRs was published in 2007 that uses dielectric spacers to apply a planarization procedure to flatten the SRR layer. It appears that arbitrary many layers can be made
1526:
In 2014 researchers announced a 400 nanometer thick frequency-doubling non-linear mirror that can be tuned to work at near-infrared to mid-infrared to terahertz frequencies. The material operates with much lower intensity light than traditional approaches. For a given input light intensity and
1343:
The material combined two optical nanostructures: a multi-layered block of alternating silver and glass sheets and metal grates. The silver-glass structure is a "hyperbolic" metamaterial, which treats light differently depending on which direction the waves are traveling. Each layer is tens of
1308:) of infrared wavelengths. The material displayed greater than 98% measured average absorptivity that it maintained over a wide ±45° field-of-view for mid-infrared wavelengths between 1.77 and 4.81 μm. One use is to conceal objects from infrared sensors. 1039:
post, which created the first negative index metamaterial, operating in the microwave band. Experiments and simulations demonstrated the presence of a left-handed propagation band, a left-handed material. The first experimental confirmation of negative
3033:
Zhukovsky, S. V.; Andryieuski, A., Takayama, O.; Shkondin, E., Malureanu, R.; Jensen, F., Lavrinenko, A. V. (2015). "Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers".
1219:
Negative magnetic permeability was originally achieved in a left-handed medium at microwave frequencies by using arrays of split-ring resonators. In most natural materials, the magnetically coupled response starts to taper off at
1083:, infrared and visible frequencies, natural materials have a very weak magnetic coupling component, or permeability. In other words, susceptibility to the magnetic component of radiated light can be considered negligible. 1488:
The most commonly applied scheme to achieve a tunable index of refraction is electro-optical tuning. Here the change in refractive index is proportional to either the applied electric field, or is proportional to the
1538:
processes, such as second harmonic, sum- and difference-frequency generation, as well a variety of four-wave mixing processes. The demonstration device converted light with a wavelength of 8000 to 4000 nanometers.
1053: 1512:
Stacking layers produces NIMs at optical frequencies. However, the surface configuration (non-planar, bulk) of the SRR normally prevents stacking. Although a single-layer SRR structure can be constructed on a
2157: 1344:
nanometers thick—much thinner than visible light's 400 to 700 nm wavelengths, making the block opaque to visible light, although light entering at certain angles can propagate inside the material.
2020:
Linden, Stefan; Enkrich, Christian; Dolling, Gunnar; Klein, Matthias W.; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.; Burger, Sven; Schmidt, Frank; Wegener, Martin (2006).
1558:, indium and arsenic. 100 of these layers, each between one and twelve nanometers thick, were faced on top by a pattern of asymmetrical, crossed gold nanostructures that form coupled 1316:
randomly modified an initial candidate pattern, testing and eliminating all but the best. The process was repeated over multiple generations until the design became effective.
1372:, lumped circuit element nanocircuits at infrared and optical frequencies appear to be possible. Conventional lumped circuit elements are not available in a conventional way. 1113: 1271:
Optical wavelengths are much shorter than microwaves, making subwavelength optical metamaterials more difficult to realize. Microwave metamaterials can be fabricated from
947:
Photonic crystals differ from PM in that the size and periodicity of their scattering elements are larger, on the order of the wavelength. Also, a photonic crystal is not
4434: 3110: 1282:
Successful experiments used a periodic arrangement of short wires or metallic pieces with varied shapes. In a different study the whole slab was electrically connected.
1086:
Negative index metamaterials behave contrary to the conventional "right-handed" interaction of light found in conventional optical materials. Hence, these are dubbed
1064:. The array of square split-ring resonators gives the material a negative magnetic permeability, whereas the array of straight wires gives it a negative permittivity 2206: 4038:
Takayama, O., Shkondin, E., Bogdanov A., Panah, M. E., Golenitskii, K., Dmitriev, P., Repän, T., Malureanu, R., Belov, P., Jensen, F., and Lavrinenko, A. (2017).
1446:, material and the optical frequency illumination. The particle's orientation with the optical electric field may also help determine the impedance. Conventional 1580:
related to photonic crystals, metamaterial anisotropy. Recently photonic metamaterial operated at 780 nanometer (near-infrared), 813 nm and 772 nm.
593: 1097:
Only fabricated NIMs exhibit this capability. Photonic crystals, like many other known systems, can exhibit unusual propagation behavior such as reversal of
2021: 1944: 1504:
An alternative is to employ a nonlinear optical material and depend on the optical field intensity to modify the refractive index or magnetic parameters.
2320: 1690: 566: 3691: 578: 4144: 4080: 4024: 3967: 3910: 3845: 3159: 3095: 2606: 1527:
structure thickness, the metamaterial produced approximately one million times higher intensity output. The mirrors do not require matching the
3633: 1305: 1228:
range, which implies that significant magnetism does not occur at optical frequencies. The effective permeability of such materials is unity, μ
3924:
Takayama, O.; Artigas, D., Torner, L. (2014). "Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves".
4551: 2645: 2379: 1419:
at RF and microwave frequencies. At optical frequencies characteristics of some noble metals are altered. Rather than normal current flow,
1031:(SRR) as part of the subwavelength cell. The SRR achieved negative permeability within a narrow frequency range. This was combined with a 4231: 1148:. One nanoscale SRR cell has three small metallic rods that are physically connected. This is configured as a U shape and functions as a 4094:
Takayama, O., Dmitriev, P., Shkondin, E., Yermakov, O., Panah, M., Golenitskii, K., Jensen, F., Bogdanov A., and Lavrinenko, A. (2018).
3769: 1887: 2229: 829: 598: 2750: 3810:
Takayama, O.; Crasovan, L. C., Johansen, S. K.; Mihalache, D., Artigas, D.; Torner, L. (2008). "Dyakonov Surface Waves: A Review".
608: 4159: 3435: 3109:
Sukham, J.; Takayama, O., Mahmoodi, M.; Sychev, S., Bogdanov, A.; Hassan Tavassoli, S., Lavrinenko, A. V.; Malureanu R. (2019).
4442: 3586: 2702: 433: 3337: 3310: 3017: 2300: 2133: 1857: 929:
Some photonic metamaterials exhibit magnetism at high frequencies, resulting in strong magnetic coupling. This can produce a
448: 443: 70: 2288: 893:
are on a scale that is magnitudes larger than the atom, yet much smaller than the radiated wavelength, are on the order of
458: 4305:
Dolling, G.; Wegener, M.; Soukoulis, C.M.; Linden, S. (2006-12-13). "Negative-index metamaterial at 780 nm wavelength".
4463: 3521: 3414: 2412: 2121: 1340:" instead reduce light transmission in the reverse direction, requiring low light levels behind the mirror to work.) 60: 4534: 2560: 328: 4095: 2793:
Shalaev, V. M.; Cai, W.; Chettiar, U. K.; Yuan, H.-K.; Sarychev, A. K.; Drachev, V. P.; Kildishev, A. V. (2005).
1204: 1002: 960: 243: 3368:
Jeremy A. Bossard; et al. (2014). "Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth".
2351: 1993: 1191:
The negative refractive index of PMs in the optical frequency range was experimentally demonstrated in 2005 by
822: 588: 65: 3981:
Takayama, O.; Bogdanov, A. A., Lavrinenko, A. V. (2017). "Photonic surface waves on metamaterial interfaces".
3460: 2868: 2794: 2069:
Responsive Photonic Nanostructures: Smart Nanoscale Optical Materials Editor: Yadong Yin RSC Cambridge 2013
1176:
at the resonance frequency. The inclusions can then be evaluated by using an effective medium approximation.
603: 308: 3173:
Shelby, R. A.; Smith, DR; Schultz, S (2001). "Experimental Verification of a Negative Index of Refraction".
1565:
Potential applications include remote sensing and medical applications that call for compact laser systems.
4039: 1595: 1518:
this way, including any chosen number of unit cells and variant spatial arrangements of individual layers.
1091: 1061: 855: 468: 208: 75: 3738: 1195:
et al. (at the telecom wavelength λ = 1.5 μm) and by Brueck et al. (at λ = 2 μm) at nearly the same time.
1168:
when externally excited. These inclusions are usually ten times smaller than the vacuum wavelength of the
198: 1319:
The metamaterial is made of four layers on a silicon substrate. The first layer is palladium, covered by
1005:(less than zero). Veselago's analysis has been cited in over 1500 peer-reviewed articles and many books. 761: 636: 533: 508: 428: 3859:
Takayama, O.; Crasovan, L. C., Artigas, D.; Torner, L. (2009). "Observation of Dyakonov surface waves".
2602: 1052: 2153: 1387:(RF) domain. The lumped element concept allowed for element simplification and circuit modularization. 1336:
In 2015 visible light joined microwave and infrared NIMs in propagating light in only one direction. ("
261: 4513: 1467: 1420: 1286: 1208: 1141: 930: 815: 776: 303: 293: 233: 228: 168: 3195: 2965: 2584:
Responsive Photonic Nanostructures, Editor: Yadong Yin, Royal Society of Chemistry, Cambridge 2013,
3632:
Liu, Na; Guo, Hongcang; Fu, Liwei; Kaiser, Stefan; Schweizer, Heinz; Giessen, Harald (2007-12-02).
1600: 1294: 1169: 1016:
In the mid-1990s, metamaterials were first seen as potential technologies for applications such as
972: 313: 4366:
Chettiar, U. K.; Kildishev, AV; Yuan, HK; Cai, W; Xiao, S; Drachev, VP; Shalaev, VM (2007-06-05).
746: 248: 4548: 4526: 4459: 2684: 2507:"Near-Field Optical Recording without Low-Flying Heads: Integral Near-Field Optical (INFO) Media" 2391: 1680: 1665: 1655: 1650: 1620: 1483: 1240: 626: 153: 143: 138: 4368:"Dual-Band Negative Index Metamaterial: Double-Negative at 813 nm and Single-Negative at 772 nm" 751: 721: 4576: 3190: 2960: 2505:
Guerra, John; Vezenov, Dmitri; Sullivan, Paul; Haimberger, Walter; Thulin, Lukas (2002-03-30).
1685: 1640: 1573: 1259:
frequencies but not at visible frequencies. The visible frequency has been elusive because the
990: 922: 573: 343: 118: 4288: 3783:
Dyakonov, M. I. (April 1988). "New type of electromagnetic wave propagating at an interface".
1843: 4138: 4074: 4018: 3961: 3904: 3839: 3153: 3089: 3007: 2864: 1920: 1670: 1660: 1645: 1630: 1615: 1605: 1479: 1233: 1129: 1057: 1021: 1017: 982: 948: 941: 937: 917: 671: 358: 348: 298: 288: 4478: 4389: 4324: 4256: 4174: 4110: 3990: 3933: 3868: 3792: 3706: 3648: 3601: 3543: 3475: 3257: 3182: 3053: 2952: 2894: 2821: 2765: 2742: 2660: 2518: 2471: 2424: 2335: 2246: 2174: 2091: 2036: 1961: 1780: 1723: 1675: 1635: 1470:
characteristics, becoming a nanoinductor. Material loss is represented as a nano-resistor.
1424: 1376: 1304:-insensitive metamaterial prototype was demonstrated to absorb energy over a broad band (a 1301: 1087: 1036: 1028: 796: 696: 661: 413: 278: 178: 163: 98: 3522:"Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistor" 2585: 2506: 2070: 1819: 1116:
can achieve magnetic resonance, but with significant losses. In natural materials such as
35: 8: 2746: 2117: 1849: 1080: 1076: 1041: 859: 756: 736: 731: 538: 523: 408: 378: 273: 203: 4482: 4393: 4328: 4260: 4178: 4114: 3994: 3937: 3872: 3796: 3710: 3652: 3605: 3547: 3479: 3261: 3186: 3057: 2956: 2898: 2825: 2769: 2664: 2522: 2475: 2428: 2339: 2250: 2178: 2095: 2040: 1965: 1784: 1727: 4581: 4494: 4415: 4379: 4348: 4314: 4280: 4246: 4126: 4062: 3892: 3827: 3730: 3672: 3567: 3533: 3499: 3393: 3281: 3247: 3216: 3141: 3077: 3043: 2918: 2884: 2845: 2811: 2626: 2542: 2440: 2262: 2198: 2052: 1985: 1744: 1711: 1121: 867: 631: 371: 173: 133: 4558:
Particle self-assembly suggested for assembly of metamaterials at optical wavelengths.
4206: 2366: 453: 4407: 4340: 4272: 4198: 4130: 4066: 4006: 3949: 3884: 3831: 3722: 3664: 3559: 3491: 3385: 3333: 3325: 3306: 3273: 3208: 3145: 3133: 3069: 3032: 3013: 2988: 2910: 2837: 2676: 2546: 2534: 2487: 2296: 2190: 2165: 2129: 1977: 1853: 1796: 1749: 1313: 1256: 1012:
A comparison of refraction in a left-handed metamaterial to that in a normal material
890: 882: 871: 691: 4419: 4352: 4284: 3896: 3676: 3587:"Tunable optical negative-index metamaterials employing anisotropic liquid crystals" 3397: 3111:"Investigation of effective media applicability for ultrathin multilayer structures" 3108: 2922: 2849: 2725: 2444: 2202: 2103: 2056: 1989: 4498: 4486: 4397: 4332: 4264: 4190: 4182: 4118: 4054: 3998: 3941: 3880: 3876: 3819: 3734: 3714: 3656: 3609: 3571: 3551: 3503: 3483: 3461:"Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials" 3377: 3329:
Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice
3285: 3265: 3220: 3200: 3125: 3081: 3065: 3061: 2980: 2970: 2902: 2876: 2829: 2773: 2717: 2668: 2526: 2479: 2432: 2343: 2254: 2237: 2182: 2099: 2044: 1969: 1952: 1910: 1902: 1788: 1739: 1731: 1625: 1535: 1428: 1416: 1388: 1290: 1260: 1117: 1102: 1068: 994: 989:(1967) envisioned the possibility of refraction with a negative sign, according to 886: 791: 706: 666: 656: 543: 498: 481: 398: 333: 103: 27: 4268: 4186: 3809: 3555: 3009:
Electromagnetic metamaterials: transmission line theory and microwave applications
2906: 2751:"Fabrication of optical negative-index metamaterials: Recent advances and outlook" 2380:"The Electrodynamics of Substances with Simultaneously Negative Values of ɛ and μ" 2266: 4555: 4538: 4058: 3327: 3300: 2778: 2610: 1768: 1432: 1384: 1276: 1145: 986: 726: 651: 646: 513: 388: 353: 213: 113: 4561: 2672: 2459: 766: 4002: 3770:"New nonlinear metamaterial is a million times better than traditional options" 2802: 1712:"Excitation of surface electromagnetic waves in a graphene-based Bragg grating" 1710:
Sreekanth, K.V.; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting (2012).
1528: 1494: 1490: 1439: 1236:
has virtually no effect on natural occurring materials at optical frequencies.
1165: 1161: 1109: 1098: 1072: 686: 681: 503: 393: 318: 268: 218: 191: 148: 123: 93: 86: 4122: 3823: 2936:
Shadrivov, Ilya V.; Kozyrev, AB; Van Der Weide, DW; Kivshar, YS (2008-11-24).
2048: 4570: 3517: 3456: 2937: 2538: 2491: 2436: 2408: 1906: 1800: 1590: 1577: 1272: 878: 801: 786: 771: 711: 423: 338: 323: 238: 223: 128: 3487: 3204: 2460:"Super‐resolution through illumination by diffraction‐born evanescent waves" 2258: 2186: 2082:
Awad, Ehab (October 2021). "A novel metamaterial gain-waveguide nanolaser".
1769:"Super‐resolution through illumination by diffraction‐born evanescent waves" 4543: 4490: 4411: 4344: 4304: 4276: 4202: 4010: 3953: 3888: 3726: 3668: 3563: 3495: 3389: 3277: 3212: 3137: 3073: 2992: 2914: 2841: 2680: 2194: 2139: 1981: 1753: 1610: 1559: 1369: 1140:
Photonic metamaterial SRRs have reached scales below 100 nanometers, using
1125: 998: 952: 781: 676: 641: 583: 518: 438: 403: 283: 158: 4232:"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials" 3945: 2869:"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials" 2721: 4531: 4402: 4367: 4336: 3692:"Three-dimensional optical metamaterial with a negative refractive index" 3538: 2975: 2833: 2530: 1940: 1498: 1459: 1356:
enough to travel through the hyperbolic material and out the other side.
1221: 1032: 701: 553: 383: 45: 4506: 4384: 4319: 4251: 3718: 3269: 3252: 3236:"Nanofabricated media with negative permeability at visible frequencies" 2889: 2816: 2564: 3631: 3129: 2152: 1915: 1514: 1455: 1157: 916:. In metamaterials, cells take the role of atoms in a material that is 418: 4441:(Session 2A3 Metamaterials at Optical Frequencies): 10. Archived from 4194: 4040:"Midinfrared surface waves on a high aspect ratio nanotrench platform" 3614: 3516: 3381: 3352: 2347: 1735: 3858: 3660: 3326:
Lucille A. Giannuzzi, North Carolina State University (18 May 2006).
2984: 2483: 1973: 1792: 1391:
fabrication techniques exist to accomplish subwavelength geometries.
1380: 1320: 1309: 1248: 1225: 1153: 894: 741: 716: 528: 50: 3235: 2935: 2289:"Fabrication and Optical Characterization of Photonic Metamaterials" 1454:> 0 at optical frequencies, causing the nanoparticle to act as a 4096:"Experimental observation of Dyakonov plasmons in the mid-infrared" 3355:
Creation of nanoelectronic devices by focused ion beam implantation
3048: 1555: 1443: 1408: 1348: 1149: 905: 901: 863: 493: 488: 108: 4562:
Subpicosecond Optical Switching with a Negative Index Metamaterial
3353:
Kochz, J.; Grun, K.; Ruff, M.; Wernhardt, R.; Wieck, A.D. (1999).
1047: 3634:"Three-dimensional photonic metamaterials at optical frequencies" 1551: 1547: 1447: 1365: 1337: 1192: 1008: 463: 3689: 1105:. However, negative refraction does not occur in these systems. 2504: 2316: 1543: 1412: 1404: 1244: 978: 913: 548: 55: 2741: 1458:
impedance, a nanocapacitor. Conversely, if the material is a
1435:∂D / ∂t, and can be termed as the “flowing optical current". 909: 4544:
Experimental Verification of Reversed Cherenkov Radiation...
2407: 1709: 3980: 3302:
High Resolution Focused Ion Beams: FIB and Its Applications
1400: 1252: 3233: 2863:
Zhang, Shuang; Fan, Wenjun; Panoiu, N. C.; Malloy, K. J.;
2122:"Metamaterials: A New Paradigm of Physics and Engineering" 2022:"Photonic Metamaterials: Magnetism at Optical Frequencies" 3415:"Genetic algorithm used to design broadband metamaterial" 2019: 4458: 4365: 2999: 2700: 1152:. The gap between the tips of the U-shape function as a 3923: 3451: 3449: 3447: 3445: 2795:"Negative index of refraction in optical metamaterials" 2586:
https://pubs.rsc.org/en/content/ebook/978-1-84973-776-0
2071:
https://pubs.rsc.org/en/content/ebook/978-1-84973-653-4
4435:"Phase-engineered Metamaterial Structures and Devices" 2792: 2029:
IEEE Journal of Selected Topics in Quantum Electronics
881:
periodicity distinguishes photonic metamaterials from
4514:
Negative index of refraction in optical metamaterials
4507:
Negative Index of Refraction in Optical Metamaterials
3627: 3625: 3346: 2413:"A Positive Future for Double-Negative Metamaterials" 2371: 2315: 2156:; Pendry, John B.; Wiltshire, M. C. K. (2004-08-06). 1534:
It can produce giant nonlinear response for multiple
4229: 4157: 3442: 3436:"New NIST metamaterial gives light a one-way ticket" 3227: 3012:. Wiley, John & Sons, Incorporated. p. 11. 2862: 2646:"Negative Refractive Index in Left-Handed Materials" 2621: 2619: 2603:
New electromagnetic materials emphasize the negative
2417:
IEEE Transactions on Microwave Theory and Techniques
2116: 1881: 1879: 1877: 1875: 1873: 1871: 1869: 1044:
occurred soon after, also at microwave frequencies.
4432: 3298: 2377: 2126:
Optical Metamaterials Fundamentals and Applications
1691:
Metamaterials: Physics and Engineering Explorations
1207:describes material slabs that, when reacting to an 4160:"Dyakonov Surface Waves in Photonic Metamaterials" 3622: 3584: 3520:; Alessandro Salandrino; Andrea Alù (2005-08-26). 3510: 3172: 2643: 1450:dielectrics have the real permittivity component ε 1312:provided greater bandwidth than silver or gold. A 4527:Optics and photonics: Physics enhancing our lives 3367: 3006:Caloz, Christophe; Itoh, Tatsuo (November 2005). 3005: 2616: 2223: 2221: 2219: 2015: 2013: 1866: 1239:In metamaterials the cell acts as a meta-atom, a 1232:= 1. Hence, the magnetic component of a radiated 858:, that interacts with light, covering terahertz ( 4568: 4433:Caloz, Christophe; Gupta, Shulabh (2008-03-28). 4158:Artigas, David and; Torner, Lluis (2005-01-03). 2929: 2282: 2280: 2278: 2276: 1542:The device is made of a stack of thin layers of 4439:Progress in Electromagnetics Research Symposium 2597: 2595: 2593: 2309: 1048:Negative permeability and negative permittivity 951:, so it is not possible to define values of ε ( 4426: 4223: 2401: 2216: 2010: 1837: 1835: 1833: 1814: 1812: 1810: 1263:of metals is the ultimate limiting condition. 4151: 2694: 2644:Smith, David R.; Kroll, Norman (2000-10-02). 2273: 2158:"Metamaterials and Negative Refractive Index" 1935: 1933: 1888:"The Magical World of Photonic Metamaterials" 1251:-sized atom. For meta-atoms constructed from 1205:effective (transmission) medium approximation 920:at scales larger than the cells, yielding an 823: 4143:: CS1 maint: multiple names: authors list ( 4079:: CS1 maint: multiple names: authors list ( 4023:: CS1 maint: multiple names: authors list ( 3966:: CS1 maint: multiple names: authors list ( 3909:: CS1 maint: multiple names: authors list ( 3844:: CS1 maint: multiple names: authors list ( 3690:Valentine, Jason; et al. (2008-08-11). 3299:Orloff, J.; Utlaut, M.; Swanson, L. (2003). 3158:: CS1 maint: multiple names: authors list ( 3094:: CS1 maint: multiple names: authors list ( 2637: 2590: 2110: 1824:Encyclopedia of Laser Physics and Technology 1279:techniques must be employed to produce PMs. 900:In a conventional material, the response to 3578: 2633:. Nature Publishing Group. 2003. p. 1. 1830: 1807: 3683: 2735: 2146: 1945:"Photonics: Metamaterials in the sunshine" 1930: 1359: 1027:Negative permeability was achieved with a 830: 816: 34: 4401: 4383: 4318: 4250: 4230:Zhang, Shuang; et al. (2005-09-23). 3613: 3537: 3430: 3428: 3426: 3424: 3409: 3407: 3332:. Springer Science & Business Media. 3251: 3234:Grigorenko AN, et al. (2005-11-17). 3194: 3047: 2974: 2964: 2888: 2815: 2777: 2703:"Negative refraction by Photonic Crystal" 2396:Article citing this article (4118 citing) 1914: 1826:. Vol. I & II. Wiley. p. 1. 1743: 1266: 1198: 4532:OPAL: A Computational Tool For Photonics 4359: 4093: 4037: 3782: 3585:Wang, Xiande; et al. (2007-10-04). 2286: 1841: 1051: 1007: 4516:Opt. Lett. Vol. 30. 2005-12-30. 3 pages 3764: 3762: 3760: 3758: 3455: 2786: 2710:Progress in Electromagnetics Research B 2295:. Taylor & Francis. pp. 29–1. 2227: 1331: 579:Electromagnetism and special relativity 4569: 3421: 3404: 2856: 2457: 2411:; Richard W. Ziolkowski (April 2005). 2321:"Reversing Light: Negative Refraction" 2230:"Optical negative-index metamaterials" 1939: 1766: 1431:is actually the electric displacement 997:with a negative sign is the result of 4452: 4298: 1885: 1521: 1493:of the electric field. These are the 1214: 599:Maxwell equations in curved spacetime 3983:Journal of Physics: Condensed Matter 3755: 3319: 2701:Srivastava, R.; et al. (2008). 2228:Shalaev, Vladimir M (January 2007). 2081: 1135: 1132:do not occur at the same frequency. 16:Type of electromagnetic metamaterial 3776: 3292: 2511:Japanese Journal of Applied Physics 1562:and a layer of gold on the bottom. 1438:At subwavelength scales the cell's 1094:(NIMs), among other nomenclatures. 13: 4549:Oriented Assembly of Metamaterials 2938:"Nonlinear magnetic metamaterials" 2378:Veselago, Viktor G. (April 1968). 2287:Capolino, Filippo (October 2009). 1842:Capolino, Filippo (October 2009). 1160:. These "inclusions" create local 1075:, can achieve ε < 0 up to the 14: 4593: 4520: 1427:becomes negative. Therefore, the 977:While researching whether or not 2563:. kymetacorp.com. Archived from 1379:elements proved workable in the 4087: 4031: 3974: 3917: 3852: 3803: 3772:. R&D Magazine. 2014-07-02. 3361: 3166: 3102: 3026: 2578: 2553: 2498: 2451: 2319:; Smith, David R. (June 2004). 2104:10.1016/j.optlastec.2021.107202 1531:of the input and output waves. 1285:Fabrication techniques include 1003:magnetic permeability, μ < 0 936:Potential applications include 4512:Shalaev, Vladimir M., et al. 3881:10.1103/PhysRevLett.102.043903 3066:10.1103/PhysRevLett.115.177402 2458:Guerra, John M. (1995-06-26). 2075: 2063: 1852:. pp. 29–1, 25–14, 22–1. 1767:Guerra, John M. (1995-06-26). 1760: 1703: 1462:such as gold or silver, with ε 1423:occur as the real part of the 1394: 1364:By employing a combination of 1255:, μ < 0 can be achieved at 1: 4505:Shalaev, Vladimir M., et al. 4462:; V.M. Shalaev (2008-02-03). 4269:10.1103/PhysRevLett.95.137404 4187:10.1103/PhysRevLett.94.013901 3556:10.1103/PhysRevLett.95.095504 2907:10.1103/PhysRevLett.95.137404 2517:(Part 1, No. 3B): 1866–1875. 2293:Applications of Metamaterials 2084:Optics & Laser Technology 1845:Applications of Metamaterials 1697: 1473: 604:Relativistic electromagnetism 4059:10.1021/acsphotonics.7b00924 2779:10.1016/j.metmat.2008.03.004 2390:(4): 509–514. Archived from 1596:Negative index metamaterials 1130:magnetic (coupling) response 1126:electric (coupling) response 931:negative index of refraction 856:electromagnetic metamaterial 7: 2867:; Brueck, S. R. J. (2005). 2673:10.1103/PhysRevLett.85.2933 1886:Ozbay, Ekmel (2008-11-01). 1583: 1507: 1326: 1114:antiferromagnetic materials 10: 4598: 3417:. KurzweilAI. May 7, 2014. 2613:" Physics World, 1–5, 2001 1477: 1156:. Hence, it is an optical 970: 966: 329:Liénard–Wiechert potential 4123:10.1134/S1063782618040279 3824:10.1080/02726340801921403 2049:10.1109/JSTQE.2006.880600 1895:Optics and Photonics News 1466:< 0, then it takes on 1289:, nanostructuring with a 1287:electron beam lithography 870:. The materials employ a 594:Mathematical descriptions 304:Electromagnetic radiation 294:Electromagnetic induction 234:Magnetic vector potential 229:Magnetic scalar potential 4464:"Photonic metamaterials" 4003:10.1088/1361-648X/aa8bdd 3242:(Submitted manuscript). 2437:10.1109/TMTT.2005.845188 1907:10.1364/OPN.19.11.000022 1820:"Photonic Metamaterials" 1601:History of metamaterials 1568: 1295:interference lithography 1092:negative index materials 973:History of metamaterials 3861:Physical Review Letters 3594:Applied Physics Letters 3532:(9): 095504 (4 pages). 3526:Physical Review Letters 3488:10.1126/science.1133268 3205:10.1126/science.1058847 3036:Physical Review Letters 2653:Physical Review Letters 2627:"Negative confirmation" 2464:Applied Physics Letters 2259:10.1038/nphoton.2006.49 2187:10.1126/science.1096796 2173:(5685): 788–792 (791). 1773:Applied Physics Letters 1681:Metamaterials (journal) 1666:Mechanical metamaterial 1656:Terahertz metamaterials 1651:Plasmonic metamaterials 1621:Nonlinear metamaterials 1484:Nonlinear metamaterials 1360:Lumped circuit elements 1018:nanometer-scale imaging 144:Electrostatic induction 139:Electrostatic discharge 4491:10.1002/lapl.200810015 2631:Nature, Physics portal 2384:Soviet Physics Uspekhi 1686:Metamaterials Handbook 1641:Acoustic metamaterials 1574:Dyakonov surface waves 1267:Design and fabrication 1199:Effective medium model 1065: 1013: 999:permittivity, ε < 0 933:in the optical range. 923:effective medium model 874:, cellular structure. 574:Electromagnetic tensor 4477:(6): 411–420 (2008). 3946:10.1038/nnano.2014.90 3926:Nature Nanotechnology 2743:Boltasseva, Alexandra 2722:10.2528/PIERB08042302 1671:Transformation optics 1661:Tunable metamaterials 1646:Metamaterial absorber 1631:Seismic metamaterials 1616:Metamaterial antennas 1606:Metamaterial cloaking 1480:Tunable metamaterials 1442:becomes dependent on 1234:electromagnetic field 1180:μ(ω), or similarly, ε 1088:left-handed materials 1060:used to demonstrate 1055: 1011: 1001:(less than zero) and 942:transformation optics 908:fields, and hence to 844:photonic metamaterial 567:Covariant formulation 359:Synchrotron radiation 299:Electromagnetic pulse 289:Electromagnetic field 4509:arXiv.org. 17 pages. 4403:10.1364/OL.32.001671 4337:10.1364/OL.32.000053 2976:10.1364/OE.16.020266 2834:10.1364/OL.30.003356 2531:10.1143/JJAP.41.1866 2394:on 12 January 2016. 2118:Shalaev, Vladimir M. 1850:Taylor & Francis 1676:Theories of cloaking 1636:Split-ring resonator 1425:complex permittivity 1421:plasmonic resonances 1332:One-way transmission 1124:, resonance for the 1108:Naturally occurring 1058:metamaterial lattice 1029:split-ring resonator 852:optical metamaterial 850:), also known as an 609:Stress–energy tensor 534:Reluctance (complex) 279:Displacement current 4483:2008LaPhL...5..411L 4394:2007OptL...32.1671C 4329:2007OptL...32...53D 4261:2005PhRvL..95m7404Z 4179:2005PhRvL..94a3901A 4115:2018Semic..52..442T 3995:2017JPCM...29T3001T 3938:2014NatNa...9..419T 3873:2009PhRvL.102d3903T 3797:1988JETP...67..714D 3785:Soviet Physics JETP 3719:10.1038/nature07247 3711:2008Natur.455..376V 3653:2008NatMa...7...31L 3606:2007ApPhL..91n3122W 3548:2005PhRvL..95i5504E 3480:2007Sci...317.1698E 3474:(5845): 1698–1702. 3438:. NIST. 2014-07-01. 3270:10.1038/nature04242 3262:2005Natur.438..335G 3187:2001Sci...292...77S 3124:(26): 12582–12588. 3058:2015PhRvL.115q7402Z 2957:2008OExpr..1620266S 2899:2005PhRvL..95m7404Z 2826:2005OptL...30.3356S 2770:2008MetaM...2....1B 2747:Vladimir M. Shalaev 2665:2000PhRvL..85.2933S 2561:"Kymeta technology" 2523:2002JaJAP..41.1866G 2476:1995ApPhL..66.3555G 2429:2005ITMTT..53.1535E 2367:Alternate copy here 2340:2004PhT....57f..37P 2251:2007NaPho...1...41S 2179:2004Sci...305..788S 2142:on August 21, 2009. 2096:2021OptLT.14207202A 2041:2006IJSTQ..12.1097L 1966:2006NatMa...5..599P 1785:1995ApPhL..66.3555G 1728:2012NatSR...2E.737S 1247:, analogous to the 1209:external excitation 1077:visible frequencies 1062:negative refraction 1042:index of refraction 1037:electric conducting 991:Maxwell's equations 981:interacts with the 912:, is determined by 868:visible wavelengths 524:Magnetomotive force 409:Electromotive force 379:Alternating current 314:Jefimenko equations 274:Cyclotron radiation 4554:2016-09-09 at the 4537:2011-07-17 at the 4460:Litchinitser, N.M. 4453:General references 3305:. Springer Press. 3130:10.1039/C9NR02471A 2609:2011-07-17 at the 2409:Engheta, Nader and 1716:Scientific Reports 1522:Frequency doubling 1368:and non-plasmonic 1215:Coupling magnetism 1066: 1056:Photograph of the 1014: 983:magnetic component 372:Electrical network 209:Gauss magnetic law 174:Static electricity 134:Electric potential 4378:(12): 1671–1673. 4294:on July 26, 2008. 4053:(11): 2899–2907. 3705:(7211): 376–379. 3615:10.1063/1.2795345 3382:10.1021/nn4057148 3339:978-0-387-23313-0 3312:978-0-306-47350-0 3246:(7066): 335–338. 3019:978-0-471-66985-2 2731:on July 19, 2010. 2690:on July 19, 2011. 2659:(14): 2933–2936. 2470:(26): 3555–3557. 2348:10.1063/1.1784272 2302:978-1-4200-5423-1 2212:on June 13, 2010. 2135:978-1-4419-1150-6 1926:on July 19, 2011. 1859:978-1-4200-5423-1 1779:(26): 3555–3557. 1736:10.1038/srep00737 1536:nonlinear optical 1429:main current flow 1314:genetic algorithm 1275:materials, while 1257:telecommunication 1175: 1158:nano-LC resonator 1136:Optical frequency 1069:Natural materials 883:photonic band gap 840: 839: 539:Reluctance (real) 509:Gyrator–capacitor 454:Resonant cavities 344:Maxwell equations 4589: 4502: 4471:Laser Phys. Lett 4468: 4447: 4446: 4430: 4424: 4423: 4405: 4387: 4363: 4357: 4356: 4322: 4302: 4296: 4295: 4293: 4287:. Archived from 4254: 4236: 4227: 4221: 4220: 4218: 4217: 4211: 4205:. Archived from 4164: 4155: 4149: 4148: 4142: 4134: 4100: 4091: 4085: 4084: 4078: 4070: 4044: 4035: 4029: 4028: 4022: 4014: 3978: 3972: 3971: 3965: 3957: 3921: 3915: 3914: 3908: 3900: 3856: 3850: 3849: 3843: 3835: 3812:Electromagnetics 3807: 3801: 3800: 3780: 3774: 3773: 3766: 3753: 3752: 3750: 3749: 3743: 3737:. Archived from 3696: 3687: 3681: 3680: 3661:10.1038/nmat2072 3641:Nature Materials 3638: 3629: 3620: 3619: 3617: 3591: 3582: 3576: 3575: 3541: 3539:cond-mat/0411463 3514: 3508: 3507: 3465: 3453: 3440: 3439: 3432: 3419: 3418: 3411: 3402: 3401: 3376:(2): 1517–1524. 3365: 3359: 3358: 3350: 3344: 3343: 3323: 3317: 3316: 3296: 3290: 3289: 3255: 3231: 3225: 3224: 3198: 3170: 3164: 3163: 3157: 3149: 3115: 3106: 3100: 3099: 3093: 3085: 3051: 3030: 3024: 3023: 3003: 2997: 2996: 2978: 2968: 2951:(25): 20266–71. 2942: 2933: 2927: 2926: 2892: 2877:Phys. Rev. Lett. 2873: 2860: 2854: 2853: 2819: 2799: 2790: 2784: 2783: 2781: 2755: 2739: 2733: 2732: 2730: 2724:. Archived from 2707: 2698: 2692: 2691: 2689: 2683:. Archived from 2650: 2641: 2635: 2634: 2623: 2614: 2599: 2588: 2582: 2576: 2575: 2573: 2572: 2557: 2551: 2550: 2502: 2496: 2495: 2484:10.1063/1.113814 2455: 2449: 2448: 2405: 2399: 2398: 2375: 2369: 2365: 2363: 2362: 2356: 2350:. Archived from 2325: 2313: 2307: 2306: 2284: 2271: 2270: 2238:Nature Photonics 2234: 2225: 2214: 2213: 2211: 2205:. Archived from 2162: 2150: 2144: 2143: 2138:. Archived from 2114: 2108: 2107: 2079: 2073: 2067: 2061: 2060: 2026: 2017: 2008: 2007: 2005: 2004: 1998: 1992:. Archived from 1974:10.1038/nmat1697 1953:Nature Materials 1949: 1937: 1928: 1927: 1925: 1919:. Archived from 1918: 1892: 1883: 1864: 1863: 1839: 1828: 1827: 1816: 1805: 1804: 1793:10.1063/1.113814 1764: 1758: 1757: 1747: 1707: 1626:Photonic crystal 1576:(DSW) relate to 1529:phase velocities 1501:, respectively. 1291:focused ion beam 1261:plasma frequency 1173: 1103:group velocities 1022:cloaking objects 995:refractive index 889:structures. The 887:photonic crystal 832: 825: 818: 499:Electric machine 482:Magnetic circuit 444:Parallel circuit 434:Network analysis 399:Electric current 334:London equations 179:Triboelectricity 169:Potential energy 38: 28:Electromagnetism 19: 18: 4597: 4596: 4592: 4591: 4590: 4588: 4587: 4586: 4567: 4566: 4556:Wayback Machine 4539:Wayback Machine 4523: 4466: 4455: 4450: 4431: 4427: 4385:physics/0612247 4364: 4360: 4320:physics/0607135 4303: 4299: 4291: 4252:physics/0504208 4239:Phys. Rev. Lett 4234: 4228: 4224: 4215: 4213: 4209: 4167:Phys. Rev. Lett 4162: 4156: 4152: 4136: 4135: 4098: 4092: 4088: 4072: 4071: 4042: 4036: 4032: 4016: 4015: 3979: 3975: 3959: 3958: 3922: 3918: 3902: 3901: 3857: 3853: 3837: 3836: 3808: 3804: 3781: 3777: 3768: 3767: 3756: 3747: 3745: 3741: 3694: 3688: 3684: 3636: 3630: 3623: 3589: 3583: 3579: 3515: 3511: 3463: 3454: 3443: 3434: 3433: 3422: 3413: 3412: 3405: 3366: 3362: 3351: 3347: 3340: 3324: 3320: 3313: 3297: 3293: 3253:physics/0504178 3232: 3228: 3196:10.1.1.119.1617 3171: 3167: 3151: 3150: 3113: 3107: 3103: 3087: 3086: 3031: 3027: 3020: 3004: 3000: 2966:10.1.1.221.5805 2940: 2934: 2930: 2890:physics/0504208 2871: 2861: 2857: 2817:physics/0504091 2797: 2791: 2787: 2753: 2740: 2736: 2728: 2705: 2699: 2695: 2687: 2648: 2642: 2638: 2625: 2624: 2617: 2611:Wayback Machine 2600: 2591: 2583: 2579: 2570: 2568: 2559: 2558: 2554: 2503: 2499: 2456: 2452: 2406: 2402: 2376: 2372: 2360: 2358: 2354: 2323: 2317:Pendry, John B. 2314: 2310: 2303: 2285: 2274: 2232: 2226: 2217: 2209: 2160: 2151: 2147: 2136: 2115: 2111: 2080: 2076: 2068: 2064: 2024: 2018: 2011: 2002: 2000: 1996: 1947: 1938: 1931: 1923: 1890: 1884: 1867: 1860: 1840: 1831: 1818: 1817: 1808: 1765: 1761: 1708: 1704: 1700: 1695: 1586: 1571: 1524: 1510: 1486: 1478:Main articles: 1476: 1465: 1453: 1433:current density 1399:Metals such as 1397: 1385:radio frequency 1362: 1334: 1329: 1269: 1231: 1217: 1201: 1187: 1183: 1166:magnetic fields 1146:nanolithography 1138: 1118:natural magnets 1073:precious metals 1050: 987:Victor Veselago 975: 969: 854:, is a type of 836: 807: 806: 622: 614: 613: 569: 559: 558: 514:Induction motor 484: 474: 473: 389:Current density 374: 364: 363: 354:Poynting vector 264: 262:Electrodynamics 254: 253: 249:Right-hand rule 214:Magnetic dipole 204:Biot–Savart law 194: 184: 183: 119:Electric dipole 114:Electric charge 89: 17: 12: 11: 5: 4595: 4585: 4584: 4579: 4565: 4564: 4559: 4546: 4541: 4529: 4522: 4521:External links 4519: 4518: 4517: 4510: 4503: 4454: 4451: 4449: 4448: 4445:on 2010-07-05. 4425: 4372:Optics Letters 4358: 4307:Optics Letters 4297: 4245:(13): 137404. 4222: 4150: 4103:Semiconductors 4086: 4030: 3989:(46): 463001. 3973: 3932:(6): 419–424. 3916: 3851: 3818:(3): 126–145. 3802: 3775: 3754: 3682: 3621: 3600:(14): 143122. 3577: 3518:Engheta, Nader 3509: 3459:(2007-09-21). 3457:Engheta, Nader 3441: 3420: 3403: 3360: 3345: 3338: 3318: 3311: 3291: 3226: 3181:(5514): 77–9. 3165: 3101: 3042:(17): 177402. 3025: 3018: 2998: 2945:Optics Express 2928: 2883:(13): 137404. 2855: 2810:(24): 3356–8. 2803:Optics Letters 2785: 2749:(2008-03-18). 2734: 2693: 2636: 2615: 2589: 2577: 2552: 2497: 2450: 2400: 2370: 2308: 2301: 2272: 2215: 2145: 2134: 2120:(2009-11-23). 2109: 2074: 2062: 2009: 1960:(8): 599–600. 1929: 1865: 1858: 1829: 1806: 1759: 1701: 1699: 1696: 1694: 1693: 1688: 1683: 1678: 1673: 1668: 1663: 1658: 1653: 1648: 1643: 1638: 1633: 1628: 1623: 1618: 1613: 1608: 1603: 1598: 1593: 1587: 1585: 1582: 1570: 1567: 1523: 1520: 1509: 1506: 1495:Pockels effect 1491:square modulus 1475: 1472: 1463: 1451: 1396: 1393: 1377:lumped circuit 1375:Subwavelength 1361: 1358: 1333: 1330: 1328: 1325: 1268: 1265: 1229: 1216: 1213: 1200: 1197: 1185: 1181: 1154:nano-capacitor 1137: 1134: 1079:. However, at 1049: 1046: 971:Main article: 968: 965: 838: 837: 835: 834: 827: 820: 812: 809: 808: 805: 804: 799: 794: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 739: 734: 729: 724: 719: 714: 709: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 623: 620: 619: 616: 615: 612: 611: 606: 601: 596: 591: 589:Four-potential 586: 581: 576: 570: 565: 564: 561: 560: 557: 556: 551: 546: 541: 536: 531: 526: 521: 516: 511: 506: 504:Electric motor 501: 496: 491: 485: 480: 479: 476: 475: 472: 471: 466: 461: 459:Series circuit 456: 451: 446: 441: 436: 431: 429:Kirchhoff laws 426: 421: 416: 411: 406: 401: 396: 394:Direct current 391: 386: 381: 375: 370: 369: 366: 365: 362: 361: 356: 351: 349:Maxwell tensor 346: 341: 336: 331: 326: 321: 319:Larmor formula 316: 311: 306: 301: 296: 291: 286: 281: 276: 271: 269:Bremsstrahlung 265: 260: 259: 256: 255: 252: 251: 246: 241: 236: 231: 226: 221: 219:Magnetic field 216: 211: 206: 201: 195: 192:Magnetostatics 190: 189: 186: 185: 182: 181: 176: 171: 166: 161: 156: 151: 146: 141: 136: 131: 126: 124:Electric field 121: 116: 111: 106: 101: 96: 94:Charge density 90: 87:Electrostatics 85: 84: 81: 80: 79: 78: 73: 68: 63: 58: 53: 48: 40: 39: 31: 30: 24: 23: 22:Articles about 15: 9: 6: 4: 3: 2: 4594: 4583: 4580: 4578: 4577:Metamaterials 4575: 4574: 4572: 4563: 4560: 4557: 4553: 4550: 4547: 4545: 4542: 4540: 4536: 4533: 4530: 4528: 4525: 4524: 4515: 4511: 4508: 4504: 4500: 4496: 4492: 4488: 4484: 4480: 4476: 4472: 4465: 4461: 4457: 4456: 4444: 4440: 4436: 4429: 4421: 4417: 4413: 4409: 4404: 4399: 4395: 4391: 4386: 4381: 4377: 4373: 4369: 4362: 4354: 4350: 4346: 4342: 4338: 4334: 4330: 4326: 4321: 4316: 4312: 4308: 4301: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4262: 4258: 4253: 4248: 4244: 4240: 4233: 4226: 4212:on 2022-01-24 4208: 4204: 4200: 4196: 4192: 4188: 4184: 4180: 4176: 4173:(1): 013901. 4172: 4168: 4161: 4154: 4146: 4140: 4132: 4128: 4124: 4120: 4116: 4112: 4108: 4104: 4097: 4090: 4082: 4076: 4068: 4064: 4060: 4056: 4052: 4048: 4047:ACS Photonics 4041: 4034: 4026: 4020: 4012: 4008: 4004: 4000: 3996: 3992: 3988: 3984: 3977: 3969: 3963: 3955: 3951: 3947: 3943: 3939: 3935: 3931: 3927: 3920: 3912: 3906: 3898: 3894: 3890: 3886: 3882: 3878: 3874: 3870: 3867:(4): 043903. 3866: 3862: 3855: 3847: 3841: 3833: 3829: 3825: 3821: 3817: 3813: 3806: 3798: 3794: 3790: 3786: 3779: 3771: 3765: 3763: 3761: 3759: 3744:on 2009-08-13 3740: 3736: 3732: 3728: 3724: 3720: 3716: 3712: 3708: 3704: 3700: 3693: 3686: 3678: 3674: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3635: 3628: 3626: 3616: 3611: 3607: 3603: 3599: 3595: 3588: 3581: 3573: 3569: 3565: 3561: 3557: 3553: 3549: 3545: 3540: 3535: 3531: 3527: 3523: 3519: 3513: 3505: 3501: 3497: 3493: 3489: 3485: 3481: 3477: 3473: 3469: 3462: 3458: 3452: 3450: 3448: 3446: 3437: 3431: 3429: 3427: 3425: 3416: 3410: 3408: 3399: 3395: 3391: 3387: 3383: 3379: 3375: 3371: 3364: 3356: 3349: 3341: 3335: 3331: 3330: 3322: 3314: 3308: 3304: 3303: 3295: 3287: 3283: 3279: 3275: 3271: 3267: 3263: 3259: 3254: 3249: 3245: 3241: 3237: 3230: 3222: 3218: 3214: 3210: 3206: 3202: 3197: 3192: 3188: 3184: 3180: 3176: 3169: 3161: 3155: 3147: 3143: 3139: 3135: 3131: 3127: 3123: 3119: 3112: 3105: 3097: 3091: 3083: 3079: 3075: 3071: 3067: 3063: 3059: 3055: 3050: 3045: 3041: 3037: 3029: 3021: 3015: 3011: 3010: 3002: 2994: 2990: 2986: 2982: 2977: 2972: 2967: 2962: 2958: 2954: 2950: 2946: 2939: 2932: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2891: 2886: 2882: 2879: 2878: 2870: 2866: 2865:Osgood, R. M. 2859: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2823: 2818: 2813: 2809: 2805: 2804: 2796: 2789: 2780: 2775: 2771: 2767: 2763: 2759: 2758:Metamaterials 2752: 2748: 2744: 2738: 2727: 2723: 2719: 2715: 2711: 2704: 2697: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2647: 2640: 2632: 2628: 2622: 2620: 2612: 2608: 2604: 2601:Pendry, J., " 2598: 2596: 2594: 2587: 2581: 2567:on 2017-01-09 2566: 2562: 2556: 2548: 2544: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2501: 2493: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2454: 2446: 2442: 2438: 2434: 2430: 2426: 2422: 2418: 2414: 2410: 2404: 2397: 2393: 2389: 2385: 2381: 2374: 2368: 2357:on 2017-08-09 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2328:Physics Today 2322: 2318: 2312: 2304: 2298: 2294: 2290: 2283: 2281: 2279: 2277: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2239: 2231: 2224: 2222: 2220: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2167: 2159: 2155: 2149: 2141: 2137: 2131: 2127: 2123: 2119: 2113: 2105: 2101: 2097: 2093: 2089: 2085: 2078: 2072: 2066: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2023: 2016: 2014: 1999:on 2009-10-07 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1954: 1946: 1942: 1936: 1934: 1922: 1917: 1912: 1908: 1904: 1901:(11): 22–27. 1900: 1896: 1889: 1882: 1880: 1878: 1876: 1874: 1872: 1870: 1861: 1855: 1851: 1847: 1846: 1838: 1836: 1834: 1825: 1821: 1815: 1813: 1811: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1770: 1763: 1755: 1751: 1746: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1706: 1702: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1591:Terahertz gap 1589: 1588: 1581: 1579: 1578:birefringence 1575: 1566: 1563: 1561: 1560:quantum wells 1557: 1553: 1549: 1545: 1540: 1537: 1532: 1530: 1519: 1516: 1505: 1502: 1500: 1496: 1492: 1485: 1481: 1471: 1469: 1461: 1457: 1449: 1445: 1441: 1436: 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1392: 1390: 1386: 1382: 1378: 1373: 1371: 1370:nanoparticles 1367: 1357: 1353: 1350: 1345: 1341: 1339: 1324: 1322: 1317: 1315: 1311: 1307: 1303: 1298: 1296: 1292: 1288: 1283: 1280: 1278: 1274: 1273:circuit board 1264: 1262: 1258: 1254: 1250: 1246: 1242: 1237: 1235: 1227: 1223: 1212: 1210: 1206: 1196: 1194: 1189: 1177: 1171: 1167: 1163: 1159: 1155: 1151: 1150:nano-inductor 1147: 1143: 1142:electron beam 1133: 1131: 1127: 1123: 1119: 1115: 1111: 1110:ferromagnetic 1106: 1104: 1100: 1095: 1093: 1089: 1084: 1082: 1078: 1074: 1070: 1063: 1059: 1054: 1045: 1043: 1038: 1034: 1033:symmetrically 1030: 1025: 1023: 1019: 1010: 1006: 1004: 1000: 996: 992: 988: 984: 980: 974: 964: 962: 958: 954: 950: 945: 943: 939: 934: 932: 927: 925: 924: 919: 915: 911: 907: 903: 898: 896: 892: 888: 884: 880: 879:subwavelength 875: 873: 869: 865: 861: 857: 853: 849: 845: 833: 828: 826: 821: 819: 814: 813: 811: 810: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 624: 618: 617: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 571: 568: 563: 562: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 486: 483: 478: 477: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 424:Joule heating 422: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 376: 373: 368: 367: 360: 357: 355: 352: 350: 347: 345: 342: 340: 339:Lorentz force 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 266: 263: 258: 257: 250: 247: 245: 242: 240: 239:Magnetization 237: 235: 232: 230: 227: 225: 224:Magnetic flux 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 196: 193: 188: 187: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 145: 142: 140: 137: 135: 132: 130: 129:Electric flux 127: 125: 122: 120: 117: 115: 112: 110: 107: 105: 102: 100: 97: 95: 92: 91: 88: 83: 82: 77: 74: 72: 69: 67: 66:Computational 64: 62: 59: 57: 54: 52: 49: 47: 44: 43: 42: 41: 37: 33: 32: 29: 26: 25: 21: 20: 4474: 4470: 4443:the original 4438: 4428: 4375: 4371: 4361: 4313:(1): 53–55. 4310: 4306: 4300: 4289:the original 4242: 4238: 4225: 4214:. Retrieved 4207:the original 4170: 4166: 4153: 4139:cite journal 4109:(4): 442–6. 4106: 4102: 4089: 4075:cite journal 4050: 4046: 4033: 4019:cite journal 3986: 3982: 3976: 3962:cite journal 3929: 3925: 3919: 3905:cite journal 3864: 3860: 3854: 3840:cite journal 3815: 3811: 3805: 3788: 3784: 3778: 3746:. Retrieved 3739:the original 3702: 3698: 3685: 3647:(1): 31–37. 3644: 3640: 3597: 3593: 3580: 3529: 3525: 3512: 3471: 3467: 3373: 3369: 3363: 3354: 3348: 3328: 3321: 3301: 3294: 3243: 3239: 3229: 3178: 3174: 3168: 3154:cite journal 3121: 3117: 3104: 3090:cite journal 3039: 3035: 3028: 3008: 3001: 2948: 2944: 2931: 2880: 2875: 2858: 2807: 2801: 2788: 2761: 2757: 2737: 2726:the original 2713: 2709: 2696: 2685:the original 2656: 2652: 2639: 2630: 2580: 2569:. Retrieved 2565:the original 2555: 2514: 2510: 2500: 2467: 2463: 2453: 2420: 2416: 2403: 2395: 2392:the original 2387: 2383: 2373: 2359:. Retrieved 2352:the original 2334:(6): 37–44. 2331: 2327: 2311: 2292: 2242: 2236: 2207:the original 2170: 2164: 2154:Smith, David 2148: 2140:the original 2128:. Springer. 2125: 2112: 2087: 2083: 2077: 2065: 2032: 2028: 2001:. Retrieved 1994:the original 1957: 1951: 1941:Pendry, John 1921:the original 1898: 1894: 1844: 1823: 1776: 1772: 1762: 1719: 1715: 1705: 1611:Metamaterial 1572: 1564: 1541: 1533: 1525: 1511: 1503: 1499:Kerr effects 1487: 1437: 1398: 1374: 1363: 1354: 1346: 1342: 1335: 1318: 1306:super-octave 1302:polarization 1299: 1284: 1281: 1270: 1241:larger scale 1238: 1218: 1202: 1190: 1178: 1139: 1107: 1096: 1085: 1067: 1026: 1015: 976: 961:permeability 956: 953:permittivity 946: 935: 928: 921: 899: 876: 851: 847: 843: 841: 584:Four-current 519:Linear motor 404:Electrolysis 284:Eddy current 244:Permeability 164:Polarization 159:Permittivity 2764:(1): 1–17. 2423:(4): 1535. 2035:(6): 1097. 1916:11693/23249 1460:noble metal 1444:shape, size 1395:Cell design 1277:lithography 1222:frequencies 1035:positioned 949:homogeneous 918:homogeneous 554:Transformer 384:Capacitance 309:Faraday law 104:Coulomb law 46:Electricity 4571:Categories 4216:2009-10-15 4195:2117/99885 3791:(4): 714. 3748:2009-11-09 3049:1506.08078 2571:2015-04-19 2361:2019-05-10 2090:: 107202. 2003:2009-10-15 1698:References 1515:dielectric 1474:Tunability 1456:capacitive 1300:In 2014 a 1071:, such as 985:of light, 895:nanometers 621:Scientists 469:Waveguides 449:Resistance 419:Inductance 199:Ampère law 4582:Photonics 4131:255238679 4067:126006666 3832:121726611 3191:CiteSeerX 3146:195326315 3118:Nanoscale 2985:10440/410 2961:CiteSeerX 2716:: 15–26. 2547:119544019 2539:0021-4922 2492:0003-6951 2245:(1): 41. 1801:0003-6951 1468:inductive 1440:impedance 1389:Nanoscale 1381:microwave 1366:plasmonic 1321:polyimide 1310:Palladium 1249:picometer 1243:magnetic 1226:gigahertz 1081:terahertz 777:Steinmetz 707:Kirchhoff 692:Jefimenko 687:Hopkinson 672:Helmholtz 667:Heaviside 529:Permeance 414:Impedance 154:Insulator 149:Gauss law 99:Conductor 76:Phenomena 71:Textbooks 51:Magnetism 4552:Archived 4535:Archived 4420:10189281 4412:17572742 4353:26775488 4345:17167581 4285:15246675 4277:16197179 4203:15698082 4011:29053474 3954:24859812 3897:14540394 3889:19257419 3727:18690249 3677:42254771 3669:18059275 3564:16197226 3496:17885123 3398:40297802 3390:24472069 3370:ACS Nano 3278:16292306 3213:11292865 3138:31231735 3074:26551143 2993:19065165 2923:15246675 2915:16197179 2850:14917741 2842:16389830 2681:11005971 2607:Archived 2445:15293380 2203:16664396 2195:15297655 2057:32319427 1990:39003335 1982:16880801 1943:(2006). 1754:23071901 1584:See also 1556:aluminum 1508:Layering 1417:currents 1415:conduct 1409:aluminum 1349:chromium 1327:Research 1162:electric 1122:ferrites 938:cloaking 906:magnetic 902:electric 872:periodic 866:(IR) or 864:infrared 802:Wiechert 757:Poynting 647:Einstein 494:DC motor 489:AC motor 324:Lenz law 109:Electret 4499:7547242 4479:Bibcode 4390:Bibcode 4325:Bibcode 4257:Bibcode 4175:Bibcode 4111:Bibcode 3991:Bibcode 3934:Bibcode 3869:Bibcode 3793:Bibcode 3735:4314138 3707:Bibcode 3649:Bibcode 3602:Bibcode 3572:9778099 3544:Bibcode 3504:1572047 3476:Bibcode 3468:Science 3286:6379234 3258:Bibcode 3221:9321456 3183:Bibcode 3175:Science 3082:4018894 3054:Bibcode 2953:Bibcode 2895:Bibcode 2822:Bibcode 2766:Bibcode 2661:Bibcode 2519:Bibcode 2472:Bibcode 2425:Bibcode 2336:Bibcode 2247:Bibcode 2175:Bibcode 2166:Science 2092:Bibcode 2037:Bibcode 1962:Bibcode 1781:Bibcode 1745:3471096 1724:Bibcode 1722:: 737. 1552:arsenic 1548:gallium 1448:silicon 1347:Adding 1338:mirrors 1224:in the 1193:Shalaev 967:History 787:Thomson 762:Ritchie 752:Poisson 737:Neumann 732:Maxwell 727:Lorentz 722:Liénard 652:Faraday 637:Coulomb 464:Voltage 439:Ohm law 61:History 4497:  4418:  4410:  4351:  4343:  4283:  4275:  4201:  4129:  4065:  4009:  3952:  3895:  3887:  3830:  3733:  3725:  3699:Nature 3675:  3667:  3570:  3562:  3502:  3494:  3396:  3388:  3336:  3309:  3284:  3276:  3240:Nature 3219:  3211:  3193:  3144:  3136:  3080:  3072:  3016:  2991:  2963:  2921:  2913:  2848:  2840:  2679:  2545:  2537:  2490:  2443:  2299:  2267:170678 2265:  2201:  2193:  2132:  2055:  1988:  1980:  1856:  1799:  1752:  1742:  1544:indium 1413:copper 1405:silver 1245:dipole 979:matter 772:Singer 767:Savart 747:Ørsted 712:Larmor 702:Kelvin 657:Fizeau 627:Ampère 549:Stator 56:Optics 4495:S2CID 4467:(PDF) 4416:S2CID 4380:arXiv 4349:S2CID 4315:arXiv 4292:(PDF) 4281:S2CID 4247:arXiv 4235:(PDF) 4210:(PDF) 4163:(PDF) 4127:S2CID 4099:(PDF) 4063:S2CID 4043:(PDF) 3893:S2CID 3828:S2CID 3742:(PDF) 3731:S2CID 3695:(PDF) 3673:S2CID 3637:(PDF) 3590:(PDF) 3568:S2CID 3534:arXiv 3500:S2CID 3464:(PDF) 3394:S2CID 3282:S2CID 3248:arXiv 3217:S2CID 3142:S2CID 3114:(PDF) 3078:S2CID 3044:arXiv 2941:(PDF) 2919:S2CID 2885:arXiv 2872:(PDF) 2846:S2CID 2812:arXiv 2798:(PDF) 2754:(PDF) 2729:(PDF) 2706:(PDF) 2688:(PDF) 2649:(PDF) 2543:S2CID 2441:S2CID 2355:(PDF) 2324:(PDF) 2263:S2CID 2233:(PDF) 2210:(PDF) 2199:S2CID 2161:(PDF) 2053:S2CID 2025:(PDF) 1997:(PDF) 1986:S2CID 1948:(PDF) 1924:(PDF) 1891:(PDF) 1569:Other 1184:and μ 1170:light 1099:phase 955:) or 914:atoms 910:light 891:cells 797:Weber 792:Volta 782:Tesla 697:Joule 682:Hertz 677:Henry 662:Gauss 544:Rotor 4408:PMID 4341:PMID 4273:PMID 4199:PMID 4145:link 4081:link 4025:link 4007:PMID 3968:link 3950:PMID 3911:link 3885:PMID 3846:link 3723:PMID 3665:PMID 3560:PMID 3492:PMID 3386:PMID 3334:ISBN 3307:ISBN 3274:PMID 3209:PMID 3160:link 3134:PMID 3096:link 3070:PMID 3014:ISBN 2989:PMID 2911:PMID 2838:PMID 2677:PMID 2535:ISSN 2488:ISSN 2297:ISBN 2191:PMID 2130:ISBN 1978:PMID 1854:ISBN 1797:ISSN 1750:PMID 1550:and 1497:and 1482:and 1464:real 1452:real 1411:and 1401:gold 1383:and 1293:and 1253:gold 1164:and 1144:and 1128:and 1120:and 1112:and 1101:and 1020:and 993:. A 940:and 904:and 877:The 717:Lenz 642:Davy 632:Biot 4487:doi 4398:doi 4333:doi 4265:doi 4191:hdl 4183:doi 4119:doi 4055:doi 3999:doi 3942:doi 3877:doi 3865:102 3820:doi 3715:doi 3703:455 3657:doi 3610:doi 3552:doi 3484:doi 3472:317 3378:doi 3266:doi 3244:438 3201:doi 3179:292 3126:doi 3062:doi 3040:115 2981:hdl 2971:doi 2903:doi 2830:doi 2774:doi 2718:doi 2669:doi 2527:doi 2480:doi 2433:doi 2344:doi 2255:doi 2183:doi 2171:305 2100:doi 2088:142 2045:doi 1970:doi 1911:hdl 1903:doi 1789:doi 1740:PMC 1732:doi 1554:or 1230:eff 1203:An 1186:eff 1182:eff 1090:or 963:). 885:or 862:), 860:THz 742:Ohm 4573:: 4493:. 4485:. 4473:. 4469:. 4437:. 4414:. 4406:. 4396:. 4388:. 4376:32 4374:. 4370:. 4347:. 4339:. 4331:. 4323:. 4311:32 4309:. 4279:. 4271:. 4263:. 4255:. 4243:95 4241:. 4237:. 4197:. 4189:. 4181:. 4171:94 4169:. 4165:. 4141:}} 4137:{{ 4125:. 4117:. 4107:52 4105:. 4101:. 4077:}} 4073:{{ 4061:. 4049:. 4045:. 4021:}} 4017:{{ 4005:. 3997:. 3987:29 3985:. 3964:}} 3960:{{ 3948:. 3940:. 3928:. 3907:}} 3903:{{ 3891:. 3883:. 3875:. 3863:. 3842:}} 3838:{{ 3826:. 3816:28 3814:. 3789:67 3787:. 3757:^ 3729:. 3721:. 3713:. 3701:. 3697:. 3671:. 3663:. 3655:. 3643:. 3639:. 3624:^ 3608:. 3598:91 3596:. 3592:. 3566:. 3558:. 3550:. 3542:. 3530:95 3528:. 3524:. 3498:. 3490:. 3482:. 3470:. 3466:. 3444:^ 3423:^ 3406:^ 3392:. 3384:. 3372:. 3280:. 3272:. 3264:. 3256:. 3238:. 3215:. 3207:. 3199:. 3189:. 3177:. 3156:}} 3152:{{ 3140:. 3132:. 3122:11 3120:. 3116:. 3092:}} 3088:{{ 3076:. 3068:. 3060:. 3052:. 3038:. 2987:. 2979:. 2969:. 2959:. 2949:16 2947:. 2943:. 2917:. 2909:. 2901:. 2893:. 2881:95 2874:. 2844:. 2836:. 2828:. 2820:. 2808:30 2806:. 2800:. 2772:. 2760:. 2756:. 2745:; 2712:. 2708:. 2675:. 2667:. 2657:85 2655:. 2651:. 2629:. 2618:^ 2605:, 2592:^ 2541:. 2533:. 2525:. 2515:41 2513:. 2509:. 2486:. 2478:. 2468:66 2466:. 2462:. 2439:. 2431:. 2421:53 2419:. 2415:. 2388:10 2386:. 2382:. 2342:. 2332:57 2330:. 2326:. 2291:. 2275:^ 2261:. 2253:. 2241:. 2235:. 2218:^ 2197:. 2189:. 2181:. 2169:. 2163:. 2124:. 2098:. 2086:. 2051:. 2043:. 2033:12 2031:. 2027:. 2012:^ 1984:. 1976:. 1968:. 1956:. 1950:. 1932:^ 1909:. 1899:19 1897:. 1893:. 1868:^ 1848:. 1832:^ 1822:. 1809:^ 1795:. 1787:. 1777:66 1775:. 1771:. 1748:. 1738:. 1730:. 1718:. 1714:. 1546:, 1407:, 1403:, 1297:. 1188:. 957:u 944:. 926:. 897:. 848:PM 842:A 4501:. 4489:: 4481:: 4475:5 4422:. 4400:: 4392:: 4382:: 4355:. 4335:: 4327:: 4317:: 4267:: 4259:: 4249:: 4219:. 4193:: 4185:: 4177:: 4147:) 4133:. 4121:: 4113:: 4083:) 4069:. 4057:: 4051:4 4027:) 4013:. 4001:: 3993:: 3970:) 3956:. 3944:: 3936:: 3930:9 3913:) 3899:. 3879:: 3871:: 3848:) 3834:. 3822:: 3799:. 3795:: 3751:. 3717:: 3709:: 3679:. 3659:: 3651:: 3645:7 3618:. 3612:: 3604:: 3574:. 3554:: 3546:: 3536:: 3506:. 3486:: 3478:: 3400:. 3380:: 3374:8 3357:. 3342:. 3315:. 3288:. 3268:: 3260:: 3250:: 3223:. 3203:: 3185:: 3162:) 3148:. 3128:: 3098:) 3084:. 3064:: 3056:: 3046:: 3022:. 2995:. 2983:: 2973:: 2955:: 2925:. 2905:: 2897:: 2887:: 2852:. 2832:: 2824:: 2814:: 2782:. 2776:: 2768:: 2762:2 2720:: 2714:2 2671:: 2663:: 2574:. 2549:. 2529:: 2521:: 2494:. 2482:: 2474:: 2447:. 2435:: 2427:: 2364:. 2346:: 2338:: 2305:. 2269:. 2257:: 2249:: 2243:1 2185:: 2177:: 2106:. 2102:: 2094:: 2059:. 2047:: 2039:: 2006:. 1972:: 1964:: 1958:5 1913:: 1905:: 1862:. 1803:. 1791:: 1783:: 1756:. 1734:: 1726:: 1720:2 1174:0 1172:c 959:( 846:( 831:e 824:t 817:v

Index

Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy
Static electricity
Triboelectricity
Magnetostatics
Ampère law

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.