Knowledge

Cayley's formula

Source 📝

27: 336:. In a short 1889 note, Cayley extended the formula in several directions, by taking into account the degrees of the vertices. Although he referred to Borchardt's original paper, the name "Cayley's formula" became standard in the field. 316:
due to Jim Pitman counts in two different ways the number of different sequences of directed edges that can be added to an empty graph on n vertices to form from it a rooted tree; see
145: 106: 67: 249: 212: 188: 269: 317: 281: 360:. Each labelled rooted forest can be turned into a labelled tree with one extra vertex, by adding a vertex with label 313: 603: 534: 387: 493:(1860). "Über eine Interpolationsformel für eine Art Symmetrischer Functionen und über Deren Anwendung". 111: 490: 329: 72: 33: 512: 345: 221: 215: 550: 470: 289: 466: 8: 191: 20: 280:
Many proofs of Cayley's tree formula are known. One classical proof of the formula uses
197: 173: 293: 582: 565: 577: 371: 168: 546: 476: 297: 284:, a formula for the number of spanning trees in an arbitrary graph involving the 259: 301: 597: 508: 462: 255: 164: 309: 160: 333: 285: 152: 26: 386:. A bijection between rooted forests and parking functions was given by 398:
The following generalizes Cayley's formula to labelled forests: Let
344:
Cayley's formula immediately gives the number of labelled rooted
308:-node trees with two distinguished nodes and maximal directed 367:
and connecting it to all roots of the trees in the forest.
264: 30:
The complete list of all trees on 2,3,4 labeled vertices:
318:
Double counting (proof technique) § Counting trees
224: 200: 176: 114: 75: 36: 495:
Math. Abh. der Akademie der Wissenschaften zu Berlin
419:
connected components, such that vertices 1, 2, ...,
370:
There is a close connection with rooted forests and
423:all belong to different connected components. Then 243: 206: 182: 139: 100: 61: 300:of Cayley's formula. Another bijective proof, by 595: 533: 254:The formula equivalently counts the number of 461: 304:, finds a one-to-one transformation between 16:Number of spanning trees of a complete graph 374:, since the number of parking functions on 566:"On Cayley's formula for counting forests" 581: 570:Journal of Combinatorial Theory, Series A 489: 25: 596: 563: 507: 537:(1968). "On an enumeration problem". 411:be the number of labelled forests on 328:The formula was first discovered by 339: 13: 393: 14: 615: 262:with labeled vertices (sequence 539:Journal of Combinatorial Theory 282:Kirchhoff's matrix tree theorem 557: 527: 501: 483: 455: 1: 448: 583:10.1016/0097-3165(90)90064-4 564:Takács, Lajos (March 1990). 167:. It states that for every 7: 10: 620: 332:in 1860, and proved via a 323: 140:{\displaystyle 4^{4-2}=16} 108:trees with 3 vertices and 18: 517:Quart. J. Pure Appl. Math 101:{\displaystyle 3^{3-2}=3} 62:{\displaystyle 2^{2-2}=1} 275: 19:Not to be confused with 244:{\displaystyle n^{n-2}} 330:Carl Wilhelm Borchardt 245: 208: 184: 148: 147:trees with 4 vertices. 141: 102: 69:tree with 2 vertices, 63: 535:Schützenberger, M. P. 246: 209: 185: 142: 103: 64: 29: 604:Trees (graph theory) 513:"A theorem on trees" 472:Proofs from THE BOOK 388:M. P. Schützenberger 222: 198: 174: 112: 73: 34: 479:. pp. 141–146. 467:Ziegler, Günter M. 241: 204: 180: 149: 137: 98: 59: 372:parking functions 352:vertices, namely 207:{\displaystyle n} 183:{\displaystyle n} 611: 588: 587: 585: 561: 555: 554: 531: 525: 524: 505: 499: 498: 491:Borchardt, C. W. 487: 481: 480: 459: 444: 385: 366: 359: 340:Other properties 294:Prüfer sequences 267: 250: 248: 247: 242: 240: 239: 213: 211: 210: 205: 190:, the number of 189: 187: 186: 181: 169:positive integer 157:Cayley's formula 146: 144: 143: 138: 130: 129: 107: 105: 104: 99: 91: 90: 68: 66: 65: 60: 52: 51: 21:Cayley's theorem 619: 618: 614: 613: 612: 610: 609: 608: 594: 593: 592: 591: 562: 558: 532: 528: 506: 502: 488: 484: 477:Springer-Verlag 460: 456: 451: 436: 424: 410: 396: 394:Generalizations 379: 361: 353: 342: 326: 314:double counting 298:bijective proof 278: 263: 229: 225: 223: 220: 219: 199: 196: 195: 175: 172: 171: 159:is a result in 119: 115: 113: 110: 109: 80: 76: 74: 71: 70: 41: 37: 35: 32: 31: 24: 17: 12: 11: 5: 617: 607: 606: 590: 589: 576:(2): 321–323. 556: 526: 500: 482: 463:Aigner, Martin 453: 452: 450: 447: 428: 415:vertices with 402: 395: 392: 341: 338: 325: 322: 277: 274: 260:complete graph 256:spanning trees 238: 235: 232: 228: 203: 179: 136: 133: 128: 125: 122: 118: 97: 94: 89: 86: 83: 79: 58: 55: 50: 47: 44: 40: 15: 9: 6: 4: 3: 2: 616: 605: 602: 601: 599: 584: 579: 575: 571: 567: 560: 552: 548: 544: 540: 536: 530: 522: 518: 514: 510: 504: 496: 492: 486: 478: 474: 473: 468: 464: 458: 454: 446: 443: 440: 435: 431: 427: 422: 418: 414: 409: 405: 401: 391: 389: 383: 378:cars is also 377: 373: 368: 364: 357: 351: 347: 337: 335: 331: 321: 319: 315: 312:. A proof by 311: 310:pseudoforests 307: 303: 299: 295: 291: 287: 283: 273: 271: 266: 261: 257: 252: 236: 233: 230: 226: 217: 201: 193: 177: 170: 166: 165:Arthur Cayley 162: 158: 154: 134: 131: 126: 123: 120: 116: 95: 92: 87: 84: 81: 77: 56: 53: 48: 45: 42: 38: 28: 22: 573: 569: 559: 542: 538: 529: 520: 516: 503: 494: 485: 471: 457: 441: 438: 433: 429: 425: 420: 416: 412: 407: 403: 399: 397: 381: 375: 369: 362: 355: 349: 343: 327: 305: 279: 253: 163:named after 161:graph theory 156: 150: 545:: 219–221. 334:determinant 302:André Joyal 286:determinant 153:mathematics 523:: 376–378. 509:Cayley, A. 449:References 390:in 1968. 234:− 124:− 85:− 46:− 598:Category 511:(1889). 469:(1998). 296:yield a 216:vertices 214:labeled 551:0218257 497:: 1–20. 346:forests 324:History 268:in the 265:A000272 549:  290:matrix 288:of a 276:Proof 258:of a 192:trees 384:+ 1) 358:+ 1) 270:OEIS 578:doi 365:+ 1 348:on 292:. 272:). 218:is 194:on 151:In 600:: 574:53 572:. 568:. 547:MR 541:. 521:23 519:. 515:. 475:. 465:; 445:. 437:= 320:. 251:. 155:, 135:16 586:. 580:: 553:. 543:4 442:n 439:k 434:k 432:, 430:n 426:T 421:k 417:k 413:n 408:k 406:, 404:n 400:T 382:n 380:( 376:n 363:n 356:n 354:( 350:n 306:n 237:2 231:n 227:n 202:n 178:n 132:= 127:2 121:4 117:4 96:3 93:= 88:2 82:3 78:3 57:1 54:= 49:2 43:2 39:2 23:.

Index

Cayley's theorem

mathematics
graph theory
Arthur Cayley
positive integer
trees
vertices
spanning trees
complete graph
A000272
OEIS
Kirchhoff's matrix tree theorem
determinant
matrix
Prüfer sequences
bijective proof
André Joyal
pseudoforests
double counting
Double counting (proof technique) § Counting trees
Carl Wilhelm Borchardt
determinant
forests
parking functions
M. P. Schützenberger
Aigner, Martin
Ziegler, Günter M.
Proofs from THE BOOK
Springer-Verlag

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.