Knowledge

♯P-completeness of 01-permanent

Source 📝

4822: 114:. In this kind of reduction, a single hard instance of some other problem in #P is reduced to computing the permanent of a sequence of multiple graphs, each of which could potentially depend on the results of previous permanent computations. A later simplification by 3389:
The clause component is a weighted, directed graph with 7 nodes with edges weighted and nodes arranged to yield the properties specified above, and is given in Appendix A of Ben-Dor and Halevi (1993). Note that the internal edges here have weights drawn from the set
130:
One reason for interest in the computational complexity of the permanent is that it provides an example of a problem where constructing a single solution can be done efficiently but where counting all solutions is hard. As Papadimitriou writes in his book
426:, it is therefore sufficient to show that the number of satisfying assignments for a 3-CNF formula can be expressed succinctly as a function of the permanent of a matrix that contains only the values 0 and 1. This is usually accomplished in two steps: 5761: 4613: 3587:
The above section has shown that Permanent is #P-hard. Through a series of reductions, any permanent can be reduced to the permanent of a matrix with entries only 0 or 1. This will prove that 01-Permanent is #P-hard as well.
1002:
The graph construction makes use of a component that is treated as a "black box." To keep the explanation simple, the properties of this component are given without actually defining the structure of the component.
5889: 5171: 4686: 3538: 4410: 4329: 3899: 3999: 5088: 39: 6415:
in such a case is for each node in the subgraph to take its self-loop. As each edge has a weight of one, the weight of the resulting cycle cover is equal to that of the original cycle cover.
3577: 527:
Through a series of reductions, reduce Permanent to 01-Permanent, the problem of computing the permanent of a matrix all entries 0 or 1. This establishes that 01-permanent is #P-hard as well.
4898:
This fact is used to convert a non-negative matrix into an equivalent matrix whose entries are all powers of 2. The reduction can be expressed in terms of graphs equivalent to the matrices.
4812: 5768:
The objective here is to reduce a matrix whose entries are powers of 2 into an equivalent matrix containing only zeros and ones (i.e. a directed graph where each edge has a weight of 1).
4087: 3815: 928: 179:. Since any 0–1 matrix is the biadjacency matrix of some bipartite graph, Valiant's theorem implies that the problem of counting the number of perfect matchings in a bipartite graph is 6769:
Foundations of Software Technology and Theoretical Computer Science: Proceedings of the 14th Conference, Madras, India, December 15–17, 1994. P. S. Thiagarajan (editor), pp. 256–275,
3944: 824: 4893: 4734: 3441: 877: 6127: 4498: 4259: 4187: 3171:, within each clause component is independent of the selection of sets of internal edges in other clause components, so one can multiply everything to get the weight of 281: 5920: 3737: 3042: 2985: 2911: 2778: 2010: 1943: 1878: 1449: 1372: 1192: 1058: 1031: 762: 729: 672: 621: 502: 475: 4768: 4035: 957: 6871: 6461: 6252: 6068: 5834: 5704: 5675: 5490: 5422: 5290: 5245: 4135: 3688: 3643: 2884: 1908: 6962: 5750: 4465: 3471: 3270: 2656: 1325: 1272: 699: 319: 6615: 6548: 6413: 6386: 6227: 6154: 6007: 3364: 3337: 3223: 3196: 3069: 3012: 2958: 2731: 2609: 2582: 2562: 2515: 2395: 2368: 2218: 2178: 2151: 2124: 2097: 2050: 1963: 1840: 1813: 1786: 1759: 1732: 1705: 1678: 1651: 1631: 1604: 1577: 1557: 1530: 1503: 1476: 1422: 1402: 1299: 1246: 1219: 1165: 1138: 1098: 977: 782: 645: 554: 522: 448: 4524: 3757: 4439: 6200: 6177: 5217: 6588: 6568: 6521: 6501: 6481: 6436: 6359: 6339: 6319: 6295: 6275: 6088: 6030: 5980: 5960: 5940: 5809: 5789: 5724: 5650: 5630: 5610: 5590: 5570: 5550: 5530: 5510: 5465: 5445: 5397: 5377: 5357: 5333: 5313: 5265: 5194: 4999: 4979: 4959: 4939: 4919: 4227: 4207: 4155: 4110: 3835: 3711: 3663: 3618: 3384: 3310: 3290: 3243: 3169: 3149: 3129: 3109: 3089: 2931: 2858: 2838: 2818: 2798: 2751: 2696: 2676: 2629: 2535: 2495: 2475: 2455: 2435: 2415: 2341: 2318: 2298: 2278: 2258: 2238: 2198: 2070: 2030: 1983: 1345: 1118: 1078: 997: 594: 574: 379: 359: 339: 6617:
possible cycle covers and since each path has a weight of 1, the sum of the weights of all these cycle covers equals the weight of the original cycle cover.
2584:
as well as each including edges going into and coming out of each clause component. Thus, these covers assign either true or false (but never both) to each
3091:, depends only on the internal edges involved. We add here the premise that the construction of the clause components is such that the sum over possible 5379:, then to cover all the nodes in the new sub graph, one must use the self-loops. Since all self-loops have a weight of 1, the weight of cycle-covers in 4532: 407:, such that the number of satisfying assignments of the Boolean formula is equal to the number of accepting paths of the NP machine. Any formula in SAT 1221:
is that it has three input edges and three output edges. The input edges come either from variable nodes or from previous clause components (e.g.,
5093: 17: 3476: 6712:
In: STACS, '99: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 4–6, 1999 Proceedings. pp. 90–99.
6933: 4335: 6707: 6680: 5839: 4269: 194:
The computational complexity of the permanent also has some significance in other aspects of complexity theory: it is not known whether
4624: 3840: 6503:
in the subgraph. At each step down the subgraph there are two choices one can make to form such a path. One must make this choice
152: 85:, even if the matrix is restricted to have entries that are all 0 or 1. In this restricted case, computing the permanent is even 5760: 4821: 1761:'s variable node. Of course, this completes the cycle. To create the F-cycle, one would follow the same procedure, but connect 6946: 6806: 6778: 6721: 6694: 5007: 3951: 6978: 2220:, any one that does induces exactly one assignment, and the same assignment induced depends only on the external edges of 2343:
that do not induce assignments are the ones with cycles that "jump" inside the clause components. That is, if for every
6764: 119: 3543: 6911: 6664: 3131:
is proper relative to the clause component, is 12. Otherwise the weight of the internal edges is 0. Since there are
6792: 4773: 3446:
Finally, since the sum of weights of all the sets of cycle covers inducing any particular satisfying assignment is
2753:
induces a satisfying assignment just in case its external edges satisfy certain properties. For any cycle cover of
4048: 7076: 3766: 882: 403:
problem (by definition), as any NP machine can be encoded into a Boolean formula by a process similar to that in
66: 4618:
Note how the elements are non-negative because of the modular arithmetic. It is simple to compute the permanent
396: 143:
The PERMANENT problem for 0–1 matrices, which is equivalent to the problem of counting perfect matchings in a
504:(or equivalently, the permanent of its adjacency matrix) is equal to the number of satisfying assignments of 787: 7021:
W. Hartmann. On the complexity of immanants. Linear and Multilinear Algebra 18 (1985), no. 2, pp. 127–140.
5247:
that has the same permanent as the original, one must show the correspondence between the cycle covers of
4839: 1910:, so the construction can be done in polytime (assuming that the clause components do not cause trouble). 198:
equals P (informally, whether every polynomially-solvable problem can be solved by a polylogarithmic-time
4694: 3906: 160: 2260:
is considered an incomplete cycle cover at this stage, because one talks only about its external edges,
1850:. Every external edge is part of a T-cycle or an F-cycle (but not both—that would force inconsistency). 415:
form preserving the number of satisfying assignments, and so #SAT and #3SAT are equivalent and #3SAT is
6901: 2611:
and ensure that each clause is satisfied. Further, the sets of cycle covers corresponding to all such
1707:
to the appropriate input edge of the next clause component, and so on. After the last clause in which
399:, is the problem of counting the number of satisfying assignments of a given Boolean formula. It is a 7009: 6965: 108: 5176:
This can be seen graphically in the Figure 1. The subgraph that replaces the existing edge contains
3393: 2698:. The reasons for this depend on the construction of the clause components, and are outlined below. 829: 1633:, and so on. Thence, draw an edge to the next clause component corresponding to the next clause of 6093: 7086: 5612:
different paths and sum of all these paths equal to the weight of the edge in the original graph
412: 382: 206:
has suggested an approach to resolving this question that relies on writing the permanent as the
58: 4470: 4232: 4160: 244: 7081: 6649: 3716: 3020: 2963: 2889: 2756: 1988: 1921: 1856: 1427: 1350: 1170: 1036: 1009: 738: 707: 650: 599: 480: 453: 107:
Valiant's definition of completeness, and his proof of completeness of 01-permanent, both used
4739: 4006: 1734:
appears, we connect the appropriate output edge of the corresponding clause component back to
933: 213:
Hartmann proved a generalization of Valiant's theorem concerning the complexity of computing
6841: 6035: 4830: 2863: 1883: 78: 5729: 4444: 3449: 3248: 2634: 1304: 1251: 677: 294: 6889: 6593: 6526: 6391: 6364: 6205: 6132: 5985: 5811:-node directed graph where all the weights on edges are powers of two. Construct a graph, 3342: 3315: 3201: 3174: 3047: 2990: 2936: 2709: 2587: 2567: 2540: 2500: 2373: 2346: 2203: 2156: 2129: 2102: 2075: 2035: 1948: 1818: 1791: 1764: 1737: 1710: 1683: 1656: 1636: 1609: 1582: 1562: 1535: 1508: 1481: 1454: 1407: 1380: 1277: 1224: 1197: 1143: 1123: 1083: 962: 767: 630: 539: 507: 433: 214: 188: 62: 6816: 5894: 4503: 3742: 8: 4418: 93:
of counting the number of permutation matrices one can get by changing ones into zeroes.
6441: 6232: 6182: 6159: 5814: 5684: 5655: 5470: 5402: 5270: 5225: 5199: 4115: 3668: 3623: 1274:) and the output edges go either to variable nodes or to later clause components (e.g., 6573: 6553: 6506: 6486: 6466: 6421: 6344: 6324: 6304: 6280: 6260: 6073: 6015: 5965: 5945: 5925: 5794: 5774: 5709: 5635: 5615: 5595: 5575: 5555: 5535: 5515: 5495: 5450: 5430: 5382: 5362: 5342: 5318: 5298: 5250: 5179: 4984: 4964: 4944: 4924: 4904: 4212: 4192: 4140: 4095: 3820: 3696: 3648: 3603: 3597: 3369: 3295: 3275: 3228: 3154: 3134: 3114: 3094: 3074: 2916: 2843: 2823: 2803: 2783: 2736: 2681: 2661: 2614: 2520: 2480: 2460: 2440: 2420: 2400: 2326: 2303: 2283: 2263: 2243: 2223: 2183: 2055: 2015: 1968: 1330: 1103: 1063: 982: 579: 559: 364: 344: 324: 199: 172: 54: 141:
are those for which the corresponding search problem can be solved in polynomial time.
6942: 6907: 6802: 6774: 6747: 6717: 6690: 6660: 1327:). The first input and output edges correspond with the first variable of the clause 404: 184: 122:, that translates the other problem into a single instance of the permanent problem. 7036: 6885: 6812: 6743: 423: 416: 400: 392: 284: 226: 180: 176: 175:
and the square of the number of perfect matchings is equal to the permanent of its
156: 111: 101: 86: 82: 7058: 4608:{\displaystyle A'=A{\bmod {1}}7={\begin{bmatrix}2&15\\15&1\end{bmatrix}}.} 6938: 6798: 6770: 6713: 4941:-node weighted directed graph with non-negative weights, where largest weight is 3111:-completions of the weight of the internal edges in each clause component, where 1846:, all of which have weight 1. Inside the clause components, the edges are termed 195: 155:(shown to be difficult by Valiant's results) is closely connected with finding a 144: 70: 7054: 7006: 7002: 6982: 6958: 6897: 6656: 6627: 381:
is equal to the sum of the weights of all cycle-covers of the graph; this is a
288: 203: 74: 2537:
contain either the complete T-cycle or the complete F-cycle of every variable
2300:-completions to show that one has a set of cycle covers corresponding to each 1842:'s variable node. All of these edges outside the clause components are termed 7070: 6829: 6760: 6686: 5001:
is converted into an equivalent edge with weights in powers of 2 as follows:
7038:
Proceedings of the 2nd Israel Symposium on the Theory and Computing Systems
6929: 6833: 171:
vertices each, the number of perfect matchings equals the permanent of its
1194:
that functions as a sort of "black box." All that needs to be noted about
3473:, and the sum of weights of all other sets of cycle covers is 0, one has 207: 35: 6893: 6734:
Leslie G. Valiant (1979). "The Complexity of Computing the Permanent".
6676: 5166:{\displaystyle 0\leq x_{1}\leq x_{2}\leq \cdots \leq x_{r}\leq \log(w)} 3533:{\displaystyle \operatorname {Perm} (G_{\phi })=12^{m}\cdot (\#\phi )} 1347:, and so on. Thus far, all of the nodes that will appear in the graph 388: 4405:{\displaystyle \operatorname {Perm} (A)=2\cdot 1+(-2)\cdot (-2)=6.} 6797:. Algorithms and Computation in Mathematics. Vol. 7. Berlin: 6679:, James G. Williams, Rosalind Kent and Carolyn M. Hall (editors). 5884:{\displaystyle \operatorname {Perm} (G)=\operatorname {Perm} (G')} 4324:{\displaystyle A={\begin{bmatrix}2&-2\\-2&1\end{bmatrix}}} 4263:
An example of the transformation and why it works is given below.
1424:, one makes a true cycle (T-cycle) and a false cycle (F-cycle) in 159:
in a bipartite graph, which is solvable in polynomial time by the
118:
showed that it is possible to use a weaker notion of reduction, a
4681:{\displaystyle \operatorname {Perm} (A')=2\cdot 1+15\cdot 15=227} 2153:
that the assignment makes true, and vice versa for all variables
674:
where the sum of the weights of cycle covers in this set will be
97: 90: 3151:
clause components, and the selection of sets of internal edges,
3044:
was such that each external edge had weight 1, so the weight of
2180:
that the assignment makes false. Although any given cycle cover
1945:
is that its cycle covers correspond to variable assignments for
225:
Below, the proof that computing the permanent of a 01-matrix is
3894:{\displaystyle |\operatorname {Perm} (A)|\leq n!\cdot \mu ^{n}} 2706:
To understand the relevant properties of the clause components
826:. (Valiant's original proof constructs a graph with entries in 6906:(2nd ed.). MIT Press and McGraw-Hill. pp. 696–697. 4708: 4551: 3982: 3926: 1451:. To create the T-cycle, one starts at the variable node for 6630:
proved that the permanent is #P-hard using quantum methods.
7031:
Ben-Dor, Amir; Halevi, Shai (1993). "Zero-one permanent is
1680:
appears, connecting it from the appropriate output edge of
408: 6884: 3739:
integer matrix where no entry has a magnitude larger than
6794:
Completeness and reduction in algebraic complexity theory
2733:, one needs the notion of an M-completion. A cycle cover 139:
The most impressive and interesting #P-complete problems
7007:
Lower Bounds in a Parallel Model without Bit Operations.
6438:
is a part of the cycle cover then in any cycle cover of
596:
variables, one can construct a weighted, directed graph
217:
that generalize both the determinant and the permanent.
6766:
My Favorite Ten Complexity Theorems of the Past Decade.
5083:{\displaystyle w=2^{x_{1}}+2^{x_{2}}+\cdots +2^{x_{r}}} 2417:, and every output edge of the clause components is in 4571: 4284: 3994:{\displaystyle P=\operatorname {Perm} (A'){\bmod {Q}}} 1788:'s variable node to those clause components in which ~ 1377:
Next, one would consider the edges. For each variable
477:, such that the sum of the weights of cycle covers of 6844: 6596: 6576: 6556: 6529: 6509: 6489: 6469: 6444: 6424: 6394: 6367: 6347: 6327: 6307: 6283: 6263: 6235: 6208: 6185: 6162: 6135: 6096: 6076: 6038: 6018: 5988: 5968: 5948: 5928: 5897: 5842: 5817: 5797: 5777: 5732: 5712: 5687: 5658: 5638: 5618: 5598: 5578: 5558: 5538: 5518: 5498: 5473: 5453: 5433: 5405: 5385: 5365: 5345: 5321: 5301: 5273: 5253: 5228: 5202: 5182: 5096: 5010: 4987: 4967: 4947: 4927: 4907: 4842: 4776: 4742: 4697: 4627: 4535: 4506: 4473: 4447: 4421: 4338: 4272: 4235: 4215: 4195: 4163: 4143: 4118: 4098: 4051: 4009: 3954: 3909: 3843: 3823: 3769: 3745: 3719: 3699: 3671: 3651: 3626: 3606: 3591: 3546: 3479: 3452: 3396: 3372: 3345: 3339:, so the product of the weights of internal edges in 3318: 3298: 3278: 3251: 3231: 3204: 3177: 3157: 3137: 3117: 3097: 3077: 3050: 3023: 2993: 2966: 2939: 2919: 2892: 2866: 2846: 2826: 2806: 2786: 2759: 2739: 2712: 2684: 2664: 2637: 2617: 2590: 2570: 2543: 2523: 2503: 2483: 2477:
is proper with respect to each clause component, and
2463: 2443: 2423: 2403: 2376: 2349: 2329: 2306: 2286: 2266: 2246: 2226: 2206: 2186: 2159: 2132: 2105: 2078: 2058: 2038: 2032:
induces an assignment of values for the variables in
2018: 1991: 1971: 1951: 1924: 1886: 1859: 1821: 1794: 1767: 1740: 1713: 1686: 1659: 1639: 1612: 1585: 1565: 1538: 1511: 1484: 1457: 1430: 1410: 1383: 1353: 1333: 1307: 1280: 1254: 1227: 1200: 1173: 1146: 1126: 1106: 1086: 1066: 1039: 1012: 985: 965: 936: 885: 832: 790: 770: 741: 710: 680: 653: 633: 602: 582: 562: 542: 510: 483: 456: 436: 367: 347: 327: 297: 247: 7059:
A Linear-Optical Proof that the Permanent is #P-Hard
6873:
Algorithm for Maximum Matchings in Bipartite Graphs.
6361:, one cannot create a path through the new subgraph 5592:. From the construction, one can see that there are 2820:
be a set of external edges. A set of internal edges
959:is "twice the number of occurrences of literals in 6865: 6609: 6582: 6562: 6542: 6515: 6495: 6475: 6455: 6430: 6407: 6380: 6353: 6333: 6313: 6289: 6269: 6246: 6221: 6194: 6171: 6148: 6121: 6082: 6062: 6024: 6001: 5974: 5954: 5934: 5914: 5883: 5828: 5803: 5783: 5744: 5718: 5698: 5669: 5644: 5624: 5604: 5584: 5564: 5544: 5524: 5504: 5484: 5459: 5439: 5416: 5391: 5371: 5351: 5327: 5307: 5284: 5259: 5239: 5211: 5188: 5165: 5082: 4993: 4973: 4953: 4933: 4913: 4887: 4806: 4762: 4728: 4680: 4607: 4518: 4492: 4459: 4433: 4404: 4323: 4253: 4221: 4201: 4181: 4149: 4129: 4104: 4081: 4029: 3993: 3938: 3893: 3829: 3809: 3751: 3731: 3705: 3682: 3657: 3637: 3612: 3571: 3532: 3465: 3435: 3378: 3358: 3331: 3304: 3284: 3264: 3237: 3217: 3190: 3163: 3143: 3123: 3103: 3083: 3063: 3036: 3006: 2979: 2952: 2925: 2905: 2878: 2852: 2832: 2812: 2792: 2772: 2745: 2725: 2690: 2670: 2650: 2623: 2603: 2576: 2556: 2529: 2509: 2489: 2469: 2449: 2429: 2409: 2389: 2362: 2335: 2312: 2292: 2272: 2252: 2232: 2212: 2192: 2172: 2145: 2118: 2091: 2064: 2044: 2024: 2004: 1977: 1957: 1937: 1913: 1902: 1872: 1834: 1807: 1780: 1753: 1726: 1699: 1672: 1645: 1625: 1598: 1571: 1551: 1524: 1497: 1470: 1443: 1416: 1396: 1366: 1339: 1319: 1293: 1266: 1240: 1213: 1186: 1159: 1132: 1112: 1092: 1072: 1052: 1025: 991: 971: 951: 922: 871: 818: 776: 756: 723: 693: 666: 639: 615: 588: 568: 548: 516: 496: 469: 442: 373: 353: 333: 313: 275: 27:Mathematical proof about the permanent of matrices 7012:, Volume 28 (1999), Issue 4, pp. 1460–1509. 6900:(2001) . "26.5: The relabel-to-front algorithm". 6733: 5764:Figure 2: Construction of a 01-matrix from 2Power 5632:. So the weight of corresponding cycle-covers in 4189:, since the number of bits required to represent 647:will have a corresponding set of cycle covers in 531: 7068: 5467:, then in all the corresponding cycle-covers in 5222:To prove that this produces an equivalent graph 3572:{\displaystyle \operatorname {Perm} (G_{\phi })} 321:representing the weight of the edge from vertex 6968:, Volume 20 (1991), Issue 5, pp. 865–877. 6963:PP is as Hard as the Polynomial-Time Hierarchy. 6012:This reduction is done locally at each edge in 2780:, consider only its external edges, the subset 383:graph-theoretic interpretation of the permanent 6229:has a weight of 1. Thus, the resulting graph 5962:where the maximal weight of any edge in graph 1505:that corresponds to the first clause in which 450:, construct a directed integer-weighted graph 7030: 4807:{\displaystyle \operatorname {Perm} (A)=P=6.} 3665:can be computed easily from the permanent of 2960:and the set of all resulting cycle covers of 2099:'s T-cycle and none of the external edges in 524:. This establishes that Permanent is #P-hard. 230: 229:is described. It mainly follows the proof by 220: 115: 4825:Figure 1: Construction of 2Power from NonNeg 4082:{\displaystyle \operatorname {Perm} (A)=P-Q} 3430: 3397: 1606:, this edge will be the first input edge of 866: 833: 764:is the number of satisfying assignments for 187:this implies that it is hard for the entire 6388:. The only way to form a cycle cover over 4816: 3810:{\displaystyle Q=2\cdot n!\cdot \mu ^{n}+1} 923:{\displaystyle 4^{t(\phi )}\cdot (\#\phi )} 3540:. The following section reduces computing 1033:, one first constructs a variable node in 81:of computing the permanent of a matrix is 6790: 6716:, New York, LLC Pub. Date: October 2007. 5836:, where the weight of each edge is 1 and 3930: 3924: 3292:does not induce a satisfying assignment, 2497:will produce a satisfying assignment for 1478:and draw an edge to the clause component 167:vertices partitioned into two parts with 6254:contains only edges with a weight of 1. 6202:edges as seen in Figure 2. Each edge in 2437:when the corresponding input edge is in 6925: 6923: 6706:Jin-Yi Cai, A. Pavan and D. Sivakumar, 3620:into an equivalent non-negative matrix 2701: 1559:is the first variable in the clause of 422:In order to prove that 01-Permanent is 96:Valiant's 1979 paper also introduced 14: 7069: 6935:The Design and Analysis of Algorithms. 3071:, the cycle covers resulting from any 2280:. In the section below, one considers 2072:contains all of the external edges in 784:, the permanent of this graph will be 6032:that has a weight larger than 1. Let 819:{\displaystyle 12^{m}\cdot (\#\phi )} 30:The correct title of this article is 6920: 6875:SIAM J. Comput. 2(4), 225–231 (1973) 6626:In 2011, quantum computer scientist 4888:{\displaystyle 13=2^{3}+2^{2}+2^{0}} 4831:decomposed into a sum of powers of 2 3245:induces a satisfying assignment, is 2320:that have the necessary properties. 1140:, one constructs a clause component 6878: 6645: 6643: 6621: 5755: 4729:{\displaystyle P=227{\bmod {1}}7=6} 3939:{\displaystyle A'=A\,{\bmod {\,}}Q} 3312:is not proper with respect to some 24: 6979:"1998 Gödel Prize. Seinosuke Toda" 5759: 4820: 3592:Reduction to a non-negative matrix 3521: 3443:; not all edges have 0–1 weights. 2200:need not induce an assignment for 911: 807: 745: 120:polynomial-time counting reduction 25: 7098: 3579:to the permanent of a 01 matrix. 2913:. Further, denote the set of all 65:, considered a seminal result in 6640: 6129:. It is replaced by a subgraph 2517:. This is because proper covers 1100:. Additionally, for each of the 89:, because it corresponds to the 7048: 7024: 7015: 6996: 6971: 6952: 5891:. The size of this new graph, 1914:Notable properties of the graph 731:will have weights summing to 0. 627:each satisfying assignment for 125: 67:computational complexity theory 47:#P-completeness of 01-permanent 32:#P-completeness of 01-permanent 6823: 6784: 6754: 6727: 6700: 6682:Encyclopedia of microcomputers 6670: 6057: 6045: 5909: 5898: 5878: 5867: 5855: 5849: 5160: 5154: 4789: 4783: 4645: 4634: 4393: 4384: 4378: 4369: 4351: 4345: 4248: 4242: 4176: 4170: 4064: 4058: 3978: 3967: 3865: 3861: 3855: 3845: 3566: 3553: 3527: 3518: 3499: 3486: 3436:{\displaystyle \{-1,0,1,2,3\}} 1896: 1888: 946: 940: 917: 908: 900: 894: 872:{\displaystyle \{-1,0,1,2,3\}} 813: 804: 751: 742: 532:Constructing the integer graph 397:Boolean satisfiability problem 270: 254: 163:. For a bipartite graph with 2 13: 1: 7035:-complete, a simpler proof". 6709:On the Hardness of Permanent. 6633: 2126:'s F-cycle for all variables 1815:appears, and finally back to 18:Permanent is sharp-P-complete 6748:10.1016/0304-3975(79)90044-6 6736:Theoretical Computer Science 6122:{\displaystyle w=2^{r}>1} 5492:, there must be a path from 4829:Note that any number can be 3600:, convert an integer matrix 3582: 3017:Recall that construction of 147:is the classic example here. 7: 236: 231:Ben-Dor & Halevi (1993) 116:Ben-Dor & Halevi (1993) 10: 7103: 6903:Introduction to Algorithms 6463:there must be a path from 6257:Consider some cycle-cover 5295:Consider some cycle-cover 4493:{\displaystyle \mu ^{n}=4} 4254:{\displaystyle \log(\mu )} 4182:{\displaystyle \log(\mu )} 704:all other cycle covers in 276:{\displaystyle A=(a_{ij})} 221:Ben-Dor and Halevi's proof 183:, and in conjunction with 34:. The substitution of the 29: 7010:SIAM Journal on Computing 6966:SIAM Journal on Computing 6791:Bürgisser, Peter (2000). 6654:Computational Complexity. 6650:Christos H. Papadimitriou 3732:{\displaystyle n\times n} 3645:so that the permanent of 3198:. So, the weight of each 3037:{\displaystyle G_{\phi }} 2980:{\displaystyle G_{\phi }} 2906:{\displaystyle G_{\phi }} 2860:-completion just in case 2773:{\displaystyle G_{\phi }} 2005:{\displaystyle G_{\phi }} 1938:{\displaystyle G_{\phi }} 1873:{\displaystyle G_{\phi }} 1444:{\displaystyle G_{\phi }} 1367:{\displaystyle G_{\phi }} 1187:{\displaystyle G_{\phi }} 1053:{\displaystyle G_{\phi }} 1026:{\displaystyle G_{\phi }} 757:{\displaystyle (\#\phi )} 724:{\displaystyle G_{\phi }} 667:{\displaystyle G_{\phi }} 616:{\displaystyle G_{\phi }} 497:{\displaystyle G_{\phi }} 470:{\displaystyle G_{\phi }} 361:. Then, the permanent of 6742:(2). Elsevier: 189–201. 6418:However, if the edge in 4817:Reduction to powers of 2 4763:{\displaystyle P<Q/2} 4030:{\displaystyle P<Q/2} 3837:is due to the fact that 952:{\displaystyle t(\phi )} 133:Computational Complexity 6866:{\displaystyle n^{5/2}} 6063:{\displaystyle e=(u,v)} 2879:{\displaystyle M\cup L} 1903:{\displaystyle |\phi |} 161:Hopcroft–Karp algorithm 153:computing the permanent 7077:Computational problems 6867: 6611: 6584: 6564: 6544: 6517: 6497: 6477: 6457: 6432: 6409: 6382: 6355: 6335: 6315: 6291: 6271: 6248: 6223: 6196: 6173: 6150: 6123: 6084: 6064: 6026: 6003: 5976: 5956: 5936: 5916: 5885: 5830: 5805: 5785: 5765: 5746: 5745:{\displaystyle \log W} 5720: 5700: 5681:Note that the size of 5671: 5646: 5626: 5606: 5586: 5572:are the nodes of edge 5566: 5546: 5526: 5506: 5486: 5461: 5441: 5418: 5393: 5373: 5353: 5329: 5309: 5286: 5261: 5241: 5213: 5190: 5167: 5084: 4995: 4975: 4955: 4935: 4915: 4889: 4826: 4808: 4764: 4730: 4682: 4609: 4520: 4494: 4461: 4460:{\displaystyle \mu =2} 4435: 4406: 4325: 4255: 4223: 4203: 4183: 4151: 4131: 4106: 4092:The transformation of 4083: 4031: 3995: 3940: 3895: 3831: 3811: 3753: 3733: 3707: 3684: 3659: 3639: 3614: 3573: 3534: 3467: 3466:{\displaystyle 12^{m}} 3437: 3380: 3360: 3333: 3306: 3286: 3266: 3265:{\displaystyle 12^{m}} 3239: 3219: 3192: 3165: 3145: 3125: 3105: 3085: 3065: 3038: 3008: 2981: 2954: 2927: 2907: 2880: 2854: 2834: 2814: 2794: 2774: 2747: 2727: 2692: 2672: 2652: 2651:{\displaystyle 12^{m}} 2625: 2605: 2578: 2558: 2531: 2511: 2491: 2471: 2451: 2431: 2411: 2391: 2364: 2337: 2314: 2294: 2274: 2254: 2234: 2214: 2194: 2174: 2147: 2120: 2093: 2066: 2046: 2026: 2006: 1979: 1959: 1939: 1904: 1874: 1836: 1809: 1782: 1755: 1728: 1701: 1674: 1647: 1627: 1600: 1573: 1553: 1526: 1499: 1472: 1445: 1418: 1398: 1368: 1341: 1321: 1320:{\displaystyle o>j} 1295: 1268: 1267:{\displaystyle i<j} 1242: 1215: 1188: 1161: 1134: 1114: 1094: 1074: 1054: 1027: 993: 973: 953: 924: 873: 820: 778: 758: 725: 695: 694:{\displaystyle 12^{m}} 668: 641: 617: 590: 570: 550: 518: 498: 471: 444: 430:Given a 3-CNF formula 375: 355: 335: 315: 314:{\displaystyle a_{ij}} 277: 149: 40:technical restrictions 6890:Leiserson, Charles E. 6868: 6612: 6610:{\displaystyle 2^{r}} 6585: 6565: 6545: 6543:{\displaystyle 2^{r}} 6518: 6498: 6478: 6458: 6433: 6410: 6408:{\displaystyle J_{e}} 6383: 6381:{\displaystyle J_{e}} 6356: 6336: 6316: 6292: 6272: 6249: 6224: 6222:{\displaystyle J_{e}} 6197: 6174: 6151: 6149:{\displaystyle J_{e}} 6124: 6085: 6065: 6027: 6004: 6002:{\displaystyle 2^{p}} 5977: 5957: 5937: 5917: 5886: 5831: 5806: 5786: 5763: 5747: 5721: 5701: 5672: 5647: 5627: 5607: 5587: 5567: 5547: 5527: 5507: 5487: 5462: 5442: 5419: 5394: 5374: 5354: 5330: 5310: 5287: 5262: 5242: 5214: 5191: 5168: 5085: 4996: 4976: 4956: 4936: 4916: 4890: 4824: 4809: 4765: 4731: 4683: 4610: 4521: 4495: 4462: 4436: 4407: 4326: 4256: 4224: 4204: 4184: 4152: 4132: 4107: 4084: 4032: 3996: 3941: 3896: 3832: 3812: 3754: 3734: 3708: 3685: 3660: 3640: 3615: 3574: 3535: 3468: 3438: 3381: 3361: 3359:{\displaystyle Z^{M}} 3334: 3332:{\displaystyle C_{j}} 3307: 3287: 3267: 3240: 3220: 3218:{\displaystyle Z^{M}} 3193: 3191:{\displaystyle Z^{M}} 3166: 3146: 3126: 3106: 3086: 3066: 3064:{\displaystyle Z^{M}} 3039: 3009: 3007:{\displaystyle Z^{M}} 2982: 2955: 2953:{\displaystyle L^{M}} 2928: 2908: 2881: 2855: 2835: 2815: 2795: 2775: 2748: 2728: 2726:{\displaystyle C_{j}} 2693: 2673: 2653: 2626: 2606: 2604:{\displaystyle x_{i}} 2579: 2577:{\displaystyle \phi } 2559: 2557:{\displaystyle x_{i}} 2532: 2512: 2510:{\displaystyle \phi } 2492: 2472: 2452: 2432: 2412: 2397:'s input edges is in 2392: 2390:{\displaystyle C_{j}} 2365: 2363:{\displaystyle C_{j}} 2338: 2315: 2295: 2275: 2255: 2235: 2215: 2213:{\displaystyle \phi } 2195: 2175: 2173:{\displaystyle x_{i}} 2148: 2146:{\displaystyle x_{i}} 2121: 2119:{\displaystyle x_{i}} 2094: 2092:{\displaystyle x_{i}} 2067: 2047: 2045:{\displaystyle \phi } 2027: 2007: 1980: 1960: 1958:{\displaystyle \phi } 1940: 1918:A useful property of 1905: 1880:is of size linear in 1875: 1837: 1835:{\displaystyle x_{i}} 1810: 1808:{\displaystyle x_{i}} 1783: 1781:{\displaystyle x_{i}} 1756: 1754:{\displaystyle x_{i}} 1729: 1727:{\displaystyle x_{i}} 1702: 1700:{\displaystyle C_{j}} 1675: 1673:{\displaystyle x_{i}} 1648: 1646:{\displaystyle \phi } 1628: 1626:{\displaystyle C_{j}} 1601: 1599:{\displaystyle C_{j}} 1574: 1572:{\displaystyle \phi } 1554: 1552:{\displaystyle x_{i}} 1527: 1525:{\displaystyle x_{i}} 1500: 1498:{\displaystyle C_{j}} 1473: 1471:{\displaystyle x_{i}} 1446: 1419: 1417:{\displaystyle \phi } 1399: 1397:{\displaystyle x_{i}} 1374:have been specified. 1369: 1342: 1322: 1296: 1294:{\displaystyle C_{i}} 1269: 1243: 1241:{\displaystyle C_{i}} 1216: 1214:{\displaystyle C_{j}} 1189: 1162: 1160:{\displaystyle C_{j}} 1135: 1133:{\displaystyle \phi } 1115: 1095: 1093:{\displaystyle \phi } 1075: 1055: 1028: 994: 974: 972:{\displaystyle \phi } 954: 925: 874: 821: 779: 777:{\displaystyle \phi } 759: 726: 696: 669: 642: 640:{\displaystyle \phi } 618: 591: 571: 551: 549:{\displaystyle \phi } 536:Given a 3CNF-formula 519: 517:{\displaystyle \phi } 499: 472: 445: 443:{\displaystyle \phi } 376: 356: 336: 316: 283:can be viewed as the 278: 215:immanants of matrices 137: 79:computational problem 49:, sometimes known as 6842: 6594: 6574: 6554: 6550:possible paths from 6527: 6523:times, resulting in 6507: 6487: 6467: 6442: 6422: 6392: 6365: 6345: 6325: 6305: 6301:If an original edge 6281: 6261: 6233: 6206: 6183: 6160: 6133: 6094: 6074: 6036: 6016: 5986: 5966: 5946: 5926: 5915:{\displaystyle (G')} 5895: 5840: 5815: 5795: 5775: 5730: 5710: 5685: 5656: 5636: 5616: 5596: 5576: 5556: 5536: 5516: 5496: 5471: 5451: 5431: 5403: 5383: 5363: 5343: 5319: 5299: 5271: 5251: 5226: 5200: 5180: 5094: 5008: 4985: 4965: 4945: 4925: 4905: 4840: 4774: 4740: 4695: 4625: 4533: 4519:{\displaystyle Q=17} 4504: 4471: 4445: 4419: 4336: 4270: 4233: 4213: 4193: 4161: 4141: 4116: 4096: 4049: 4007: 3952: 3907: 3841: 3821: 3767: 3752:{\displaystyle \mu } 3743: 3717: 3697: 3669: 3649: 3624: 3604: 3544: 3477: 3450: 3394: 3370: 3343: 3316: 3296: 3276: 3249: 3229: 3202: 3175: 3155: 3135: 3115: 3095: 3075: 3048: 3021: 2991: 2964: 2937: 2917: 2890: 2886:is a cycle cover of 2864: 2844: 2824: 2804: 2784: 2757: 2737: 2710: 2702:The clause component 2682: 2662: 2635: 2615: 2588: 2568: 2541: 2521: 2501: 2481: 2461: 2441: 2421: 2401: 2374: 2347: 2327: 2304: 2284: 2264: 2244: 2224: 2204: 2184: 2157: 2130: 2103: 2076: 2056: 2036: 2016: 1989: 1969: 1965:. For a cycle cover 1949: 1922: 1884: 1857: 1853:Note that the graph 1819: 1792: 1765: 1738: 1711: 1684: 1657: 1637: 1610: 1583: 1563: 1536: 1509: 1482: 1455: 1428: 1408: 1381: 1351: 1331: 1305: 1278: 1252: 1225: 1198: 1171: 1144: 1124: 1104: 1084: 1064: 1037: 1010: 983: 963: 934: 883: 830: 788: 768: 739: 708: 678: 651: 631: 600: 580: 560: 540: 508: 481: 454: 434: 365: 345: 325: 295: 245: 189:polynomial hierarchy 7044:. pp. 108–117. 6590:. Thus, there are 6156:that is made up of 5922:, is polynomial in 4434:{\displaystyle n=2} 2323:The sort of covers 2012:, one can say that 879:whose permanent is 6941:, New York, 1991. 6863: 6773:, New York, 2007. 6607: 6580: 6560: 6540: 6513: 6493: 6473: 6456:{\displaystyle G'} 6453: 6428: 6405: 6378: 6351: 6331: 6311: 6287: 6267: 6247:{\displaystyle G'} 6244: 6219: 6195:{\displaystyle 6r} 6192: 6172:{\displaystyle 2r} 6169: 6146: 6119: 6080: 6060: 6022: 5999: 5972: 5952: 5932: 5912: 5881: 5829:{\displaystyle G'} 5826: 5801: 5781: 5766: 5742: 5716: 5699:{\displaystyle G'} 5696: 5670:{\displaystyle G'} 5667: 5642: 5622: 5602: 5582: 5562: 5542: 5522: 5502: 5485:{\displaystyle G'} 5482: 5457: 5437: 5417:{\displaystyle R'} 5414: 5389: 5369: 5349: 5325: 5305: 5285:{\displaystyle G'} 5282: 5257: 5240:{\displaystyle G'} 5237: 5212:{\displaystyle 3r} 5209: 5186: 5163: 5080: 4991: 4971: 4951: 4931: 4911: 4885: 4827: 4804: 4760: 4726: 4678: 4605: 4596: 4516: 4490: 4457: 4431: 4402: 4321: 4315: 4251: 4219: 4199: 4179: 4147: 4130:{\displaystyle A'} 4127: 4102: 4079: 4027: 3991: 3936: 3891: 3827: 3807: 3749: 3729: 3703: 3683:{\displaystyle A'} 3680: 3655: 3638:{\displaystyle A'} 3635: 3610: 3598:modular arithmetic 3569: 3530: 3463: 3433: 3376: 3356: 3329: 3302: 3282: 3262: 3235: 3215: 3188: 3161: 3141: 3121: 3101: 3081: 3061: 3034: 3004: 2977: 2950: 2923: 2903: 2876: 2850: 2830: 2810: 2790: 2770: 2743: 2723: 2688: 2668: 2648: 2621: 2601: 2574: 2554: 2527: 2507: 2487: 2467: 2447: 2427: 2407: 2387: 2370:, at least one of 2360: 2333: 2310: 2290: 2270: 2250: 2230: 2210: 2190: 2170: 2143: 2116: 2089: 2062: 2042: 2022: 2002: 1975: 1955: 1935: 1900: 1870: 1832: 1805: 1778: 1751: 1724: 1697: 1670: 1643: 1623: 1596: 1569: 1549: 1522: 1495: 1468: 1441: 1414: 1394: 1364: 1337: 1317: 1291: 1264: 1238: 1211: 1184: 1157: 1130: 1110: 1090: 1070: 1050: 1023: 989: 969: 949: 920: 869: 816: 774: 754: 721: 691: 664: 637: 613: 586: 566: 546: 514: 494: 467: 440: 411:as a formula in 3- 371: 351: 331: 311: 273: 241:Any square matrix 200:parallel algorithm 173:biadjacency matrix 55:mathematical proof 6947:978-0-387-97687-7 6894:Rivest, Ronald L. 6886:Cormen, Thomas H. 6808:978-3-540-66752-0 6779:978-3-540-58715-6 6722:978-3-540-65691-3 6695:978-0-8247-2722-2 6583:{\displaystyle v} 6563:{\displaystyle u} 6516:{\displaystyle r} 6496:{\displaystyle v} 6476:{\displaystyle u} 6431:{\displaystyle G} 6354:{\displaystyle R} 6334:{\displaystyle G} 6314:{\displaystyle e} 6290:{\displaystyle G} 6270:{\displaystyle R} 6083:{\displaystyle G} 6025:{\displaystyle G} 5975:{\displaystyle G} 5955:{\displaystyle p} 5935:{\displaystyle n} 5804:{\displaystyle n} 5784:{\displaystyle G} 5719:{\displaystyle n} 5706:is polynomial in 5645:{\displaystyle G} 5625:{\displaystyle G} 5605:{\displaystyle r} 5585:{\displaystyle e} 5565:{\displaystyle v} 5545:{\displaystyle u} 5525:{\displaystyle v} 5505:{\displaystyle u} 5460:{\displaystyle R} 5440:{\displaystyle e} 5392:{\displaystyle R} 5372:{\displaystyle R} 5352:{\displaystyle e} 5328:{\displaystyle G} 5308:{\displaystyle R} 5260:{\displaystyle G} 5189:{\displaystyle r} 4994:{\displaystyle w} 4974:{\displaystyle e} 4954:{\displaystyle W} 4934:{\displaystyle n} 4914:{\displaystyle G} 4222:{\displaystyle n} 4209:is polynomial in 4202:{\displaystyle Q} 4150:{\displaystyle n} 4137:is polynomial in 4105:{\displaystyle A} 3830:{\displaystyle Q} 3706:{\displaystyle A} 3658:{\displaystyle A} 3613:{\displaystyle A} 3379:{\displaystyle 0} 3305:{\displaystyle M} 3285:{\displaystyle M} 3272:. Further, where 3238:{\displaystyle M} 3164:{\displaystyle L} 3144:{\displaystyle m} 3124:{\displaystyle M} 3104:{\displaystyle M} 3084:{\displaystyle M} 2926:{\displaystyle M} 2853:{\displaystyle M} 2833:{\displaystyle L} 2813:{\displaystyle M} 2793:{\displaystyle M} 2746:{\displaystyle Z} 2691:{\displaystyle 0} 2671:{\displaystyle Z} 2624:{\displaystyle Z} 2530:{\displaystyle Z} 2490:{\displaystyle Z} 2470:{\displaystyle Z} 2450:{\displaystyle Z} 2430:{\displaystyle Z} 2410:{\displaystyle Z} 2336:{\displaystyle Z} 2313:{\displaystyle M} 2293:{\displaystyle M} 2273:{\displaystyle M} 2253:{\displaystyle Z} 2233:{\displaystyle Z} 2193:{\displaystyle Z} 2065:{\displaystyle Z} 2025:{\displaystyle Z} 1978:{\displaystyle Z} 1579:corresponding to 1340:{\displaystyle j} 1113:{\displaystyle m} 1073:{\displaystyle n} 992:{\displaystyle m} 589:{\displaystyle n} 569:{\displaystyle m} 374:{\displaystyle A} 354:{\displaystyle j} 334:{\displaystyle i} 112:Turing reductions 51:Valiant's theorem 16:(Redirected from 7094: 7061: 7052: 7046: 7045: 7043: 7028: 7022: 7019: 7013: 7000: 6994: 6993: 6991: 6990: 6981:. Archived from 6975: 6969: 6956: 6950: 6927: 6918: 6917: 6882: 6876: 6872: 6870: 6869: 6864: 6862: 6861: 6857: 6830:John E. Hopcroft 6827: 6821: 6820: 6788: 6782: 6758: 6752: 6751: 6731: 6725: 6704: 6698: 6674: 6668: 6647: 6622:Aaronson's proof 6616: 6614: 6613: 6608: 6606: 6605: 6589: 6587: 6586: 6581: 6569: 6567: 6566: 6561: 6549: 6547: 6546: 6541: 6539: 6538: 6522: 6520: 6519: 6514: 6502: 6500: 6499: 6494: 6482: 6480: 6479: 6474: 6462: 6460: 6459: 6454: 6452: 6437: 6435: 6434: 6429: 6414: 6412: 6411: 6406: 6404: 6403: 6387: 6385: 6384: 6379: 6377: 6376: 6360: 6358: 6357: 6352: 6340: 6338: 6337: 6332: 6320: 6318: 6317: 6312: 6296: 6294: 6293: 6288: 6276: 6274: 6273: 6268: 6253: 6251: 6250: 6245: 6243: 6228: 6226: 6225: 6220: 6218: 6217: 6201: 6199: 6198: 6193: 6178: 6176: 6175: 6170: 6155: 6153: 6152: 6147: 6145: 6144: 6128: 6126: 6125: 6120: 6112: 6111: 6089: 6087: 6086: 6081: 6069: 6067: 6066: 6061: 6031: 6029: 6028: 6023: 6008: 6006: 6005: 6000: 5998: 5997: 5981: 5979: 5978: 5973: 5961: 5959: 5958: 5953: 5941: 5939: 5938: 5933: 5921: 5919: 5918: 5913: 5908: 5890: 5888: 5887: 5882: 5877: 5835: 5833: 5832: 5827: 5825: 5810: 5808: 5807: 5802: 5790: 5788: 5787: 5782: 5756:Reduction to 0–1 5751: 5749: 5748: 5743: 5725: 5723: 5722: 5717: 5705: 5703: 5702: 5697: 5695: 5676: 5674: 5673: 5668: 5666: 5651: 5649: 5648: 5643: 5631: 5629: 5628: 5623: 5611: 5609: 5608: 5603: 5591: 5589: 5588: 5583: 5571: 5569: 5568: 5563: 5551: 5549: 5548: 5543: 5531: 5529: 5528: 5523: 5511: 5509: 5508: 5503: 5491: 5489: 5488: 5483: 5481: 5466: 5464: 5463: 5458: 5446: 5444: 5443: 5438: 5423: 5421: 5420: 5415: 5413: 5398: 5396: 5395: 5390: 5378: 5376: 5375: 5370: 5358: 5356: 5355: 5350: 5334: 5332: 5331: 5326: 5314: 5312: 5311: 5306: 5291: 5289: 5288: 5283: 5281: 5266: 5264: 5263: 5258: 5246: 5244: 5243: 5238: 5236: 5218: 5216: 5215: 5210: 5195: 5193: 5192: 5187: 5172: 5170: 5169: 5164: 5144: 5143: 5125: 5124: 5112: 5111: 5089: 5087: 5086: 5081: 5079: 5078: 5077: 5076: 5053: 5052: 5051: 5050: 5033: 5032: 5031: 5030: 5000: 4998: 4997: 4992: 4980: 4978: 4977: 4972: 4960: 4958: 4957: 4952: 4940: 4938: 4937: 4932: 4920: 4918: 4917: 4912: 4894: 4892: 4891: 4886: 4884: 4883: 4871: 4870: 4858: 4857: 4813: 4811: 4810: 4805: 4769: 4767: 4766: 4761: 4756: 4735: 4733: 4732: 4727: 4716: 4715: 4687: 4685: 4684: 4679: 4644: 4614: 4612: 4611: 4606: 4601: 4600: 4559: 4558: 4543: 4525: 4523: 4522: 4517: 4499: 4497: 4496: 4491: 4483: 4482: 4466: 4464: 4463: 4458: 4440: 4438: 4437: 4432: 4411: 4409: 4408: 4403: 4330: 4328: 4327: 4322: 4320: 4319: 4260: 4258: 4257: 4252: 4228: 4226: 4225: 4220: 4208: 4206: 4205: 4200: 4188: 4186: 4185: 4180: 4156: 4154: 4153: 4148: 4136: 4134: 4133: 4128: 4126: 4111: 4109: 4108: 4103: 4088: 4086: 4085: 4080: 4036: 4034: 4033: 4028: 4023: 4000: 3998: 3997: 3992: 3990: 3989: 3977: 3945: 3943: 3942: 3937: 3932: 3931: 3917: 3900: 3898: 3897: 3892: 3890: 3889: 3868: 3848: 3836: 3834: 3833: 3828: 3817:. The choice of 3816: 3814: 3813: 3808: 3800: 3799: 3758: 3756: 3755: 3750: 3738: 3736: 3735: 3730: 3712: 3710: 3709: 3704: 3689: 3687: 3686: 3681: 3679: 3664: 3662: 3661: 3656: 3644: 3642: 3641: 3636: 3634: 3619: 3617: 3616: 3611: 3578: 3576: 3575: 3570: 3565: 3564: 3539: 3537: 3536: 3531: 3514: 3513: 3498: 3497: 3472: 3470: 3469: 3464: 3462: 3461: 3442: 3440: 3439: 3434: 3385: 3383: 3382: 3377: 3365: 3363: 3362: 3357: 3355: 3354: 3338: 3336: 3335: 3330: 3328: 3327: 3311: 3309: 3308: 3303: 3291: 3289: 3288: 3283: 3271: 3269: 3268: 3263: 3261: 3260: 3244: 3242: 3241: 3236: 3224: 3222: 3221: 3216: 3214: 3213: 3197: 3195: 3194: 3189: 3187: 3186: 3170: 3168: 3167: 3162: 3150: 3148: 3147: 3142: 3130: 3128: 3127: 3122: 3110: 3108: 3107: 3102: 3090: 3088: 3087: 3082: 3070: 3068: 3067: 3062: 3060: 3059: 3043: 3041: 3040: 3035: 3033: 3032: 3013: 3011: 3010: 3005: 3003: 3002: 2986: 2984: 2983: 2978: 2976: 2975: 2959: 2957: 2956: 2951: 2949: 2948: 2933:-completions by 2932: 2930: 2929: 2924: 2912: 2910: 2909: 2904: 2902: 2901: 2885: 2883: 2882: 2877: 2859: 2857: 2856: 2851: 2839: 2837: 2836: 2831: 2819: 2817: 2816: 2811: 2799: 2797: 2796: 2791: 2779: 2777: 2776: 2771: 2769: 2768: 2752: 2750: 2749: 2744: 2732: 2730: 2729: 2724: 2722: 2721: 2697: 2695: 2694: 2689: 2677: 2675: 2674: 2669: 2658:, and any other 2657: 2655: 2654: 2649: 2647: 2646: 2630: 2628: 2627: 2622: 2610: 2608: 2607: 2602: 2600: 2599: 2583: 2581: 2580: 2575: 2563: 2561: 2560: 2555: 2553: 2552: 2536: 2534: 2533: 2528: 2516: 2514: 2513: 2508: 2496: 2494: 2493: 2488: 2476: 2474: 2473: 2468: 2456: 2454: 2453: 2448: 2436: 2434: 2433: 2428: 2416: 2414: 2413: 2408: 2396: 2394: 2393: 2388: 2386: 2385: 2369: 2367: 2366: 2361: 2359: 2358: 2342: 2340: 2339: 2334: 2319: 2317: 2316: 2311: 2299: 2297: 2296: 2291: 2279: 2277: 2276: 2271: 2259: 2257: 2256: 2251: 2239: 2237: 2236: 2231: 2219: 2217: 2216: 2211: 2199: 2197: 2196: 2191: 2179: 2177: 2176: 2171: 2169: 2168: 2152: 2150: 2149: 2144: 2142: 2141: 2125: 2123: 2122: 2117: 2115: 2114: 2098: 2096: 2095: 2090: 2088: 2087: 2071: 2069: 2068: 2063: 2051: 2049: 2048: 2043: 2031: 2029: 2028: 2023: 2011: 2009: 2008: 2003: 2001: 2000: 1984: 1982: 1981: 1976: 1964: 1962: 1961: 1956: 1944: 1942: 1941: 1936: 1934: 1933: 1909: 1907: 1906: 1901: 1899: 1891: 1879: 1877: 1876: 1871: 1869: 1868: 1841: 1839: 1838: 1833: 1831: 1830: 1814: 1812: 1811: 1806: 1804: 1803: 1787: 1785: 1784: 1779: 1777: 1776: 1760: 1758: 1757: 1752: 1750: 1749: 1733: 1731: 1730: 1725: 1723: 1722: 1706: 1704: 1703: 1698: 1696: 1695: 1679: 1677: 1676: 1671: 1669: 1668: 1652: 1650: 1649: 1644: 1632: 1630: 1629: 1624: 1622: 1621: 1605: 1603: 1602: 1597: 1595: 1594: 1578: 1576: 1575: 1570: 1558: 1556: 1555: 1550: 1548: 1547: 1531: 1529: 1528: 1523: 1521: 1520: 1504: 1502: 1501: 1496: 1494: 1493: 1477: 1475: 1474: 1469: 1467: 1466: 1450: 1448: 1447: 1442: 1440: 1439: 1423: 1421: 1420: 1415: 1403: 1401: 1400: 1395: 1393: 1392: 1373: 1371: 1370: 1365: 1363: 1362: 1346: 1344: 1343: 1338: 1326: 1324: 1323: 1318: 1300: 1298: 1297: 1292: 1290: 1289: 1273: 1271: 1270: 1265: 1247: 1245: 1244: 1239: 1237: 1236: 1220: 1218: 1217: 1212: 1210: 1209: 1193: 1191: 1190: 1185: 1183: 1182: 1166: 1164: 1163: 1158: 1156: 1155: 1139: 1137: 1136: 1131: 1119: 1117: 1116: 1111: 1099: 1097: 1096: 1091: 1079: 1077: 1076: 1071: 1060:for each of the 1059: 1057: 1056: 1051: 1049: 1048: 1032: 1030: 1029: 1024: 1022: 1021: 998: 996: 995: 990: 978: 976: 975: 970: 958: 956: 955: 950: 929: 927: 926: 921: 904: 903: 878: 876: 875: 870: 825: 823: 822: 817: 800: 799: 783: 781: 780: 775: 763: 761: 760: 755: 730: 728: 727: 722: 720: 719: 700: 698: 697: 692: 690: 689: 673: 671: 670: 665: 663: 662: 646: 644: 643: 638: 622: 620: 619: 614: 612: 611: 595: 593: 592: 587: 575: 573: 572: 567: 555: 553: 552: 547: 523: 521: 520: 515: 503: 501: 500: 495: 493: 492: 476: 474: 473: 468: 466: 465: 449: 447: 446: 441: 409:can be rewritten 393:function problem 380: 378: 377: 372: 360: 358: 357: 352: 340: 338: 337: 332: 320: 318: 317: 312: 310: 309: 285:adjacency matrix 282: 280: 279: 274: 269: 268: 177:adjacency matrix 157:perfect matching 102:complexity class 77:proved that the 21: 7102: 7101: 7097: 7096: 7095: 7093: 7092: 7091: 7067: 7066: 7065: 7064: 7053: 7049: 7041: 7029: 7025: 7020: 7016: 7001: 6997: 6988: 6986: 6977: 6976: 6972: 6957: 6953: 6939:Springer-Verlag 6928: 6921: 6914: 6898:Stein, Clifford 6883: 6879: 6853: 6849: 6845: 6843: 6840: 6839: 6834:Richard M. Karp 6828: 6824: 6809: 6799:Springer-Verlag 6789: 6785: 6771:Springer-Verlag 6759: 6755: 6732: 6728: 6714:Springer-Verlag 6705: 6701: 6675: 6671: 6648: 6641: 6636: 6624: 6601: 6597: 6595: 6592: 6591: 6575: 6572: 6571: 6555: 6552: 6551: 6534: 6530: 6528: 6525: 6524: 6508: 6505: 6504: 6488: 6485: 6484: 6468: 6465: 6464: 6445: 6443: 6440: 6439: 6423: 6420: 6419: 6399: 6395: 6393: 6390: 6389: 6372: 6368: 6366: 6363: 6362: 6346: 6343: 6342: 6326: 6323: 6322: 6306: 6303: 6302: 6282: 6279: 6278: 6262: 6259: 6258: 6236: 6234: 6231: 6230: 6213: 6209: 6207: 6204: 6203: 6184: 6181: 6180: 6161: 6158: 6157: 6140: 6136: 6134: 6131: 6130: 6107: 6103: 6095: 6092: 6091: 6075: 6072: 6071: 6037: 6034: 6033: 6017: 6014: 6013: 5993: 5989: 5987: 5984: 5983: 5967: 5964: 5963: 5947: 5944: 5943: 5927: 5924: 5923: 5901: 5896: 5893: 5892: 5870: 5841: 5838: 5837: 5818: 5816: 5813: 5812: 5796: 5793: 5792: 5776: 5773: 5772: 5758: 5731: 5728: 5727: 5711: 5708: 5707: 5688: 5686: 5683: 5682: 5659: 5657: 5654: 5653: 5637: 5634: 5633: 5617: 5614: 5613: 5597: 5594: 5593: 5577: 5574: 5573: 5557: 5554: 5553: 5537: 5534: 5533: 5517: 5514: 5513: 5497: 5494: 5493: 5474: 5472: 5469: 5468: 5452: 5449: 5448: 5432: 5429: 5428: 5406: 5404: 5401: 5400: 5384: 5381: 5380: 5364: 5361: 5360: 5344: 5341: 5340: 5320: 5317: 5316: 5300: 5297: 5296: 5274: 5272: 5269: 5268: 5252: 5249: 5248: 5229: 5227: 5224: 5223: 5201: 5198: 5197: 5181: 5178: 5177: 5139: 5135: 5120: 5116: 5107: 5103: 5095: 5092: 5091: 5072: 5068: 5067: 5063: 5046: 5042: 5041: 5037: 5026: 5022: 5021: 5017: 5009: 5006: 5005: 4986: 4983: 4982: 4966: 4963: 4962: 4946: 4943: 4942: 4926: 4923: 4922: 4906: 4903: 4902: 4879: 4875: 4866: 4862: 4853: 4849: 4841: 4838: 4837: 4833:. For example, 4819: 4775: 4772: 4771: 4752: 4741: 4738: 4737: 4711: 4707: 4696: 4693: 4692: 4637: 4626: 4623: 4622: 4595: 4594: 4589: 4583: 4582: 4577: 4567: 4566: 4554: 4550: 4536: 4534: 4531: 4530: 4505: 4502: 4501: 4478: 4474: 4472: 4469: 4468: 4446: 4443: 4442: 4420: 4417: 4416: 4337: 4334: 4333: 4314: 4313: 4308: 4299: 4298: 4290: 4280: 4279: 4271: 4268: 4267: 4234: 4231: 4230: 4214: 4211: 4210: 4194: 4191: 4190: 4162: 4159: 4158: 4142: 4139: 4138: 4119: 4117: 4114: 4113: 4097: 4094: 4093: 4050: 4047: 4046: 4019: 4008: 4005: 4004: 3985: 3981: 3970: 3953: 3950: 3949: 3929: 3925: 3910: 3908: 3905: 3904: 3885: 3881: 3864: 3844: 3842: 3839: 3838: 3822: 3819: 3818: 3795: 3791: 3768: 3765: 3764: 3744: 3741: 3740: 3718: 3715: 3714: 3698: 3695: 3694: 3672: 3670: 3667: 3666: 3650: 3647: 3646: 3627: 3625: 3622: 3621: 3605: 3602: 3601: 3594: 3585: 3560: 3556: 3545: 3542: 3541: 3509: 3505: 3493: 3489: 3478: 3475: 3474: 3457: 3453: 3451: 3448: 3447: 3395: 3392: 3391: 3371: 3368: 3367: 3350: 3346: 3344: 3341: 3340: 3323: 3319: 3317: 3314: 3313: 3297: 3294: 3293: 3277: 3274: 3273: 3256: 3252: 3250: 3247: 3246: 3230: 3227: 3226: 3209: 3205: 3203: 3200: 3199: 3182: 3178: 3176: 3173: 3172: 3156: 3153: 3152: 3136: 3133: 3132: 3116: 3113: 3112: 3096: 3093: 3092: 3076: 3073: 3072: 3055: 3051: 3049: 3046: 3045: 3028: 3024: 3022: 3019: 3018: 2998: 2994: 2992: 2989: 2988: 2971: 2967: 2965: 2962: 2961: 2944: 2940: 2938: 2935: 2934: 2918: 2915: 2914: 2897: 2893: 2891: 2888: 2887: 2865: 2862: 2861: 2845: 2842: 2841: 2825: 2822: 2821: 2805: 2802: 2801: 2785: 2782: 2781: 2764: 2760: 2758: 2755: 2754: 2738: 2735: 2734: 2717: 2713: 2711: 2708: 2707: 2704: 2683: 2680: 2679: 2663: 2660: 2659: 2642: 2638: 2636: 2633: 2632: 2616: 2613: 2612: 2595: 2591: 2589: 2586: 2585: 2569: 2566: 2565: 2548: 2544: 2542: 2539: 2538: 2522: 2519: 2518: 2502: 2499: 2498: 2482: 2479: 2478: 2462: 2459: 2458: 2442: 2439: 2438: 2422: 2419: 2418: 2402: 2399: 2398: 2381: 2377: 2375: 2372: 2371: 2354: 2350: 2348: 2345: 2344: 2328: 2325: 2324: 2305: 2302: 2301: 2285: 2282: 2281: 2265: 2262: 2261: 2245: 2242: 2241: 2225: 2222: 2221: 2205: 2202: 2201: 2185: 2182: 2181: 2164: 2160: 2158: 2155: 2154: 2137: 2133: 2131: 2128: 2127: 2110: 2106: 2104: 2101: 2100: 2083: 2079: 2077: 2074: 2073: 2057: 2054: 2053: 2037: 2034: 2033: 2017: 2014: 2013: 1996: 1992: 1990: 1987: 1986: 1970: 1967: 1966: 1950: 1947: 1946: 1929: 1925: 1923: 1920: 1919: 1916: 1895: 1887: 1885: 1882: 1881: 1864: 1860: 1858: 1855: 1854: 1826: 1822: 1820: 1817: 1816: 1799: 1795: 1793: 1790: 1789: 1772: 1768: 1766: 1763: 1762: 1745: 1741: 1739: 1736: 1735: 1718: 1714: 1712: 1709: 1708: 1691: 1687: 1685: 1682: 1681: 1664: 1660: 1658: 1655: 1654: 1638: 1635: 1634: 1617: 1613: 1611: 1608: 1607: 1590: 1586: 1584: 1581: 1580: 1564: 1561: 1560: 1543: 1539: 1537: 1534: 1533: 1516: 1512: 1510: 1507: 1506: 1489: 1485: 1483: 1480: 1479: 1462: 1458: 1456: 1453: 1452: 1435: 1431: 1429: 1426: 1425: 1409: 1406: 1405: 1388: 1384: 1382: 1379: 1378: 1358: 1354: 1352: 1349: 1348: 1332: 1329: 1328: 1306: 1303: 1302: 1285: 1281: 1279: 1276: 1275: 1253: 1250: 1249: 1232: 1228: 1226: 1223: 1222: 1205: 1201: 1199: 1196: 1195: 1178: 1174: 1172: 1169: 1168: 1151: 1147: 1145: 1142: 1141: 1125: 1122: 1121: 1105: 1102: 1101: 1085: 1082: 1081: 1065: 1062: 1061: 1044: 1040: 1038: 1035: 1034: 1017: 1013: 1011: 1008: 1007: 984: 981: 980: 964: 961: 960: 935: 932: 931: 890: 886: 884: 881: 880: 831: 828: 827: 795: 791: 789: 786: 785: 769: 766: 765: 740: 737: 736: 715: 711: 709: 706: 705: 685: 681: 679: 676: 675: 658: 654: 652: 649: 648: 632: 629: 628: 607: 603: 601: 598: 597: 581: 578: 577: 561: 558: 557: 541: 538: 537: 534: 509: 506: 505: 488: 484: 482: 479: 478: 461: 457: 455: 452: 451: 435: 432: 431: 395:related to the 366: 363: 362: 346: 343: 342: 326: 323: 322: 302: 298: 296: 293: 292: 261: 257: 246: 243: 242: 239: 223: 145:bipartite graph 128: 109:polynomial-time 71:scholarly paper 43: 28: 23: 22: 15: 12: 11: 5: 7100: 7090: 7089: 7087:Article proofs 7084: 7079: 7063: 7062: 7047: 7023: 7014: 7003:Ketan Mulmuley 6995: 6970: 6959:Seinosuke Toda 6951: 6949:; pp. 141–142 6919: 6912: 6877: 6860: 6856: 6852: 6848: 6822: 6807: 6783: 6753: 6726: 6699: 6669: 6657:Addison-Wesley 6638: 6637: 6635: 6632: 6628:Scott Aaronson 6623: 6620: 6619: 6618: 6604: 6600: 6579: 6559: 6537: 6533: 6512: 6492: 6472: 6451: 6448: 6427: 6416: 6402: 6398: 6375: 6371: 6350: 6330: 6310: 6286: 6266: 6242: 6239: 6216: 6212: 6191: 6188: 6168: 6165: 6143: 6139: 6118: 6115: 6110: 6106: 6102: 6099: 6090:with a weight 6079: 6070:be an edge in 6059: 6056: 6053: 6050: 6047: 6044: 6041: 6021: 5996: 5992: 5971: 5951: 5931: 5911: 5907: 5904: 5900: 5880: 5876: 5873: 5869: 5866: 5863: 5860: 5857: 5854: 5851: 5848: 5845: 5824: 5821: 5800: 5780: 5757: 5754: 5741: 5738: 5735: 5715: 5694: 5691: 5679: 5678: 5665: 5662: 5641: 5621: 5601: 5581: 5561: 5541: 5521: 5501: 5480: 5477: 5456: 5436: 5425: 5412: 5409: 5388: 5368: 5348: 5324: 5304: 5280: 5277: 5256: 5235: 5232: 5208: 5205: 5185: 5174: 5173: 5162: 5159: 5156: 5153: 5150: 5147: 5142: 5138: 5134: 5131: 5128: 5123: 5119: 5115: 5110: 5106: 5102: 5099: 5075: 5071: 5066: 5062: 5059: 5056: 5049: 5045: 5040: 5036: 5029: 5025: 5020: 5016: 5013: 4990: 4970: 4950: 4930: 4910: 4896: 4895: 4882: 4878: 4874: 4869: 4865: 4861: 4856: 4852: 4848: 4845: 4818: 4815: 4803: 4800: 4797: 4794: 4791: 4788: 4785: 4782: 4779: 4759: 4755: 4751: 4748: 4745: 4725: 4722: 4719: 4714: 4710: 4706: 4703: 4700: 4689: 4688: 4677: 4674: 4671: 4668: 4665: 4662: 4659: 4656: 4653: 4650: 4647: 4643: 4640: 4636: 4633: 4630: 4616: 4615: 4604: 4599: 4593: 4590: 4588: 4585: 4584: 4581: 4578: 4576: 4573: 4572: 4570: 4565: 4562: 4557: 4553: 4549: 4546: 4542: 4539: 4515: 4512: 4509: 4489: 4486: 4481: 4477: 4456: 4453: 4450: 4430: 4427: 4424: 4413: 4412: 4401: 4398: 4395: 4392: 4389: 4386: 4383: 4380: 4377: 4374: 4371: 4368: 4365: 4362: 4359: 4356: 4353: 4350: 4347: 4344: 4341: 4331: 4318: 4312: 4309: 4307: 4304: 4301: 4300: 4297: 4294: 4291: 4289: 4286: 4285: 4283: 4278: 4275: 4250: 4247: 4244: 4241: 4238: 4218: 4198: 4178: 4175: 4172: 4169: 4166: 4146: 4125: 4122: 4101: 4090: 4089: 4078: 4075: 4072: 4069: 4066: 4063: 4060: 4057: 4054: 4026: 4022: 4018: 4015: 4012: 4001: 3988: 3984: 3980: 3976: 3973: 3969: 3966: 3963: 3960: 3957: 3946: 3935: 3928: 3923: 3920: 3916: 3913: 3901: 3888: 3884: 3880: 3877: 3874: 3871: 3867: 3863: 3860: 3857: 3854: 3851: 3847: 3826: 3806: 3803: 3798: 3794: 3790: 3787: 3784: 3781: 3778: 3775: 3772: 3748: 3728: 3725: 3722: 3702: 3690:, as follows: 3678: 3675: 3654: 3633: 3630: 3609: 3593: 3590: 3584: 3581: 3568: 3563: 3559: 3555: 3552: 3549: 3529: 3526: 3523: 3520: 3517: 3512: 3508: 3504: 3501: 3496: 3492: 3488: 3485: 3482: 3460: 3456: 3432: 3429: 3426: 3423: 3420: 3417: 3414: 3411: 3408: 3405: 3402: 3399: 3375: 3353: 3349: 3326: 3322: 3301: 3281: 3259: 3255: 3234: 3212: 3208: 3185: 3181: 3160: 3140: 3120: 3100: 3080: 3058: 3054: 3031: 3027: 3001: 2997: 2974: 2970: 2947: 2943: 2922: 2900: 2896: 2875: 2872: 2869: 2849: 2829: 2809: 2789: 2767: 2763: 2742: 2720: 2716: 2703: 2700: 2687: 2667: 2645: 2641: 2620: 2598: 2594: 2573: 2551: 2547: 2526: 2506: 2486: 2466: 2446: 2426: 2406: 2384: 2380: 2357: 2353: 2332: 2309: 2289: 2269: 2249: 2229: 2209: 2189: 2167: 2163: 2140: 2136: 2113: 2109: 2086: 2082: 2061: 2041: 2021: 1999: 1995: 1974: 1954: 1932: 1928: 1915: 1912: 1898: 1894: 1890: 1867: 1863: 1848:internal edges 1844:external edges 1829: 1825: 1802: 1798: 1775: 1771: 1748: 1744: 1721: 1717: 1694: 1690: 1667: 1663: 1642: 1620: 1616: 1593: 1589: 1568: 1546: 1542: 1519: 1515: 1492: 1488: 1465: 1461: 1438: 1434: 1413: 1391: 1387: 1361: 1357: 1336: 1316: 1313: 1310: 1288: 1284: 1263: 1260: 1257: 1235: 1231: 1208: 1204: 1181: 1177: 1154: 1150: 1129: 1109: 1089: 1069: 1047: 1043: 1020: 1016: 988: 968: 948: 945: 942: 939: 919: 916: 913: 910: 907: 902: 899: 896: 893: 889: 868: 865: 862: 859: 856: 853: 850: 847: 844: 841: 838: 835: 815: 812: 809: 806: 803: 798: 794: 773: 753: 750: 747: 744: 733: 732: 718: 714: 702: 688: 684: 661: 657: 636: 610: 606: 585: 565: 545: 533: 530: 529: 528: 525: 513: 491: 487: 464: 460: 439: 405:Cook's theorem 370: 350: 330: 308: 305: 301: 289:directed graph 272: 267: 264: 260: 256: 253: 250: 238: 235: 222: 219: 204:Ketan Mulmuley 185:Toda's theorem 151:Specifically, 127: 124: 75:Leslie Valiant 26: 9: 6: 4: 3: 2: 7099: 7088: 7085: 7083: 7082:Combinatorics 7080: 7078: 7075: 7074: 7072: 7060: 7056: 7051: 7040: 7039: 7034: 7027: 7018: 7011: 7008: 7004: 6999: 6985:on 2014-01-08 6984: 6980: 6974: 6967: 6964: 6960: 6955: 6948: 6944: 6940: 6937: 6936: 6931: 6926: 6924: 6915: 6913:0-262-03293-7 6909: 6905: 6904: 6899: 6895: 6891: 6887: 6881: 6874: 6858: 6854: 6850: 6846: 6835: 6831: 6826: 6818: 6814: 6810: 6804: 6801:. p. 2. 6800: 6796: 6795: 6787: 6780: 6776: 6772: 6768: 6767: 6762: 6761:Lance Fortnow 6757: 6749: 6745: 6741: 6737: 6730: 6723: 6719: 6715: 6711: 6710: 6703: 6696: 6692: 6688: 6687:Marcel Dekker 6685: 6683: 6678: 6673: 6666: 6665:0-201-53082-1 6662: 6658: 6655: 6651: 6646: 6644: 6639: 6631: 6629: 6602: 6598: 6577: 6557: 6535: 6531: 6510: 6490: 6470: 6449: 6446: 6425: 6417: 6400: 6396: 6373: 6369: 6348: 6328: 6308: 6300: 6299: 6298: 6284: 6264: 6255: 6240: 6237: 6214: 6210: 6189: 6186: 6166: 6163: 6141: 6137: 6116: 6113: 6108: 6104: 6100: 6097: 6077: 6054: 6051: 6048: 6042: 6039: 6019: 6010: 5994: 5990: 5969: 5949: 5929: 5905: 5902: 5874: 5871: 5864: 5861: 5858: 5852: 5846: 5843: 5822: 5819: 5798: 5778: 5769: 5762: 5753: 5739: 5736: 5733: 5713: 5692: 5689: 5663: 5660: 5639: 5619: 5599: 5579: 5559: 5539: 5519: 5499: 5478: 5475: 5454: 5434: 5426: 5410: 5407: 5386: 5366: 5346: 5338: 5337: 5336: 5322: 5302: 5293: 5278: 5275: 5254: 5233: 5230: 5220: 5206: 5203: 5183: 5157: 5151: 5148: 5145: 5140: 5136: 5132: 5129: 5126: 5121: 5117: 5113: 5108: 5104: 5100: 5097: 5073: 5069: 5064: 5060: 5057: 5054: 5047: 5043: 5038: 5034: 5027: 5023: 5018: 5014: 5011: 5004: 5003: 5002: 4988: 4968: 4961:. Every edge 4948: 4928: 4908: 4899: 4880: 4876: 4872: 4867: 4863: 4859: 4854: 4850: 4846: 4843: 4836: 4835: 4834: 4832: 4823: 4814: 4801: 4798: 4795: 4792: 4786: 4780: 4777: 4757: 4753: 4749: 4746: 4743: 4723: 4720: 4717: 4712: 4704: 4701: 4698: 4675: 4672: 4669: 4666: 4663: 4660: 4657: 4654: 4651: 4648: 4641: 4638: 4631: 4628: 4621: 4620: 4619: 4602: 4597: 4591: 4586: 4579: 4574: 4568: 4563: 4560: 4555: 4547: 4544: 4540: 4537: 4529: 4528: 4527: 4513: 4510: 4507: 4487: 4484: 4479: 4475: 4454: 4451: 4448: 4428: 4425: 4422: 4399: 4396: 4390: 4387: 4381: 4375: 4372: 4366: 4363: 4360: 4357: 4354: 4348: 4342: 4339: 4332: 4316: 4310: 4305: 4302: 4295: 4292: 4287: 4281: 4276: 4273: 4266: 4265: 4264: 4261: 4245: 4239: 4236: 4216: 4196: 4173: 4167: 4164: 4144: 4123: 4120: 4099: 4076: 4073: 4070: 4067: 4061: 4055: 4052: 4044: 4040: 4024: 4020: 4016: 4013: 4010: 4002: 3986: 3974: 3971: 3964: 3961: 3958: 3955: 3947: 3933: 3921: 3918: 3914: 3911: 3902: 3886: 3882: 3878: 3875: 3872: 3869: 3858: 3852: 3849: 3824: 3804: 3801: 3796: 3792: 3788: 3785: 3782: 3779: 3776: 3773: 3770: 3762: 3761: 3760: 3746: 3726: 3723: 3720: 3700: 3691: 3676: 3673: 3652: 3631: 3628: 3607: 3599: 3589: 3580: 3561: 3557: 3550: 3547: 3524: 3515: 3510: 3506: 3502: 3494: 3490: 3483: 3480: 3458: 3454: 3444: 3427: 3424: 3421: 3418: 3415: 3412: 3409: 3406: 3403: 3400: 3387: 3373: 3351: 3347: 3324: 3320: 3299: 3279: 3257: 3253: 3232: 3210: 3206: 3183: 3179: 3158: 3138: 3118: 3098: 3078: 3056: 3052: 3029: 3025: 3015: 2999: 2995: 2972: 2968: 2945: 2941: 2920: 2898: 2894: 2873: 2870: 2867: 2847: 2827: 2807: 2787: 2765: 2761: 2740: 2718: 2714: 2699: 2685: 2665: 2643: 2639: 2618: 2596: 2592: 2571: 2549: 2545: 2524: 2504: 2484: 2464: 2444: 2424: 2404: 2382: 2378: 2355: 2351: 2330: 2321: 2307: 2287: 2267: 2247: 2227: 2207: 2187: 2165: 2161: 2138: 2134: 2111: 2107: 2084: 2080: 2059: 2052:just in case 2039: 2019: 1997: 1993: 1972: 1952: 1930: 1926: 1911: 1892: 1865: 1861: 1851: 1849: 1845: 1827: 1823: 1800: 1796: 1773: 1769: 1746: 1742: 1719: 1715: 1692: 1688: 1665: 1661: 1640: 1618: 1614: 1591: 1587: 1566: 1544: 1540: 1517: 1513: 1490: 1486: 1463: 1459: 1436: 1432: 1411: 1389: 1385: 1375: 1359: 1355: 1334: 1314: 1311: 1308: 1286: 1282: 1261: 1258: 1255: 1233: 1229: 1206: 1202: 1179: 1175: 1152: 1148: 1127: 1107: 1087: 1080:variables in 1067: 1045: 1041: 1018: 1014: 1004: 1000: 986: 966: 943: 937: 914: 905: 897: 891: 887: 863: 860: 857: 854: 851: 848: 845: 842: 839: 836: 810: 801: 796: 792: 771: 748: 716: 712: 703: 686: 682: 659: 655: 634: 626: 625: 624: 608: 604: 583: 563: 543: 526: 511: 489: 485: 462: 458: 437: 429: 428: 427: 425: 420: 418: 414: 410: 406: 402: 398: 394: 390: 386: 384: 368: 348: 328: 306: 303: 299: 290: 286: 265: 262: 258: 251: 248: 234: 232: 228: 218: 216: 211: 210:of a matrix. 209: 205: 201: 197: 192: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 148: 146: 142: 136: 134: 123: 121: 117: 113: 110: 105: 103: 99: 94: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 41: 37: 33: 19: 7050: 7037: 7032: 7026: 7017: 6998: 6987:. Retrieved 6983:the original 6973: 6954: 6934: 6930:Dexter Kozen 6902: 6880: 6837: 6825: 6793: 6786: 6765: 6756: 6739: 6735: 6729: 6708: 6702: 6681: 6672: 6653: 6625: 6256: 6011: 5770: 5767: 5680: 5294: 5221: 5175: 4981:with weight 4900: 4897: 4828: 4690: 4617: 4414: 4262: 4091: 4045:. Otherwise 4042: 4038: 3692: 3595: 3586: 3445: 3388: 3016: 2705: 2631:have weight 2322: 1917: 1852: 1847: 1843: 1532:appears. If 1376: 1005: 1001: 734: 576:clauses and 535: 421: 387: 240: 224: 212: 193: 168: 164: 150: 140: 138: 132: 129: 126:Significance 106: 95: 69:. In a 1979 50: 46: 44: 31: 7055:S. Aaronson 6321:from graph 5339:If an edge 2678:has weight 2240:. The term 1120:clauses in 1006:To specify 701: ; and 417:#P-complete 401:#P-complete 227:#P-complete 208:determinant 181:#P-complete 87:#P-complete 7071:Categories 6989:2016-07-06 6817:0948.68082 6677:Allen Kent 6667:. Page 443 6634:References 6341:is not in 6179:nodes and 5359:is not in 5196:nodes and 4037:then Perm( 623:such that 341:to vertex 91:#P problem 57:about the 38:is due to 5865:⁡ 5847:⁡ 5737:⁡ 5152:⁡ 5146:≤ 5133:≤ 5130:⋯ 5127:≤ 5114:≤ 5101:≤ 5058:⋯ 4781:⁡ 4667:⋅ 4655:⋅ 4632:⁡ 4476:μ 4449:μ 4388:− 4382:⋅ 4373:− 4361:⋅ 4343:⁡ 4303:− 4293:− 4246:μ 4240:⁡ 4174:μ 4168:⁡ 4074:− 4056:⁡ 3965:⁡ 3883:μ 3879:⋅ 3870:≤ 3853:⁡ 3793:μ 3789:⋅ 3780:⋅ 3747:μ 3724:× 3583:01-Matrix 3562:ϕ 3551:⁡ 3525:ϕ 3522:# 3516:⋅ 3495:ϕ 3484:⁡ 3401:− 3030:ϕ 2973:ϕ 2899:ϕ 2871:∪ 2766:ϕ 2572:ϕ 2505:ϕ 2208:ϕ 2040:ϕ 1998:ϕ 1953:ϕ 1931:ϕ 1893:ϕ 1866:ϕ 1653:in which 1641:ϕ 1567:ϕ 1437:ϕ 1412:ϕ 1360:ϕ 1301:for some 1248:for some 1180:ϕ 1128:ϕ 1088:ϕ 1046:ϕ 1019:ϕ 967:ϕ 944:ϕ 915:ϕ 912:# 906:⋅ 898:ϕ 837:− 811:ϕ 808:# 802:⋅ 772:ϕ 749:ϕ 746:# 717:ϕ 660:ϕ 635:ϕ 609:ϕ 544:ϕ 512:ϕ 490:ϕ 463:ϕ 438:ϕ 419:as well. 59:permanent 6781:; p. 265 6724:; p. 90. 6689:, 1999. 6659:, 1994. 6450:′ 6241:′ 5906:′ 5875:′ 5823:′ 5693:′ 5664:′ 5532:, where 5479:′ 5411:′ 5279:′ 5234:′ 4642:′ 4541:′ 4124:′ 3975:′ 3948:Compute 3915:′ 3903:Compute 3763:Compute 3677:′ 3632:′ 3366:will be 3225:, where 735:Thus if 237:Overview 63:matrices 6697:; p. 34 5219:edges. 4736:. Then 4526:. Thus 2457:, then 424:#P-hard 291:, with 83:#P-hard 53:, is a 6945:  6910:  6815:  6805:  6777:  6720:  6693:  6663:  5677:match. 5447:is in 5424:match. 4467:, and 4415:Here, 3713:be an 3596:Using 2840:is an 2800:. Let 930:where 202:) and 7042:(PDF) 5791:be a 4921:be a 4770:, so 4500:, so 4112:into 556:with 287:of a 100:as a 6943:ISBN 6908:ISBN 6803:ISBN 6775:ISBN 6718:ISBN 6691:ISBN 6661:ISBN 6114:> 5942:and 5862:Perm 5844:Perm 5771:Let 5726:and 5652:and 5552:and 5399:and 5267:and 4901:Let 4778:Perm 4747:< 4629:Perm 4340:Perm 4229:and 4157:and 4053:Perm 4041:) = 4014:< 3962:Perm 3850:Perm 3693:Let 3548:Perm 3481:Perm 1312:> 1259:< 979:" – 391:, a 389:#SAT 45:The 6838:An 6813:Zbl 6744:doi 6570:to 6483:to 6277:in 5982:is 5734:log 5512:to 5427:If 5315:in 5149:log 4709:mod 4705:227 4691:so 4676:227 4552:mod 4237:log 4165:log 4003:If 3983:mod 3927:mod 2987:by 2564:in 1985:of 1404:of 1167:in 999:.) 413:CNF 61:of 7073:: 7057:, 7033:#P 7005:. 6961:. 6932:. 6922:^ 6896:; 6892:; 6888:; 6836:: 6832:, 6811:. 6763:. 6738:. 6652:. 6642:^ 6297:. 6009:. 5752:. 5335:. 5292:. 5090:, 4844:13 4802:6. 4670:15 4664:15 4587:15 4580:15 4514:17 4441:, 4400:6. 3759:. 3507:12 3455:12 3386:. 3254:12 3014:. 2640:12 793:12 683:12 385:. 233:. 196:NC 191:. 135:: 104:. 98:#P 73:, 6992:. 6916:. 6859:2 6855:/ 6851:5 6847:n 6819:. 6750:. 6746:: 6740:8 6684:. 6603:r 6599:2 6578:v 6558:u 6536:r 6532:2 6511:r 6491:v 6471:u 6447:G 6426:G 6401:e 6397:J 6374:e 6370:J 6349:R 6329:G 6309:e 6285:G 6265:R 6238:G 6215:e 6211:J 6190:r 6187:6 6167:r 6164:2 6142:e 6138:J 6117:1 6109:r 6105:2 6101:= 6098:w 6078:G 6058:) 6055:v 6052:, 6049:u 6046:( 6043:= 6040:e 6020:G 5995:p 5991:2 5970:G 5950:p 5930:n 5910:) 5903:G 5899:( 5879:) 5872:G 5868:( 5859:= 5856:) 5853:G 5850:( 5820:G 5799:n 5779:G 5740:W 5714:n 5690:G 5661:G 5640:G 5620:G 5600:r 5580:e 5560:v 5540:u 5520:v 5500:u 5476:G 5455:R 5435:e 5408:R 5387:R 5367:R 5347:e 5323:G 5303:R 5276:G 5255:G 5231:G 5207:r 5204:3 5184:r 5161:) 5158:w 5155:( 5141:r 5137:x 5122:2 5118:x 5109:1 5105:x 5098:0 5074:r 5070:x 5065:2 5061:+ 5055:+ 5048:2 5044:x 5039:2 5035:+ 5028:1 5024:x 5019:2 5015:= 5012:w 4989:w 4969:e 4949:W 4929:n 4909:G 4881:0 4877:2 4873:+ 4868:2 4864:2 4860:+ 4855:3 4851:2 4847:= 4799:= 4796:P 4793:= 4790:) 4787:A 4784:( 4758:2 4754:/ 4750:Q 4744:P 4724:6 4721:= 4718:7 4713:1 4702:= 4699:P 4673:= 4661:+ 4658:1 4652:2 4649:= 4646:) 4639:A 4635:( 4603:. 4598:] 4592:1 4575:2 4569:[ 4564:= 4561:7 4556:1 4548:A 4545:= 4538:A 4511:= 4508:Q 4488:4 4485:= 4480:n 4455:2 4452:= 4429:2 4426:= 4423:n 4397:= 4394:) 4391:2 4385:( 4379:) 4376:2 4370:( 4367:+ 4364:1 4358:2 4355:= 4352:) 4349:A 4346:( 4317:] 4311:1 4306:2 4296:2 4288:2 4282:[ 4277:= 4274:A 4249:) 4243:( 4217:n 4197:Q 4177:) 4171:( 4145:n 4121:A 4100:A 4077:Q 4071:P 4068:= 4065:) 4062:A 4059:( 4043:P 4039:A 4025:2 4021:/ 4017:Q 4011:P 3987:Q 3979:) 3972:A 3968:( 3959:= 3956:P 3934:Q 3922:A 3919:= 3912:A 3887:n 3876:! 3873:n 3866:| 3862:) 3859:A 3856:( 3846:| 3825:Q 3805:1 3802:+ 3797:n 3786:! 3783:n 3777:2 3774:= 3771:Q 3727:n 3721:n 3701:A 3674:A 3653:A 3629:A 3608:A 3567:) 3558:G 3554:( 3528:) 3519:( 3511:m 3503:= 3500:) 3491:G 3487:( 3459:m 3431:} 3428:3 3425:, 3422:2 3419:, 3416:1 3413:, 3410:0 3407:, 3404:1 3398:{ 3374:0 3352:M 3348:Z 3325:j 3321:C 3300:M 3280:M 3258:m 3233:M 3211:M 3207:Z 3184:M 3180:Z 3159:L 3139:m 3119:M 3099:M 3079:M 3057:M 3053:Z 3026:G 3000:M 2996:Z 2969:G 2946:M 2942:L 2921:M 2895:G 2874:L 2868:M 2848:M 2828:L 2808:M 2788:M 2762:G 2741:Z 2719:j 2715:C 2686:0 2666:Z 2644:m 2619:Z 2597:i 2593:x 2550:i 2546:x 2525:Z 2485:Z 2465:Z 2445:Z 2425:Z 2405:Z 2383:j 2379:C 2356:j 2352:C 2331:Z 2308:M 2288:M 2268:M 2248:Z 2228:Z 2188:Z 2166:i 2162:x 2139:i 2135:x 2112:i 2108:x 2085:i 2081:x 2060:Z 2020:Z 1994:G 1973:Z 1927:G 1897:| 1889:| 1862:G 1828:i 1824:x 1801:i 1797:x 1774:i 1770:x 1747:i 1743:x 1720:i 1716:x 1693:j 1689:C 1666:i 1662:x 1619:j 1615:C 1592:j 1588:C 1545:i 1541:x 1518:i 1514:x 1491:j 1487:C 1464:i 1460:x 1433:G 1390:i 1386:x 1356:G 1335:j 1315:j 1309:o 1287:i 1283:C 1262:j 1256:i 1234:i 1230:C 1207:j 1203:C 1176:G 1153:j 1149:C 1108:m 1068:n 1042:G 1015:G 987:m 947:) 941:( 938:t 918:) 909:( 901:) 895:( 892:t 888:4 867:} 864:3 861:, 858:2 855:, 852:1 849:, 846:0 843:, 840:1 834:{ 814:) 805:( 797:m 752:) 743:( 713:G 687:m 656:G 605:G 584:n 564:m 486:G 459:G 369:A 349:j 329:i 307:j 304:i 300:a 271:) 266:j 263:i 259:a 255:( 252:= 249:A 169:n 165:n 42:. 36:# 20:)

Index

Permanent is sharp-P-complete
#
technical restrictions
mathematical proof
permanent
matrices
computational complexity theory
scholarly paper
Leslie Valiant
computational problem
#P-hard
#P-complete
#P problem
#P
complexity class
polynomial-time
Turing reductions
Ben-Dor & Halevi (1993)
polynomial-time counting reduction
bipartite graph
computing the permanent
perfect matching
Hopcroft–Karp algorithm
biadjacency matrix
adjacency matrix
#P-complete
Toda's theorem
polynomial hierarchy
NC
parallel algorithm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.