Knowledge

Parking function

Source 📝

249: 301:
preferences for which the first and third drivers both prefer the second space, while the other two drivers both prefer the first space. The first driver parks in space 2, the second in space 1, and the third in space 3 (because space 2 is taken). The fourth driver starts looking for a free space at space 1, but doesn't find it until space 4; all previous spaces were taken. The sequence (3,3,1,3) is not a parking function: too many drivers prefer space 3, so the last driver starts looking for a space after already passing the only free space, and will be unable to park.
300:
parking spaces, with each driver having a preferred parking space. Each driver travels until reaching their preferred space, and then parks in the first available spot. A parking function describes preferences for which all cars can park. For instance, the parking function (2,1,2,1) describes
703:
Much research has studied the number of parking functions of a special form. As a very simple special case, the parking functions that allow each car to park in its own preferred spot are exactly the
386: 698: 585: 540: 445: 649: 611: 481: 412: 158:. That is, it must contain at least one 1, at least two values that are 1 or 2, at least three values that are 1, 2, or 3, etc. Equivalently, if the sequence is 501: 338: 298: 278: 220: 200: 180: 156: 136: 116: 96: 76: 56: 868:; Meyles et al credit the connection between parking functions and ordered Bell numbers to a 2021 bachelor's thesis by Kimberly P. Hadaway of Williams College 542:
choices for the preferences, each of which leaves one vacant space. All spaces are symmetric to each other, so by symmetry, there are
884: 711:. The parking functions that allow each car to park either in its preferred spot or in the next spot are counted by the 613:
as the vacant space. These choices are exactly the parking functions. The parking functions can also be placed in
343: 503:
cars will always be able to park, no matter what preference each driver has for their starting space. There are
312:, a strategy for placing keys into a hash table that closely resembles the one-way parking strategy for cars. 784: 450: 658: 545: 823:
Konheim, Alan G.; Weiss, Benjamin (November 1966), "An occupancy discipline and applications",
506: 417: 248: 810: 766: 8: 712: 652: 628: 590: 460: 391: 858: 744: 486: 323: 283: 263: 205: 185: 165: 141: 121: 101: 81: 61: 41: 801: 159: 850: 832: 796: 754: 806: 762: 454: 253: 651:
vertices, one of which is designated as the root. This bijection, together with
853:; Jordaan, Richter; Kirby, Gordon Rojas; Sehayek, Sam; Spingarn, Ethan (2023), 622: 309: 878: 618: 27: 704: 457:
the following argument for this formula. On a circular one-way road with
260:
The name is explained by the following thought experiment. A sequence of
23: 758: 305: 304:
Parking functions also have a more serious application in the study of
735:
Yin, Mei (2023), "Parking functions: interdisciplinary connections",
708: 614: 836: 863: 749: 225:
For instance, there are 16 parking functions of length three:
655:
for the number of spanning trees, again shows that there are
118:
up to the sequence length, the sequence contains at least
848: 855:
Unit-interval parking functions and the permutohedron
661: 631: 593: 548: 509: 489: 463: 420: 394: 346: 326: 286: 266: 208: 188: 168: 144: 124: 104: 84: 64: 44: 280:
drivers in cars travel down a one-way street having
692: 643: 605: 579: 534: 495: 475: 439: 406: 380: 332: 292: 272: 214: 194: 174: 150: 130: 110: 90: 70: 50: 876: 78:positive integers, each in the range from 1 to 33: 822: 315: 202:th value of the sorted sequence is at most 320:The number of parking functions of length 862: 800: 779: 777: 775: 748: 587:choices for preferences that leave space 247: 783: 877: 772: 730: 728: 98:, with the property that, for every 842: 825:SIAM Journal on Applied Mathematics 734: 13: 816: 725: 14: 896: 789:Journal of Combinatorial Theory 737:Advances in Applied Probability 675: 662: 562: 549: 523: 510: 360: 347: 252:Parking along a one-way road ( 16:Generalization of permutations 1: 885:Factorial and binomial topics 802:10.1016/S0021-9800(69)80039-6 787:(1969), "Ballots and trees", 718: 38:A parking function of length 381:{\displaystyle (n+1)^{n-1}.} 7: 693:{\displaystyle (n+1)^{n-1}} 580:{\displaystyle (n+1)^{n-1}} 34:Definition and applications 30:, a branch of mathematics. 10: 901: 241:(1,2,2), (2,1,2), (2,2,1), 238:(1,1,3), (1,3,1), (3,1,1), 235:(1,1,2), (1,2,1), (2,1,1), 232:(3,2,1), (2,1,3), (1,3,2), 229:(1,2,3), (2,3,1), (3,1,2), 535:{\displaystyle (n+1)^{n}} 316:Combinatorial enumeration 440:{\displaystyle 4^{2}=16} 138:values that are at most 22:are a generalization of 182:in the same range, the 849:Meyles, Lucas Chaves; 694: 645: 607: 581: 536: 497: 477: 441: 408: 382: 334: 294: 274: 257: 216: 196: 176: 152: 132: 112: 92: 72: 52: 695: 646: 608: 582: 537: 498: 478: 442: 409: 383: 335: 295: 275: 251: 217: 197: 177: 153: 133: 113: 93: 73: 53: 713:ordered Bell numbers 659: 629: 591: 546: 507: 487: 461: 418: 392: 344: 324: 284: 264: 206: 186: 166: 142: 122: 102: 82: 62: 42: 759:10.1017/apr.2022.49 700:parking functions. 644:{\displaystyle n+1} 606:{\displaystyle n+1} 476:{\displaystyle n+1} 407:{\displaystyle n=3} 690: 641: 603: 577: 532: 493: 473: 437: 404: 378: 330: 290: 270: 258: 212: 192: 172: 148: 128: 108: 88: 68: 48: 851:Harris, Pamela E. 707:, counted by the 496:{\displaystyle n} 388:For instance for 333:{\displaystyle n} 293:{\displaystyle n} 273:{\displaystyle n} 215:{\displaystyle i} 195:{\displaystyle i} 175:{\displaystyle i} 151:{\displaystyle i} 131:{\displaystyle i} 111:{\displaystyle i} 91:{\displaystyle n} 71:{\displaystyle n} 58:is a sequence of 51:{\displaystyle n} 20:Parking functions 892: 869: 867: 866: 846: 840: 839: 831:(6): 1266–1274, 820: 814: 813: 804: 781: 770: 769: 752: 732: 699: 697: 696: 691: 689: 688: 653:Cayley's formula 650: 648: 647: 642: 612: 610: 609: 604: 586: 584: 583: 578: 576: 575: 541: 539: 538: 533: 531: 530: 502: 500: 499: 494: 483:spaces, each of 482: 480: 479: 474: 446: 444: 443: 438: 430: 429: 413: 411: 410: 405: 387: 385: 384: 379: 374: 373: 339: 337: 336: 331: 299: 297: 296: 291: 279: 277: 276: 271: 221: 219: 218: 213: 201: 199: 198: 193: 181: 179: 178: 173: 162:, then for each 157: 155: 154: 149: 137: 135: 134: 129: 117: 115: 114: 109: 97: 95: 94: 89: 77: 75: 74: 69: 57: 55: 54: 49: 900: 899: 895: 894: 893: 891: 890: 889: 875: 874: 873: 872: 847: 843: 837:10.1137/0114101 821: 817: 782: 773: 733: 726: 721: 678: 674: 660: 657: 656: 630: 627: 626: 592: 589: 588: 565: 561: 547: 544: 543: 526: 522: 508: 505: 504: 488: 485: 484: 462: 459: 458: 455:Henry O. Pollak 425: 421: 419: 416: 415: 414:this number is 393: 390: 389: 363: 359: 345: 342: 341: 325: 322: 321: 318: 285: 282: 281: 265: 262: 261: 254:Portobello Road 207: 204: 203: 187: 184: 183: 167: 164: 163: 143: 140: 139: 123: 120: 119: 103: 100: 99: 83: 80: 79: 63: 60: 59: 43: 40: 39: 36: 17: 12: 11: 5: 898: 888: 887: 871: 870: 841: 815: 795:(4): 408–411, 771: 743:(3): 768–792, 723: 722: 720: 717: 687: 684: 681: 677: 673: 670: 667: 664: 640: 637: 634: 623:complete graph 619:spanning trees 602: 599: 596: 574: 571: 568: 564: 560: 557: 554: 551: 529: 525: 521: 518: 515: 512: 492: 472: 469: 466: 436: 433: 428: 424: 403: 400: 397: 377: 372: 369: 366: 362: 358: 355: 352: 349: 329: 317: 314: 310:linear probing 289: 269: 246: 245: 242: 239: 236: 233: 230: 211: 191: 171: 147: 127: 107: 87: 67: 47: 35: 32: 15: 9: 6: 4: 3: 2: 897: 886: 883: 882: 880: 865: 860: 856: 852: 845: 838: 834: 830: 826: 819: 812: 808: 803: 798: 794: 790: 786: 785:Riordan, John 780: 778: 776: 768: 764: 760: 756: 751: 746: 742: 738: 731: 729: 724: 716: 714: 710: 706: 701: 685: 682: 679: 671: 668: 665: 654: 638: 635: 632: 624: 620: 616: 600: 597: 594: 572: 569: 566: 558: 555: 552: 527: 519: 516: 513: 490: 470: 467: 464: 456: 452: 448: 434: 431: 426: 422: 401: 398: 395: 375: 370: 367: 364: 356: 353: 350: 327: 313: 311: 307: 302: 287: 267: 255: 250: 243: 240: 237: 234: 231: 228: 227: 226: 223: 209: 189: 169: 161: 145: 125: 105: 85: 65: 45: 31: 29: 28:combinatorics 25: 21: 854: 844: 828: 824: 818: 792: 788: 740: 736: 705:permutations 702: 451:John Riordan 449: 319: 303: 259: 224: 37: 24:permutations 19: 18: 453:credits to 340:is exactly 306:hash tables 26:studied in 864:2305.15554 750:2107.01767 719:References 709:factorials 256:in London) 683:− 617:with the 615:bijection 570:− 368:− 308:based on 879:Category 244:(1,1,1). 811:0234843 767:4624028 809:  765:  160:sorted 859:arXiv 745:arXiv 625:with 621:on a 833:doi 797:doi 755:doi 881:: 857:, 829:14 827:, 807:MR 805:, 791:, 774:^ 763:MR 761:, 753:, 741:55 739:, 727:^ 715:. 447:. 435:16 222:. 861:: 835:: 799:: 793:6 757:: 747:: 686:1 680:n 676:) 672:1 669:+ 666:n 663:( 639:1 636:+ 633:n 601:1 598:+ 595:n 573:1 567:n 563:) 559:1 556:+ 553:n 550:( 528:n 524:) 520:1 517:+ 514:n 511:( 491:n 471:1 468:+ 465:n 432:= 427:2 423:4 402:3 399:= 396:n 376:. 371:1 365:n 361:) 357:1 354:+ 351:n 348:( 328:n 288:n 268:n 210:i 190:i 170:i 146:i 126:i 106:i 86:n 66:n 46:n

Index

permutations
combinatorics
sorted

Portobello Road
hash tables
linear probing
John Riordan
Henry O. Pollak
bijection
spanning trees
complete graph
Cayley's formula
permutations
factorials
ordered Bell numbers


arXiv
2107.01767
doi
10.1017/apr.2022.49
MR
4624028



Riordan, John
doi
10.1016/S0021-9800(69)80039-6

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.