Knowledge

Polynomial-time counting reduction

Source 📝

743:
that runs in polynomial time, for which the output to the problem is the number of accepting paths of the Turing machine. Intuitively, such problems count the number of solutions to problems in the complexity class
545: 351: 440: 1025: 1005: 985: 961: 941: 921: 901: 881: 846: 826: 806: 786: 766: 725: 701: 669: 649: 629: 609: 589: 569: 500: 480: 460: 411: 391: 371: 316: 296: 273: 253: 233: 213: 193: 173: 149: 129: 109: 89: 703:
on the inputs to problems that preserves the exact values of the outputs. Such a reduction can be viewed as a polynomial-time counting reduction, by using the
1127:, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, pp. 12–13, 1168: 853: 1140: 1080: 1067: 740: 1210: 20: 278:
These two functions must preserve the correctness of the output. That is, suppose that one transforms an input
24: 512: 1075:, Frontiers in Artificial Intelligence and Applications, vol. 185, IOS Press, pp. 633–654, 71:
A polynomial-time counting reduction is usually used to transform instances of a known-hard problem
735:
A functional problem (specified by its inputs and desired outputs) belongs to the complexity class
680: 507: 60: 32: 1087: 768:
is said to be ♯P-hard if there exists a polynomial-time counting reduction from every problem
1120: 36: 321: 1191: 1150: 964: 503: 943:. If this reduction exists, then there exists a reduction from any other problem in ♯P to 416: 8: 1010: 990: 970: 946: 926: 906: 886: 866: 831: 811: 791: 771: 751: 710: 686: 654: 634: 614: 594: 574: 554: 485: 465: 445: 396: 376: 356: 301: 281: 258: 238: 218: 198: 178: 158: 134: 114: 94: 74: 52: 1182: 1136: 1076: 704: 1177: 1128: 857: 56: 1187: 1146: 849: 745: 152: 1163: 1112: 1204: 1132: 883:
in ♯P to be ♯P-complete is to start with a single known ♯P-complete problem
35:(a transformation from one problem to another) used to define the notion of 1063: 1116: 1059: 1055: 1125:
Complexity classifications of Boolean constraint satisfaction problems
548: 736: 40: 854:
proving the completeness of the permanent of 0–1 matrices
111:
that is to be proven hard. It consists of two functions
1062:(2009), "Chapter 20. Model Counting", in Biere, Armin; 674: 1166:(1979), "The complexity of computing the permanent", 1013: 993: 973: 949: 929: 909: 889: 869: 834: 814: 794: 774: 754: 713: 689: 657: 637: 617: 597: 577: 557: 515: 488: 468: 448: 419: 399: 379: 359: 324: 304: 284: 261: 241: 221: 201: 181: 161: 137: 117: 97: 77: 1054: 730: 1121:"2.2.2 Parsimonious reductions and ♯P-completeness" 1110: 903:and find a polynomial-time counting reduction from 1019: 999: 979: 955: 935: 915: 895: 875: 840: 820: 800: 780: 760: 719: 695: 663: 643: 623: 603: 583: 563: 539: 494: 474: 454: 434: 413:. It must be the case that the transformed output 405: 385: 365: 345: 310: 290: 267: 247: 227: 207: 187: 167: 143: 123: 103: 83: 860:, is instead used for defining ♯P-completeness.) 1202: 852:. (Sometimes, as in Valiant's original paper 591:to transform the problem into an instance of 442:is the correct output for the original input 16:Problem transformation for counting solutions 462:. That is, if the input-output relations of 1181: 1066:; van Maaren, Hans; Walsh, Toby (eds.), 1162: 547:. Alternatively, expressed in terms of 502:are expressed as functions, then their 45:polynomial many-one counting reductions 1203: 967:a reduction from the other problem to 863:The usual method of proving a problem 611:, solve that instance, and then apply 151:, both of which must be computable in 43:. These reductions may also be called 1106: 1104: 1102: 1100: 1098: 1096: 1050: 1048: 1046: 1044: 1042: 1040: 551:, one possible algorithm for solving 683:is a polynomial-time transformation 675:Relation to other kinds of reduction 13: 1156: 1093: 1037: 91:into instances of another problem 29:polynomial-time counting reduction 14: 1222: 731:Applications in complexity theory 540:{\displaystyle X=g\circ Y\circ f} 856:, a weaker notion of reduction, 741:non-deterministic Turing machine 21:computational complexity theory 429: 423: 340: 334: 49:weakly parsimonious reductions 1: 1030: 66: 1183:10.1016/0304-3975(79)90044-6 1169:Theoretical Computer Science 651:into the correct answer for 7: 828:itself belongs to ♯P, then 631:to transform the output of 10: 1227: 1069:Handbook of Satisfiability 39:for the complexity class 987:with the reduction from 59:and they generalize the 51:; they are analogous to 1133:10.1137/1.9780898718546 748:. A functional problem 235:transforms outputs for 61:parsimonious reductions 1211:Reduction (complexity) 1021: 1001: 981: 957: 937: 917: 897: 877: 842: 822: 802: 782: 762: 721: 697: 681:parsimonious reduction 665: 645: 625: 605: 585: 565: 541: 496: 476: 456: 436: 407: 387: 373:, and then one solves 367: 347: 346:{\displaystyle y=f(x)} 312: 292: 269: 249: 229: 209: 189: 175:transforms inputs for 169: 145: 125: 105: 85: 1058:; Sabharwal, Ashish; 1022: 1002: 982: 958: 938: 918: 898: 878: 843: 823: 803: 783: 763: 722: 698: 679:As a special case, a 666: 646: 626: 606: 586: 566: 542: 497: 477: 457: 437: 408: 393:to produce an output 388: 368: 348: 313: 293: 270: 250: 230: 210: 190: 170: 146: 126: 106: 86: 1086:. See in particular 1011: 991: 971: 947: 927: 907: 887: 867: 832: 812: 792: 772: 752: 711: 687: 655: 635: 615: 595: 575: 555: 513: 504:function composition 486: 466: 446: 435:{\displaystyle g(z)} 417: 397: 377: 357: 322: 302: 282: 259: 239: 219: 199: 179: 159: 135: 115: 95: 75: 808:. If, in addition, 215:, and the function 53:many-one reductions 1017: 997: 977: 953: 933: 913: 893: 873: 838: 818: 798: 778: 758: 739:if there exists a 717: 693: 661: 641: 621: 601: 581: 571:would be to apply 561: 537: 492: 472: 452: 432: 403: 383: 363: 343: 308: 288: 265: 245: 225: 205: 185: 165: 141: 121: 101: 81: 1111:Creignou, Nadia; 1020:{\displaystyle Y} 1000:{\displaystyle X} 980:{\displaystyle X} 956:{\displaystyle Y} 936:{\displaystyle Y} 916:{\displaystyle X} 896:{\displaystyle X} 876:{\displaystyle Y} 841:{\displaystyle Y} 821:{\displaystyle Y} 801:{\displaystyle Y} 781:{\displaystyle X} 761:{\displaystyle Y} 720:{\displaystyle g} 705:identity function 696:{\displaystyle f} 664:{\displaystyle X} 644:{\displaystyle Y} 624:{\displaystyle g} 604:{\displaystyle Y} 584:{\displaystyle f} 564:{\displaystyle X} 495:{\displaystyle Y} 475:{\displaystyle X} 455:{\displaystyle x} 406:{\displaystyle z} 386:{\displaystyle y} 366:{\displaystyle Y} 311:{\displaystyle X} 291:{\displaystyle x} 268:{\displaystyle X} 255:into outputs for 248:{\displaystyle Y} 228:{\displaystyle g} 208:{\displaystyle Y} 188:{\displaystyle X} 168:{\displaystyle f} 144:{\displaystyle g} 124:{\displaystyle f} 104:{\displaystyle Y} 84:{\displaystyle X} 57:decision problems 25:counting problems 1218: 1195: 1194: 1185: 1160: 1154: 1153: 1108: 1091: 1085: 1074: 1052: 1026: 1024: 1023: 1018: 1006: 1004: 1003: 998: 986: 984: 983: 978: 962: 960: 959: 954: 942: 940: 939: 934: 922: 920: 919: 914: 902: 900: 899: 894: 882: 880: 879: 874: 858:Turing reduction 847: 845: 844: 839: 827: 825: 824: 819: 807: 805: 804: 799: 787: 785: 784: 779: 767: 765: 764: 759: 726: 724: 723: 718: 707:as the function 702: 700: 699: 694: 670: 668: 667: 662: 650: 648: 647: 642: 630: 628: 627: 622: 610: 608: 607: 602: 590: 588: 587: 582: 570: 568: 567: 562: 546: 544: 543: 538: 501: 499: 498: 493: 481: 479: 478: 473: 461: 459: 458: 453: 441: 439: 438: 433: 412: 410: 409: 404: 392: 390: 389: 384: 372: 370: 369: 364: 352: 350: 349: 344: 317: 315: 314: 309: 297: 295: 294: 289: 274: 272: 271: 266: 254: 252: 251: 246: 234: 232: 231: 226: 214: 212: 211: 206: 195:into inputs for 194: 192: 191: 186: 174: 172: 171: 166: 150: 148: 147: 142: 130: 128: 127: 122: 110: 108: 107: 102: 90: 88: 87: 82: 1226: 1225: 1221: 1220: 1219: 1217: 1216: 1215: 1201: 1200: 1199: 1198: 1161: 1157: 1143: 1113:Khanna, Sanjeev 1109: 1094: 1083: 1072: 1056:Gomes, Carla P. 1053: 1038: 1033: 1012: 1009: 1008: 992: 989: 988: 972: 969: 968: 948: 945: 944: 928: 925: 924: 908: 905: 904: 888: 885: 884: 868: 865: 864: 833: 830: 829: 813: 810: 809: 793: 790: 789: 773: 770: 769: 753: 750: 749: 733: 712: 709: 708: 688: 685: 684: 677: 656: 653: 652: 636: 633: 632: 616: 613: 612: 596: 593: 592: 576: 573: 572: 556: 553: 552: 514: 511: 510: 487: 484: 483: 467: 464: 463: 447: 444: 443: 418: 415: 414: 398: 395: 394: 378: 375: 374: 358: 355: 354: 323: 320: 319: 303: 300: 299: 283: 280: 279: 260: 257: 256: 240: 237: 236: 220: 217: 216: 200: 197: 196: 180: 177: 176: 160: 157: 156: 155:. The function 153:polynomial time 136: 133: 132: 116: 113: 112: 96: 93: 92: 76: 73: 72: 69: 17: 12: 11: 5: 1224: 1214: 1213: 1197: 1196: 1176:(2): 189–201, 1164:Valiant, L. G. 1155: 1141: 1092: 1081: 1035: 1034: 1032: 1029: 1016: 996: 976: 963:, obtained by 952: 932: 912: 892: 872: 848:is said to be 837: 817: 797: 777: 757: 732: 729: 716: 692: 676: 673: 660: 640: 620: 600: 580: 560: 536: 533: 530: 527: 524: 521: 518: 506:must obey the 491: 471: 451: 431: 428: 425: 422: 402: 382: 362: 342: 339: 336: 333: 330: 327: 307: 287: 264: 244: 224: 204: 184: 164: 140: 120: 100: 80: 68: 65: 15: 9: 6: 4: 3: 2: 1223: 1212: 1209: 1208: 1206: 1193: 1189: 1184: 1179: 1175: 1171: 1170: 1165: 1159: 1152: 1148: 1144: 1142:0-89871-479-6 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1105: 1103: 1101: 1099: 1097: 1089: 1084: 1082:9781586039295 1078: 1071: 1070: 1065: 1064:Heule, Marijn 1061: 1057: 1051: 1049: 1047: 1045: 1043: 1041: 1036: 1028: 1014: 994: 974: 966: 950: 930: 910: 890: 870: 861: 859: 855: 851: 835: 815: 795: 775: 755: 747: 742: 738: 728: 714: 706: 690: 682: 672: 658: 638: 618: 598: 578: 558: 550: 534: 531: 528: 525: 522: 519: 516: 509: 505: 489: 469: 449: 426: 420: 400: 380: 360: 337: 331: 328: 325: 305: 285: 276: 262: 242: 222: 202: 182: 162: 154: 138: 118: 98: 78: 64: 62: 58: 54: 50: 46: 42: 38: 34: 31:is a type of 30: 26: 22: 1173: 1167: 1158: 1124: 1117:Sudan, Madhu 1068: 1060:Selman, Bart 862: 734: 678: 353:for problem 318:to an input 298:for problem 277: 70: 48: 44: 37:completeness 28: 18: 1088:pp. 634–635 850:♯P-complete 1031:References 549:algorithms 67:Definition 965:composing 788:in ♯P to 532:∘ 526:∘ 33:reduction 1205:Category 1119:(2001), 508:identity 1192:0526203 1151:1827376 19:In the 1190:  1149:  1139:  1079:  1073:(PDF) 1137:ISBN 1077:ISBN 482:and 131:and 55:for 27:, a 1178:doi 1129:doi 1007:to 923:to 47:or 23:of 1207:: 1188:MR 1186:, 1172:, 1147:MR 1145:, 1135:, 1123:, 1115:; 1095:^ 1039:^ 1027:. 746:NP 737:♯P 727:. 671:. 275:. 63:. 41:♯P 1180:: 1174:8 1131:: 1090:. 1015:Y 995:X 975:X 951:Y 931:Y 911:X 891:X 871:Y 836:Y 816:Y 796:Y 776:X 756:Y 715:g 691:f 659:X 639:Y 619:g 599:Y 579:f 559:X 535:f 529:Y 523:g 520:= 517:X 490:Y 470:X 450:x 430:) 427:z 424:( 421:g 401:z 381:y 361:Y 341:) 338:x 335:( 332:f 329:= 326:y 306:X 286:x 263:X 243:Y 223:g 203:Y 183:X 163:f 139:g 119:f 99:Y 79:X

Index

computational complexity theory
counting problems
reduction
completeness
♯P
many-one reductions
decision problems
parsimonious reductions
polynomial time
function composition
identity
algorithms
parsimonious reduction
identity function
♯P
non-deterministic Turing machine
NP
♯P-complete
proving the completeness of the permanent of 0–1 matrices
Turing reduction
composing






Gomes, Carla P.
Selman, Bart
Heule, Marijn

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.