Knowledge

SL2(R)

Source 📝

3911: 3007:)) by eigenvalues and nilpotence (concretely, nilpotence means where 1s occur in the Jordan blocks). Thus elements of SL(2) are classified up to conjugacy in GL(2) (or indeed SL(2)) by trace (since determinant is fixed, and trace and determinant determine eigenvalues), except if the eigenvalues are equal, so ±I and the parabolic elements of trace +2 and trace -2 are not conjugate (the former have no off-diagonal entries in Jordan form, while the latter do). 52: 3244: 4125: 1926: 3011:
conjugacy classes for each trace (clockwise and counterclockwise rotations), for absolute value of the trace equal to 2 there are three conjugacy classes for each trace (positive shear, identity, negative shear), and for absolute value of the trace greater than 2 there is one conjugacy class for a given trace.
1000: 3010:
Up to conjugacy in SL(2) (instead of GL(2)), there is an additional datum, corresponding to orientation: a clockwise and counterclockwise (elliptical) rotation are not conjugate, nor are a positive and negative shear, as detailed above; thus for absolute value of trace less than 2, there are two
3498: 3375: 3082: 2976: 2741: 1658: 3983: 1751: 2155: 2855: 2795: 1508: 852: 2060: 2986:
of half of the trace, but the sign can be positive or negative: in contrast to the elliptic case, a squeeze and its inverse are conjugate in SL₂ (by a rotation in the axes; for standard axes, a rotation by 90°).
3381: 3893: 3839: 3785: 3728: 3667: 3613: 3250: 3239:{\displaystyle \mathbf {K} =\left\{{\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ \theta \in \mathbf {R} \right\}\cong SO(2),} 2531:
these sets are not closed under multiplication (the product of two parabolic elements need not be parabolic, and so forth). However, each element is conjugate to a member of one of 3 standard
4653: 3074: 2342: 2212: 2910: 2277: 2680: 1558: 2464: 2412: 4120:{\displaystyle {\overline {\mathrm {SL} (2,\mathbf {R} )}}\to \cdots \to \mathrm {Mp} (2,\mathbf {R} )\to \mathrm {SL} (2,\mathbf {R} )\to \mathrm {PSL} (2,\mathbf {R} ).} 497: 472: 435: 2438: 1921:{\displaystyle {\begin{bmatrix}a&b\\c&d\end{bmatrix}}\mapsto {\begin{bmatrix}a^{2}&2ab&b^{2}\\ac&ad+bc&bd\\c^{2}&2cd&d^{2}\end{bmatrix}}.} 2071: 3955:
of the modular group. These are lattices inside the relevant algebraic groups, and this corresponds algebraically to the universal covering group in topology.
2800: 2384:|tr|; dividing by 2 corrects for the effect of dimension, while absolute value corresponds to ignoring an overall factor of ±1 such as when working in PSL(2, 4348:) has no nontrivial finite-dimensional unitary representations. This is a feature of every connected simple non-compact Lie group. For outline of proof, see 995:{\displaystyle {\mbox{SL}}(2,\mathbf {R} )=\left\{{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\colon a,b,c,d\in \mathbf {R} {\mbox{ and }}ad-bc=1\right\}.} 2746: 2608:
Elements of trace 0 may be called "circular elements" (by analogy with eccentricity) but this is rarely done; they correspond to elements with eigenvalues ±
1318: 4349: 2502:
A subgroup that is contained with the elliptic (respectively, parabolic, hyperbolic) elements, plus the identity and negative identity, is called an
2648: 2631:
of half of the trace, with the sign of the rotation determined by orientation. (A rotation and its inverse are conjugate in GL(2) but not SL(2).)
2570:
of the Euclidean plane – they can be interpreted as rotations in a possibly non-orthogonal basis – and the corresponding element of PSL(2, 
799: 1996: 2473:) they are the same), have trace ±2, and hence by this classification are parabolic elements, though they are often considered separately. 3493:{\displaystyle \mathbf {N} =\left\{{\begin{pmatrix}1&x\\0&1\end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ x\in \mathbf {R} \right\}.} 3788: 1282:) (as linear transforms of the torus), and these interpretations can also be viewed in light of the general theory of SL(2,  3370:{\displaystyle \mathbf {A} =\left\{{\begin{pmatrix}r&0\\0&r^{-1}\end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ r>0\right\},} 2496: 3848: 3794: 3740: 3683: 3622: 3568: 357: 4467: 307: 1725:(remember that the Lie algebra elements are also 2 × 2 matrices), yielding a faithful 3-dimensional linear 792: 302: 4359:) is quite interesting. The group has several families of unitary representations, which were worked out in detail by 1135:), the group of real 2 × 2 matrices with determinant ±1; this is more commonly used in the context of the 4696: 4669: 4615: 2495:) (real Möbius transformations), with the addition of "loxodromic" transformations corresponding to complex traces; 1686:
of hyperbolic space, and the corresponding Möbius transformations of the disc are the hyperbolic isometries of the
1047: 4281: 3038: 2476: 1062: 4337: 2971:{\displaystyle \left({\begin{smallmatrix}\lambda \\&\lambda ^{-1}\end{smallmatrix}}\right)\times \{\pm I\}} 718: 2542:, as do the hyperbolic elements (excluding ±1). By contrast, the parabolic elements, together with ±1, form a 2297: 2167: 785: 4529:
Gelfand, Israel Moiseevich; Neumark, Mark Aronovich (1946). "Unitary representations of the Lorentz group".
4738: 4733: 3503:
These three elements are the generators of the Elliptic, Hyperbolic, and Parabolic subsets respectively.
2232: 2160:
This leads to the following classification of elements, with corresponding action on the Euclidean plane:
1683: 1529: 4268:
is much larger than the universal covering group. However these large central extensions do not take the
3952: 3925: 2736:{\displaystyle \left({\begin{smallmatrix}1&\lambda \\&1\end{smallmatrix}}\right)\times \{\pm I\}} 1259: 402: 216: 3562: 1653:{\displaystyle z\mapsto {\frac {az+b}{cz+d}}\;\;\;\;{\mbox{ (where }}a,b,c,d\in \mathbf {R} {\mbox{)}}.} 4158: 2639:
A parabolic element has only a single eigenvalue, which is either 1 or -1. Such an element acts as a
2365: 1722: 134: 1179: 4414: 1988: 1236: 1206: 1202: 1160: 2443: 2391: 4265: 4238: 2624: 2617: 1043: 600: 334: 211: 99: 2488: 1522: 480: 455: 418: 4395: 3670: 2417: 1672: 17: 4326: 4322: 2882: 2878: 2652: 2532: 2223: 750: 540: 1687: 4723: 4492: 4181: 3020: 2897: 2628: 1726: 1152: 1028: 624: 4743: 4706: 4679: 4585: 4563: 4542: 4521: 4477: 4390: 3674: 2623:
Elliptic elements are conjugate into the subgroup of rotations of the Euclidean plane, the
2598: 2150:{\displaystyle \lambda ={\frac {\mathrm {tr} (A)\pm {\sqrt {\mathrm {tr} (A)^{2}-4}}}{2}}.} 1698: 1303: 1210: 839: 817: 564: 552: 170: 104: 4691:. Princeton Mathematical Series. Vol. 35. Princeton, NJ: Princeton University Press. 2538:
Topologically, as trace is a continuous map, the elliptic elements (excluding ±1) form an
8: 4728: 4452:
Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic actions of SL(2,R)
4424: 4245:), and the circle SO(2) / {±1} is a maximal compact subgroup of PSL(2,  3904: 3532: 3520: 1702: 832: 139: 34: 4567: 4490:
Bargmann, Valentine (1947). "Irreducible Unitary Representations of the Lorentz Group".
2869:
for a hyperbolic element are both real, and are reciprocals. Such an element acts as a
2850:{\displaystyle \left({\begin{smallmatrix}-1&\pm 1\\&-1\end{smallmatrix}}\right)} 4594: 4551: 4509: 2996: 124: 96: 2790:{\displaystyle \left({\begin{smallmatrix}1&\pm 1\\&1\end{smallmatrix}}\right)} 1503:{\displaystyle \mapsto {\begin{pmatrix}a&c\\b&d\end{pmatrix}}\ =\ \ =\,\left.} 4692: 4665: 4599: 4463: 4269: 3963: 3731: 3528: 3512: 2903:
Hyperbolic elements are conjugate into the 2 component group of standard squeezes × ±
2559: 1964: 1537: 1167: 1117: 529: 372: 266: 695: 4657: 4589: 4571: 4501: 4455: 4302: 4253: 4234: 2979: 1940: 1664: 1244: 1183: 1171: 1125: 1012: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 3023:
of a group is a method to construct the group as a product of three Lie subgroups
2673:
Parabolic elements are conjugate into the 2 component group of standard shears × ±
1675:, it is also isomorphic to the group of conformal automorphisms of the unit disc. 4702: 4675: 4581: 4538: 4517: 4473: 4212: 3842: 2886: 2870: 2656: 2579: 2353: 1956: 1738: 1255: 1094: 1006: 764: 757: 743: 700: 588: 511: 341: 255: 195: 75: 2920: 2810: 2756: 2690: 4419: 4372: 4360: 4208: 4189: 4166: 3730:
is a line bundle over the hyperbolic plane. When imbued with a left-invariant
2508: 1518: 1109: 1055: 771: 707: 397: 377: 314: 279: 200: 190: 175: 160: 114: 91: 4661: 4717: 4400: 4220: 3929: 3896: 3524: 2893: 2663: 2640: 2594: 2586: 2523:) into elliptic, parabolic, and hyperbolic elements is a classification into 2361: 2288: 1948: 1251: 1222: 1136: 1098: 1009: 690: 612: 446: 319: 185: 4227:), which acts on a tessellation of the hyperbolic plane by ideal triangles. 3910: 4656:. Graduate Texts in Mathematics. Vol. 105. New York: Springer-Verlag. 4603: 4385: 4364: 4231: 4216: 4197: 3616: 3555: 2368:: if one defines eccentricity as half the absolute value of the trace (ε = 1932: 1671:) is the group of conformal automorphisms of the upper half-plane. By the 1278:) have additional interpretations, as do elements of the group SL(2,  1225: 1051: 545: 244: 233: 180: 155: 150: 109: 80: 43: 4576: 4429: 4368: 4310: 3941: 3915: 2866: 2743:. In fact, they are all conjugate (in SL(2)) to one of the four matrices 2563: 2555: 2469:
The identity element 1 and negative identity element −1 (in PSL(2, 
1694: 843: 836: 813: 4513: 3735: 2667: 2543: 2055:{\displaystyle \lambda ^{2}\,-\,\mathrm {tr} (A)\,\lambda \,+\,1\,=\,0} 1976: 1693:
The above formula can be also used to define Möbius transformations of
1679: 1299: 1267: 712: 440: 2873:
of the Euclidean plane, and the corresponding element of PSL(2, 
2643:
on the Euclidean plane, and the corresponding element of PSL(2, 
1733:). This can alternatively be described as the action of PSL(2,  1663:
This is precisely the set of Möbius transformations that preserve the
1229: 1197:) has several interesting descriptions, up to Lie group isomorphism: 1016: 533: 4505: 3936:
Under this covering, the preimage of the modular group PSL(2, 
3900: 2857:(in GL(2) or SL(2), the ± can be omitted, but in SL(2) it cannot). 2575: 2567: 2539: 1240: 1024: 1020: 70: 4305:, and is the split-real form of the complex Lie group SL(2,  1513:
These projective transformations form a subgroup of PSL(2, 
4459: 4405: 1032: 412: 326: 3615:, is an example of a finite-dimensional Lie group that is not a 3544: 2983: 2597:. These are all the elements of the modular group with finite 1701:. The corresponding geometries are in non-trivial relations to 51: 4355:
The infinite-dimensional representation theory of SL(2, 
2602: 4332:
The finite-dimensional representation theory of SL(2, 
3958:
The 2-fold covering group can be identified as Mp(2, 
1163: 4130:
However, there are other covering groups of PSL(2, 
3888:{\displaystyle {\overline {{\mbox{SL}}(2,\mathbf {R} )}}} 3841:
is the universal cover of the unit tangent bundle to any
3834:{\displaystyle {\overline {{\mbox{SL}}(2,\mathbf {R} )}}} 3780:{\displaystyle {\overline {{\mbox{SL}}(2,\mathbf {R} )}}} 3723:{\displaystyle {\overline {{\mbox{SL}}(2,\mathbf {R} )}}} 3662:{\displaystyle {\overline {{\mbox{SL}}(2,\mathbf {R} )}}} 3608:{\displaystyle {\overline {{\mbox{SL}}(2,\mathbf {R} )}}} 1190:) preserves unoriented area: it may reverse orientation. 2612:, and are conjugate to rotation by 90°, and square to - 1943:(2,1), and induces an isomorphism between PSL(2,  4552:"Plancherel formula for the 2×2 real unimodular group" 4211:. These are the hyperbolic analogue of the Euclidean 3856: 3802: 3748: 3691: 3630: 3576: 3403: 3272: 3104: 3043: 1799: 1760: 1641: 1605: 1552:) act on the complex plane by Möbius transformations: 1363: 957: 893: 857: 4618: 3986: 3851: 3797: 3743: 3686: 3625: 3571: 3384: 3253: 3085: 3041: 2913: 2803: 2749: 2683: 2446: 2420: 2394: 2300: 2235: 2170: 2074: 1999: 1754: 1561: 1528:
When the real line is considered the boundary of the
1321: 1182:. It is also isomorphic to the group of unit-length 855: 483: 458: 421: 3977:
The aforementioned groups together form a sequence:
4454:. London: Imperial College Press. p. xiv+192. 4647: 4119: 3887: 3833: 3779: 3722: 3661: 3607: 3492: 3369: 3238: 3068: 2970: 2849: 2789: 2735: 2558:for an elliptic element are both complex, and are 2458: 2432: 2406: 2336: 2271: 2206: 2149: 2054: 1959:restricts to the isometric action of PSL(2,  1920: 1652: 1502: 994: 491: 466: 429: 2999:, matrices are classified up to conjugacy (in GL( 4715: 4340:, which is the compact real form of SL(2,  27:Group of real 2×2 matrices with unit determinant 4689:Three-dimensional geometry and topology. Vol. 1 4648:{\displaystyle \mathrm {SL} _{2}(\mathbf {R} )} 3506: 3014: 1745:. The result is the following representation: 4549: 4528: 2360:The names correspond to the classification of 4687:Thurston, William (1997). Silvio Levy (ed.). 1970: 793: 4272:into account and are somewhat pathological. 2965: 2956: 2730: 2721: 3069:{\displaystyle {\mbox{SL}}(2,\mathbf {R} )} 1274:Elements of the modular group PSL(2,  3543:), and can be thought of as the bundle of 1603: 1602: 1601: 1600: 800: 786: 4593: 4575: 4188:) is the two-element group {±1}, and the 4161:by divisibility; these cover SL(2,  3453: 3332: 3181: 2048: 2044: 2040: 2036: 2032: 2014: 2010: 1708: 1543: 1445: 1258:. Equivalently, it is isomorphic to the 485: 460: 423: 4686: 4489: 4275: 3909: 2535:(possibly times ±1), as detailed below. 1678:These Möbius transformations act as the 4325:2 × 2 matrices. It is the 2982:of the hyperbolic rotation is given by 2337:{\displaystyle |\mathrm {tr} (A)|>2} 2207:{\displaystyle |\mathrm {tr} (A)|<2} 14: 4716: 4175: 3970:) as the symplectic group Sp(2,  3535:on the hyperbolic plane. SL(2,  2860: 1951:SO(2,1). This action of PSL(2,  1717:) acts on its Lie algebra sl(2,  1262:SO(1,2). It follows that SL(2,  358:Classification of finite simple groups 4449: 3550:The fundamental group of SL(2,  2634: 2566:. Such an element is conjugate to a 1131:Another related group is SL(2,  4610: 3539:) is a 2-fold cover of PSL(2,  2990: 2589:must have eigenvalues {ω, ω}, where 2549: 2272:{\displaystyle |\mathrm {tr} (A)|=2} 1019:of dimension 3 with applications in 4256:of the discrete group PSL(2,  4219:. The most famous of these is the 4203:Discrete subgroups of PSL(2,  3899:over some 2-dimensional hyperbolic 1108:Also closely related is the 2-fold 24: 4624: 4621: 4443: 4093: 4090: 4087: 4062: 4059: 4034: 4031: 3994: 3991: 3523:of the hyperbolic plane. It is a 2310: 2307: 2245: 2242: 2180: 2177: 2110: 2107: 2088: 2085: 2019: 2016: 1699:double (aka split-complex) numbers 25: 4755: 2919: 2881:of the hyperbolic plane and as a 2809: 2755: 2689: 2651:of the hyperbolic plane and as a 1048:fractional linear transformations 4638: 4350:non-unitarity of representations 4107: 4076: 4048: 4008: 3872: 3818: 3764: 3707: 3646: 3592: 3478: 3386: 3255: 3206: 3087: 3059: 2627:SO(2); the angle of rotation is 2593:is a primitive 3rd, 4th, or 6th 1667:. It follows that PSL(2,  1636: 1178:) and the special unitary group 952: 873: 50: 4321:), is the algebra of all real, 2578:of the hyperbolic plane and of 1289: 1142: 1063:projective special linear group 4642: 4634: 4344:). In particular, SL(2,  4338:representation theory of SU(2) 4111: 4097: 4083: 4080: 4066: 4055: 4052: 4038: 4027: 4021: 4012: 3998: 3876: 3862: 3822: 3808: 3768: 3754: 3711: 3697: 3650: 3636: 3596: 3582: 3464: 3457: 3443: 3343: 3336: 3322: 3230: 3224: 3192: 3185: 3171: 3063: 3049: 2519:The trichotomy of SL(2,  2459:{\displaystyle \epsilon >1} 2407:{\displaystyle \epsilon <1} 2324: 2320: 2314: 2302: 2259: 2255: 2249: 2237: 2194: 2190: 2184: 2172: 2121: 2114: 2098: 2092: 2029: 2023: 1791: 1565: 1436: 1403: 1355: 1340: 1337: 1334: 1322: 1093:denotes the 2 × 2 877: 863: 719:Infinite dimensional Lie group 13: 1: 4436: 2605:as periodic diffeomorphisms. 4556:Proc. Natl. Acad. Sci. U.S.A 4016: 3880: 3826: 3772: 3715: 3654: 3600: 3507:Topology and universal cover 3015:Iwasawa or KAN decomposition 2616:: they are the non-identity 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 7: 4450:Kisil, Vladimir V. (2012). 4378: 3953:universal central extension 3926:universal central extension 3845:. Any manifold modeled on 2892:Hyperbolic elements of the 2574:) acts as (conjugate to) a 2433:{\displaystyle \epsilon =1} 1260:indefinite orthogonal group 217:List of group theory topics 10: 4760: 4410:) (Möbius transformations) 4279: 4159:lattice of covering groups 3966:, thinking of SL(2,  3519:) can be described as the 3076:these three subgroups are 2662:Parabolic elements of the 1971:Classification of elements 1207:projective transformations 1193:The quotient PSL(2,  1077:) = SL(2,  4662:10.1007/978-1-4612-5142-2 4415:Projective transformation 4301:) is a real, non-compact 4282:Representation theory of 3789:eight Thurston geometries 3547:on the hyperbolic plane. 2585:Elliptic elements of the 2497:analogous classifications 1989:characteristic polynomial 1967:of the hyperbolic plane. 1548:Elements of PSL(2,  1294:Elements of PSL(2,  1120:(thinking of SL(2,  4531:Acad. Sci. USSR. J. Phys 4239:maximal compact subgroup 3895:is orientable, and is a 3680:As a topological space, 3563:universal covering group 2625:special orthogonal group 2479:is used for SL(2,  1186:. The group SL(2,  1044:complex upper half-plane 335:Elementary abelian group 212:Glossary of group theory 4550:Harish-Chandra (1952). 4396:Projective linear group 4336:) is equivalent to the 4317:), denoted sl(2,  4134:) corresponding to all 2533:one-parameter subgroups 2477:The same classification 1673:Riemann mapping theorem 1266:) is isomorphic to the 1061:(the 2 × 2 4649: 4260:) is much larger than 4121: 3933: 3889: 3835: 3781: 3724: 3663: 3609: 3494: 3371: 3240: 3070: 2972: 2898:Anosov diffeomorphisms 2851: 2791: 2737: 2601:, and they act on the 2489:Möbius transformations 2460: 2434: 2408: 2388:)), then this yields: 2338: 2273: 2222:and is conjugate to a 2208: 2151: 2056: 1922: 1713:The group SL(2,  1709:Adjoint representation 1703:Lobachevskian geometry 1684:upper half-plane model 1654: 1544:Möbius transformations 1523:Möbius transformations 1504: 1153:linear transformations 1151:) is the group of all 1069:). More specifically, 996: 751:Linear algebraic group 493: 468: 431: 4650: 4577:10.1073/pnas.38.4.337 4493:Annals of Mathematics 4276:Representation theory 4122: 3913: 3890: 3836: 3782: 3725: 3673:, finite-dimensional 3664: 3610: 3495: 3372: 3241: 3071: 3021:Iwasawa decomposition 2973: 2852: 2792: 2738: 2461: 2435: 2409: 2339: 2274: 2209: 2152: 2057: 1923: 1655: 1517:), which acts on the 1505: 1254:of three-dimensional 1250:It is the restricted 1029:representation theory 997: 835:of 2 × 2 494: 469: 432: 4616: 4611:Lang, Serge (1985). 4391:Special linear group 4264:, and the universal 3984: 3849: 3795: 3741: 3684: 3623: 3569: 3533:symplectic structure 3527:, and has a natural 3382: 3251: 3083: 3039: 2911: 2801: 2747: 2681: 2499:are used elsewhere. 2444: 2418: 2392: 2298: 2233: 2168: 2072: 1997: 1752: 1559: 1319: 1304:real projective line 1211:real projective line 1054:factors through the 853: 818:special linear group 481: 456: 419: 4739:Hyperbolic geometry 4734:Projective geometry 4568:1952PNAS...38..337H 4425:Table of Lie groups 4176:Algebraic structure 3905:Seifert fiber space 3787:becomes one of the 3521:unit tangent bundle 2861:Hyperbolic elements 2514:hyperbolic subgroup 2491:) and PSL(2,  2483:) and PSL(2,  1688:Poincaré disk model 1235:It is the group of 1221:It is the group of 1201:It is the group of 125:Group homomorphisms 35:Algebraic structure 4645: 4117: 3934: 3885: 3860: 3843:hyperbolic surface 3831: 3806: 3777: 3752: 3720: 3695: 3659: 3634: 3605: 3580: 3554:) is the infinite 3490: 3428: 3367: 3307: 3236: 3156: 3066: 3047: 2997:Jordan normal form 2968: 2947: 2946: 2847: 2841: 2840: 2787: 2781: 2780: 2733: 2712: 2711: 2635:Parabolic elements 2546:that is not open. 2509:parabolic subgroup 2456: 2430: 2404: 2334: 2269: 2204: 2147: 2052: 1918: 1909: 1785: 1737:) on the space of 1650: 1645: 1609: 1607: (where  1538:hyperbolic motions 1500: 1388: 1097:. It contains the 1081:) / {± 992: 961: 918: 861: 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 4469:978-1-84816-858-9 4266:central extension 4157:)), which form a 4019: 3964:metaplectic group 3944:on 3 generators, 3883: 3859: 3829: 3805: 3775: 3751: 3718: 3694: 3657: 3633: 3603: 3579: 3529:contact structure 3513:topological space 3470: 3462: 3349: 3341: 3198: 3190: 3046: 2991:Conjugacy classes 2550:Elliptic elements 2504:elliptic subgroup 2142: 2136: 1965:hyperboloid model 1644: 1608: 1598: 1488: 1481: 1441: 1423: 1402: 1396: 1351: 1118:metaplectic group 960: 860: 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 4751: 4710: 4683: 4654: 4652: 4651: 4646: 4641: 4633: 4632: 4627: 4607: 4597: 4579: 4546: 4525: 4482: 4481: 4447: 4303:simple Lie group 4254:Schur multiplier 4213:wallpaper groups 4126: 4124: 4123: 4118: 4110: 4096: 4079: 4065: 4051: 4037: 4020: 4015: 4011: 3997: 3988: 3894: 3892: 3891: 3886: 3884: 3879: 3875: 3861: 3857: 3853: 3840: 3838: 3837: 3832: 3830: 3825: 3821: 3807: 3803: 3799: 3791:. For example, 3786: 3784: 3783: 3778: 3776: 3771: 3767: 3753: 3749: 3745: 3729: 3727: 3726: 3721: 3719: 3714: 3710: 3696: 3692: 3688: 3668: 3666: 3665: 3660: 3658: 3653: 3649: 3635: 3631: 3627: 3614: 3612: 3611: 3606: 3604: 3599: 3595: 3581: 3577: 3573: 3499: 3497: 3496: 3491: 3486: 3482: 3481: 3468: 3467: 3460: 3456: 3433: 3432: 3389: 3376: 3374: 3373: 3368: 3363: 3359: 3347: 3346: 3339: 3335: 3312: 3311: 3304: 3303: 3258: 3245: 3243: 3242: 3237: 3214: 3210: 3209: 3196: 3195: 3188: 3184: 3161: 3160: 3090: 3075: 3073: 3072: 3067: 3062: 3048: 3044: 2980:hyperbolic angle 2977: 2975: 2974: 2969: 2952: 2948: 2943: 2942: 2929: 2856: 2854: 2853: 2848: 2846: 2842: 2830: 2796: 2794: 2793: 2788: 2786: 2782: 2773: 2742: 2740: 2739: 2734: 2717: 2713: 2704: 2465: 2463: 2462: 2457: 2439: 2437: 2436: 2431: 2413: 2411: 2410: 2405: 2383: 2381: 2380: 2377: 2374: 2343: 2341: 2340: 2335: 2327: 2313: 2305: 2278: 2276: 2275: 2270: 2262: 2248: 2240: 2213: 2211: 2210: 2205: 2197: 2183: 2175: 2156: 2154: 2153: 2148: 2143: 2138: 2137: 2129: 2128: 2113: 2105: 2091: 2082: 2061: 2059: 2058: 2053: 2022: 2009: 2008: 1927: 1925: 1924: 1919: 1914: 1913: 1906: 1905: 1883: 1882: 1834: 1833: 1811: 1810: 1790: 1789: 1729:of PSL(2,  1665:upper half-plane 1659: 1657: 1656: 1651: 1646: 1642: 1639: 1610: 1606: 1599: 1597: 1583: 1569: 1530:hyperbolic plane 1509: 1507: 1506: 1501: 1496: 1492: 1486: 1482: 1480: 1466: 1452: 1439: 1421: 1400: 1394: 1393: 1392: 1349: 1311: 1245:hyperbolic plane 1218: 1172:symplectic group 1126:symplectic group 1001: 999: 998: 993: 988: 984: 962: 958: 955: 923: 922: 876: 862: 858: 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 238: 65: 64: 54: 41: 30: 29: 21: 4759: 4758: 4754: 4753: 4752: 4750: 4749: 4748: 4714: 4713: 4699: 4672: 4637: 4628: 4620: 4619: 4617: 4614: 4613: 4506:10.2307/1969129 4486: 4485: 4470: 4448: 4444: 4439: 4434: 4381: 4327:Bianchi algebra 4313:of SL(2,  4295: 4287: 4278: 4241:of SL(2,  4209:Fuchsian groups 4184:of SL(2,  4178: 4152: 4106: 4086: 4075: 4058: 4047: 4030: 4007: 3990: 3989: 3987: 3985: 3982: 3981: 3951:, which is the 3950: 3923: 3871: 3855: 3854: 3852: 3850: 3847: 3846: 3817: 3801: 3800: 3798: 3796: 3793: 3792: 3763: 3747: 3746: 3744: 3742: 3739: 3738: 3706: 3690: 3689: 3687: 3685: 3682: 3681: 3645: 3629: 3628: 3626: 3624: 3621: 3620: 3591: 3575: 3574: 3572: 3570: 3567: 3566: 3531:induced by the 3515:, PSL(2,  3509: 3477: 3463: 3452: 3427: 3426: 3421: 3415: 3414: 3409: 3399: 3398: 3397: 3393: 3385: 3383: 3380: 3379: 3342: 3331: 3306: 3305: 3296: 3292: 3290: 3284: 3283: 3278: 3268: 3267: 3266: 3262: 3254: 3252: 3249: 3248: 3205: 3191: 3180: 3155: 3154: 3143: 3131: 3130: 3116: 3100: 3099: 3098: 3094: 3086: 3084: 3081: 3080: 3058: 3042: 3040: 3037: 3036: 3017: 2993: 2945: 2944: 2935: 2931: 2927: 2926: 2918: 2914: 2912: 2909: 2908: 2887:Minkowski space 2871:squeeze mapping 2863: 2839: 2838: 2828: 2827: 2819: 2808: 2804: 2802: 2799: 2798: 2779: 2778: 2771: 2770: 2762: 2754: 2750: 2748: 2745: 2744: 2710: 2709: 2702: 2701: 2696: 2688: 2684: 2682: 2679: 2678: 2657:Minkowski space 2637: 2580:Minkowski space 2552: 2506:(respectively, 2445: 2442: 2441: 2419: 2416: 2415: 2393: 2390: 2389: 2378: 2375: 2372: 2371: 2369: 2354:squeeze mapping 2323: 2306: 2301: 2299: 2296: 2295: 2258: 2241: 2236: 2234: 2231: 2230: 2193: 2176: 2171: 2169: 2166: 2165: 2124: 2120: 2106: 2104: 2084: 2083: 2081: 2073: 2070: 2069: 2015: 2004: 2000: 1998: 1995: 1994: 1973: 1957:Minkowski space 1935:on sl(2,  1908: 1907: 1901: 1897: 1895: 1884: 1878: 1874: 1871: 1870: 1862: 1845: 1836: 1835: 1829: 1825: 1823: 1812: 1806: 1802: 1795: 1794: 1784: 1783: 1778: 1772: 1771: 1766: 1756: 1755: 1753: 1750: 1749: 1739:quadratic forms 1711: 1640: 1635: 1604: 1584: 1570: 1568: 1560: 1557: 1556: 1546: 1532:, PSL(2,  1467: 1453: 1451: 1450: 1446: 1387: 1386: 1381: 1375: 1374: 1369: 1359: 1358: 1320: 1317: 1316: 1306: 1292: 1256:Minkowski space 1213: 1145: 1095:identity matrix 1059:PSL(2, R) 959: and  956: 951: 917: 916: 911: 905: 904: 899: 889: 888: 887: 883: 872: 856: 854: 851: 850: 828: 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 484: 482: 479: 478: 459: 457: 454: 453: 422: 420: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 4757: 4747: 4746: 4741: 4736: 4731: 4726: 4712: 4711: 4697: 4684: 4670: 4644: 4640: 4636: 4631: 4626: 4623: 4608: 4562:(4): 337–342. 4547: 4526: 4500:(3): 568–640. 4484: 4483: 4468: 4441: 4440: 4438: 4435: 4433: 4432: 4427: 4422: 4420:Fuchsian group 4417: 4412: 4403: 4398: 4393: 4388: 4382: 4380: 4377: 4373:Harish-Chandra 4329:of type VIII. 4285: 4280:Main article: 4277: 4274: 4177: 4174: 4167:if and only if 4153:(PSL(2,  4150: 4128: 4127: 4116: 4113: 4109: 4105: 4102: 4099: 4095: 4092: 4089: 4085: 4082: 4078: 4074: 4071: 4068: 4064: 4061: 4057: 4054: 4050: 4046: 4043: 4040: 4036: 4033: 4029: 4026: 4023: 4018: 4014: 4010: 4006: 4003: 4000: 3996: 3993: 3948: 3921: 3882: 3878: 3874: 3870: 3867: 3864: 3828: 3824: 3820: 3816: 3813: 3810: 3774: 3770: 3766: 3762: 3759: 3756: 3717: 3713: 3709: 3705: 3702: 3699: 3675:representation 3656: 3652: 3648: 3644: 3641: 3638: 3602: 3598: 3594: 3590: 3587: 3584: 3508: 3505: 3501: 3500: 3489: 3485: 3480: 3476: 3473: 3466: 3459: 3455: 3451: 3448: 3445: 3442: 3439: 3436: 3431: 3425: 3422: 3420: 3417: 3416: 3413: 3410: 3408: 3405: 3404: 3402: 3396: 3392: 3388: 3377: 3366: 3362: 3358: 3355: 3352: 3345: 3338: 3334: 3330: 3327: 3324: 3321: 3318: 3315: 3310: 3302: 3299: 3295: 3291: 3289: 3286: 3285: 3282: 3279: 3277: 3274: 3273: 3271: 3265: 3261: 3257: 3246: 3235: 3232: 3229: 3226: 3223: 3220: 3217: 3213: 3208: 3204: 3201: 3194: 3187: 3183: 3179: 3176: 3173: 3170: 3167: 3164: 3159: 3153: 3150: 3147: 3144: 3142: 3139: 3136: 3133: 3132: 3129: 3126: 3123: 3120: 3117: 3115: 3112: 3109: 3106: 3105: 3103: 3097: 3093: 3089: 3065: 3061: 3057: 3054: 3051: 3016: 3013: 2992: 2989: 2967: 2964: 2961: 2958: 2955: 2951: 2941: 2938: 2934: 2930: 2928: 2925: 2922: 2921: 2917: 2900:of the torus. 2862: 2859: 2845: 2837: 2834: 2831: 2829: 2826: 2823: 2820: 2818: 2815: 2812: 2811: 2807: 2785: 2777: 2774: 2772: 2769: 2766: 2763: 2761: 2758: 2757: 2753: 2732: 2729: 2726: 2723: 2720: 2716: 2708: 2705: 2703: 2700: 2697: 2695: 2692: 2691: 2687: 2670:of the torus. 2649:limit rotation 2636: 2633: 2562:values on the 2551: 2548: 2466:, hyperbolic. 2455: 2452: 2449: 2429: 2426: 2423: 2403: 2400: 2397: 2362:conic sections 2358: 2357: 2333: 2330: 2326: 2322: 2319: 2316: 2312: 2309: 2304: 2292: 2268: 2265: 2261: 2257: 2254: 2251: 2247: 2244: 2239: 2227: 2203: 2200: 2196: 2192: 2189: 2186: 2182: 2179: 2174: 2158: 2157: 2146: 2141: 2135: 2132: 2127: 2123: 2119: 2116: 2112: 2109: 2103: 2100: 2097: 2094: 2090: 2087: 2080: 2077: 2065:and therefore 2063: 2062: 2051: 2047: 2043: 2039: 2035: 2031: 2028: 2025: 2021: 2018: 2013: 2007: 2003: 1987:) satisfy the 1983:∈ SL(2,  1979:of an element 1972: 1969: 1929: 1928: 1917: 1912: 1904: 1900: 1896: 1894: 1891: 1888: 1885: 1881: 1877: 1873: 1872: 1869: 1866: 1863: 1861: 1858: 1855: 1852: 1849: 1846: 1844: 1841: 1838: 1837: 1832: 1828: 1824: 1822: 1819: 1816: 1813: 1809: 1805: 1801: 1800: 1798: 1793: 1788: 1782: 1779: 1777: 1774: 1773: 1770: 1767: 1765: 1762: 1761: 1759: 1727:representation 1710: 1707: 1661: 1660: 1649: 1638: 1634: 1631: 1628: 1625: 1622: 1619: 1616: 1613: 1596: 1593: 1590: 1587: 1582: 1579: 1576: 1573: 1567: 1564: 1545: 1542: 1519:Riemann sphere 1511: 1510: 1499: 1495: 1491: 1485: 1479: 1476: 1473: 1470: 1465: 1462: 1459: 1456: 1449: 1444: 1438: 1435: 1432: 1429: 1426: 1420: 1417: 1414: 1411: 1408: 1405: 1399: 1391: 1385: 1382: 1380: 1377: 1376: 1373: 1370: 1368: 1365: 1364: 1362: 1357: 1354: 1348: 1345: 1342: 1339: 1336: 1333: 1330: 1327: 1324: 1291: 1288: 1272: 1271: 1248: 1233: 1219: 1180:SU(1, 1) 1159:that preserve 1144: 1141: 1112:, Mp(2,  1110:covering group 1087: 1086: 1042:) acts on the 1003: 1002: 991: 987: 983: 980: 977: 974: 971: 968: 965: 954: 950: 947: 944: 941: 938: 935: 932: 929: 926: 921: 915: 912: 910: 907: 906: 903: 900: 898: 895: 894: 892: 886: 882: 879: 875: 871: 868: 865: 826: 821:SL(2, R) 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 9: 6: 4: 3: 2: 4756: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4721: 4719: 4708: 4704: 4700: 4698:0-691-08304-5 4694: 4690: 4685: 4681: 4677: 4673: 4671:0-387-96198-4 4667: 4663: 4659: 4655: 4629: 4609: 4605: 4601: 4596: 4591: 4587: 4583: 4578: 4573: 4569: 4565: 4561: 4557: 4553: 4548: 4544: 4540: 4536: 4532: 4527: 4523: 4519: 4515: 4511: 4507: 4503: 4499: 4495: 4494: 4488: 4487: 4479: 4475: 4471: 4465: 4461: 4457: 4453: 4446: 4442: 4431: 4428: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4409: 4404: 4402: 4401:Modular group 4399: 4397: 4394: 4392: 4389: 4387: 4384: 4383: 4376: 4374: 4370: 4366: 4362: 4358: 4353: 4351: 4347: 4343: 4339: 4335: 4330: 4328: 4324: 4320: 4316: 4312: 4308: 4304: 4300: 4294: 4293: 4291: 4273: 4271: 4267: 4263: 4259: 4255: 4250: 4248: 4244: 4240: 4236: 4233: 4228: 4226: 4223:PSL(2,  4222: 4221:modular group 4218: 4217:Frieze groups 4214: 4210: 4207:) are called 4206: 4201: 4199: 4195: 4192:PSL(2,  4191: 4187: 4183: 4173: 4171: 4168: 4164: 4160: 4156: 4148: 4144: 4141: 4137: 4133: 4114: 4103: 4100: 4072: 4069: 4044: 4041: 4024: 4004: 4001: 3980: 3979: 3978: 3975: 3973: 3969: 3965: 3961: 3956: 3954: 3947: 3943: 3939: 3931: 3930:modular group 3927: 3920: 3917: 3912: 3908: 3906: 3902: 3898: 3897:circle bundle 3868: 3865: 3844: 3814: 3811: 3790: 3760: 3757: 3737: 3733: 3703: 3700: 3678: 3676: 3672: 3642: 3639: 3618: 3588: 3585: 3564: 3560: 3557: 3553: 3548: 3546: 3542: 3538: 3534: 3530: 3526: 3525:circle bundle 3522: 3518: 3514: 3504: 3487: 3483: 3474: 3471: 3449: 3446: 3440: 3437: 3434: 3429: 3423: 3418: 3411: 3406: 3400: 3394: 3390: 3378: 3364: 3360: 3356: 3353: 3350: 3328: 3325: 3319: 3316: 3313: 3308: 3300: 3297: 3293: 3287: 3280: 3275: 3269: 3263: 3259: 3247: 3233: 3227: 3221: 3218: 3215: 3211: 3202: 3199: 3177: 3174: 3168: 3165: 3162: 3157: 3151: 3148: 3145: 3140: 3137: 3134: 3127: 3124: 3121: 3118: 3113: 3110: 3107: 3101: 3095: 3091: 3079: 3078: 3077: 3055: 3052: 3034: 3030: 3026: 3022: 3012: 3008: 3006: 3002: 2998: 2988: 2985: 2981: 2962: 2959: 2953: 2949: 2939: 2936: 2932: 2923: 2915: 2906: 2901: 2899: 2895: 2894:modular group 2890: 2888: 2884: 2883:Lorentz boost 2880: 2876: 2872: 2868: 2858: 2843: 2835: 2832: 2824: 2821: 2816: 2813: 2805: 2783: 2775: 2767: 2764: 2759: 2751: 2727: 2724: 2718: 2714: 2706: 2698: 2693: 2685: 2676: 2671: 2669: 2665: 2664:modular group 2660: 2658: 2654: 2653:null rotation 2650: 2646: 2642: 2641:shear mapping 2632: 2630: 2626: 2621: 2619: 2615: 2611: 2606: 2604: 2600: 2596: 2595:root of unity 2592: 2588: 2587:modular group 2583: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2547: 2545: 2541: 2536: 2534: 2530: 2526: 2522: 2517: 2515: 2512: 2510: 2505: 2500: 2498: 2494: 2490: 2486: 2482: 2478: 2474: 2472: 2467: 2453: 2450: 2447: 2440:, parabolic; 2427: 2424: 2421: 2401: 2398: 2395: 2387: 2367: 2363: 2355: 2351: 2347: 2331: 2328: 2317: 2293: 2290: 2289:shear mapping 2286: 2282: 2266: 2263: 2252: 2228: 2225: 2221: 2217: 2201: 2198: 2187: 2163: 2162: 2161: 2144: 2139: 2133: 2130: 2125: 2117: 2101: 2095: 2078: 2075: 2068: 2067: 2066: 2049: 2045: 2041: 2037: 2033: 2026: 2011: 2005: 2001: 1993: 1992: 1991: 1990: 1986: 1982: 1978: 1968: 1966: 1962: 1958: 1954: 1950: 1949:Lorentz group 1946: 1942: 1938: 1934: 1915: 1910: 1902: 1898: 1892: 1889: 1886: 1879: 1875: 1867: 1864: 1859: 1856: 1853: 1850: 1847: 1842: 1839: 1830: 1826: 1820: 1817: 1814: 1807: 1803: 1796: 1786: 1780: 1775: 1768: 1763: 1757: 1748: 1747: 1746: 1744: 1740: 1736: 1732: 1728: 1724: 1720: 1716: 1706: 1704: 1700: 1696: 1691: 1689: 1685: 1681: 1676: 1674: 1670: 1666: 1647: 1632: 1629: 1626: 1623: 1620: 1617: 1614: 1611: 1594: 1591: 1588: 1585: 1580: 1577: 1574: 1571: 1562: 1555: 1554: 1553: 1551: 1541: 1539: 1535: 1531: 1526: 1524: 1520: 1516: 1497: 1493: 1489: 1483: 1477: 1474: 1471: 1468: 1463: 1460: 1457: 1454: 1447: 1442: 1433: 1430: 1427: 1424: 1418: 1415: 1412: 1409: 1406: 1397: 1389: 1383: 1378: 1371: 1366: 1360: 1352: 1346: 1343: 1331: 1328: 1325: 1315: 1314: 1313: 1309: 1305: 1301: 1297: 1287: 1285: 1281: 1277: 1269: 1265: 1261: 1257: 1253: 1252:Lorentz group 1249: 1246: 1242: 1238: 1234: 1231: 1227: 1226:automorphisms 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1199: 1198: 1196: 1191: 1189: 1185: 1184:coquaternions 1181: 1177: 1173: 1169: 1165: 1162: 1158: 1154: 1150: 1140: 1138: 1137:modular group 1134: 1129: 1127: 1123: 1119: 1115: 1111: 1106: 1104: 1101:PSL(2,  1100: 1099:modular group 1096: 1092: 1084: 1080: 1076: 1073:PSL(2,  1072: 1071: 1070: 1068: 1064: 1060: 1057: 1053: 1049: 1045: 1041: 1036: 1034: 1030: 1026: 1022: 1018: 1014: 1011: 1008: 989: 985: 981: 978: 975: 972: 969: 966: 963: 948: 945: 942: 939: 936: 933: 930: 927: 924: 919: 913: 908: 901: 896: 890: 884: 880: 869: 866: 849: 848: 847: 845: 841: 838: 834: 830: 822: 819: 815: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 356: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 122: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 32: 31: 19: 4724:Group theory 4688: 4612: 4559: 4555: 4534: 4530: 4497: 4491: 4460:10.1142/p835 4451: 4445: 4407: 4406:SL(2,  4386:Linear group 4371:(1947), and 4356: 4354: 4345: 4341: 4333: 4331: 4318: 4314: 4306: 4298: 4297:SL(2,  4296: 4289: 4283: 4261: 4257: 4251: 4246: 4242: 4232:circle group 4229: 4224: 4204: 4202: 4193: 4185: 4179: 4169: 4162: 4154: 4146: 4142: 4139: 4135: 4131: 4129: 3976: 3971: 3967: 3959: 3957: 3945: 3937: 3935: 3918: 3679: 3619:. That is, 3617:matrix group 3558: 3556:cyclic group 3551: 3549: 3540: 3536: 3516: 3510: 3502: 3032: 3028: 3024: 3018: 3009: 3004: 3000: 2994: 2904: 2902: 2891: 2877:) acts as a 2874: 2864: 2674: 2672: 2661: 2647:) acts as a 2644: 2638: 2622: 2613: 2609: 2607: 2590: 2584: 2571: 2553: 2537: 2528: 2524: 2520: 2518: 2513: 2507: 2503: 2501: 2492: 2484: 2480: 2475: 2470: 2468: 2414:, elliptic; 2385: 2366:eccentricity 2359: 2349: 2345: 2284: 2280: 2219: 2215: 2159: 2064: 1984: 1980: 1974: 1960: 1952: 1944: 1936: 1933:Killing form 1930: 1742: 1734: 1730: 1718: 1714: 1712: 1692: 1677: 1668: 1662: 1549: 1547: 1536:) expresses 1533: 1527: 1514: 1512: 1307: 1300:homographies 1295: 1293: 1290:Homographies 1283: 1279: 1275: 1273: 1263: 1239:-preserving 1214: 1205:-preserving 1194: 1192: 1187: 1175: 1174:Sp(2,  1156: 1148: 1147:SL(2,  1146: 1143:Descriptions 1132: 1130: 1121: 1113: 1107: 1102: 1090: 1088: 1082: 1078: 1074: 1066: 1058: 1052:group action 1039: 1038:SL(2,  1037: 1004: 824: 820: 811: 640: 628: 616: 604: 592: 580: 568: 556: 327: 284: 271: 260: 249: 245:Cyclic group 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 4744:3-manifolds 4430:Anosov flow 4369:V. Bargmann 4311:Lie algebra 3942:braid group 3916:braid group 2879:translation 2867:eigenvalues 2668:Dehn twists 2620:in PSL(2). 2618:involutions 2564:unit circle 2556:eigenvalues 2350:hyperbolic, 1977:eigenvalues 1723:conjugation 1237:orientation 1203:orientation 1139:, however. 1010:non-compact 844:determinant 814:mathematics 530:Topological 369:alternating 4729:Lie groups 4718:Categories 4437:References 3736:3-manifold 3669:admits no 3565:, denoted 2544:closed set 2529:subgroups: 2348:is called 2285:parabolic, 2283:is called 2218:is called 1947:) and the 1680:isometries 1270:Spin(2,1). 1268:spin group 1241:isometries 1168:isomorphic 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 4537:: 93–94. 4323:traceless 4172:is even. 4084:→ 4056:→ 4028:→ 4025:⋯ 4022:→ 4017:¯ 3940:) is the 3881:¯ 3827:¯ 3773:¯ 3716:¯ 3655:¯ 3601:¯ 3475:∈ 3435:∈ 3314:∈ 3298:− 3216:≅ 3203:∈ 3200:θ 3163:∈ 3152:θ 3149:⁡ 3141:θ 3138:⁡ 3128:θ 3125:⁡ 3119:− 3114:θ 3111:⁡ 2960:± 2954:× 2937:− 2933:λ 2924:λ 2833:− 2822:± 2814:− 2765:± 2725:± 2719:× 2699:λ 2560:conjugate 2448:ϵ 2422:ϵ 2396:ϵ 2352:and is a 2287:and is a 2220:elliptic, 2131:− 2102:± 2076:λ 2034:λ 2012:− 2002:λ 1963:) on the 1941:signature 1792:↦ 1633:∈ 1566:↦ 1338:↦ 1230:unit disc 1223:conformal 1017:Lie group 1007:connected 970:− 949:∈ 925:: 701:Conformal 589:Euclidean 196:nilpotent 4604:16589101 4379:See also 4375:(1952). 4367:(1946), 4309:). The 4270:topology 4190:quotient 3901:orbifold 3671:faithful 3003:,  2576:rotation 2568:rotation 2540:open set 2525:subsets, 2224:rotation 1166:. It is 1161:oriented 1056:quotient 1025:topology 1021:geometry 1005:It is a 840:matrices 696:Poincaré 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 4707:1435975 4680:0803508 4595:1063558 4586:0047055 4564:Bibcode 4543:0017282 4522:0021942 4514:1969129 4478:2977041 4365:Naimark 4361:Gelfand 3928:of the 3924:is the 3561:. The 3545:spinors 3035:. For 2896:act as 2666:act as 2382:⁠ 2370:⁠ 2344:, then 2279:, then 2214:, then 1682:of the 1302:on the 1243:of the 1228:of the 1209:of the 1170:to the 1124:) as a 1033:physics 831:is the 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 18:PSL2(R) 4705:  4695:  4678:  4668:  4602:  4592:  4584:  4541:  4520:  4512:  4476:  4466:  4198:simple 4182:center 3734:, the 3732:metric 3469:  3461:  3348:  3340:  3197:  3189:  2984:arcosh 2978:; the 2629:arccos 1939:) has 1487:  1440:  1422:  1401:  1395:  1350:  1298:) are 1217:∪ {∞}. 1089:where 1050:. The 1031:, and 1013:simple 816:, the 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 4510:JSTOR 4237:is a 4235:SO(2) 4196:) is 4145:< 4138:, as 3962:), a 3511:As a 2603:torus 2599:order 1955:) on 1721:) by 1310:∪ {∞} 1116:), a 1065:over 1015:real 846:one: 842:with 833:group 730:Sp(∞) 727:SU(∞) 140:image 4693:ISBN 4666:ISBN 4600:PMID 4464:ISBN 4363:and 4252:The 4230:The 4215:and 4180:The 3914:The 3354:> 3019:The 2865:The 2554:The 2527:not 2451:> 2399:< 2329:> 2199:< 1975:The 1931:The 1697:and 1695:dual 1164:area 837:real 724:O(∞) 713:Loop 532:and 4658:doi 4590:PMC 4572:doi 4502:doi 4456:doi 4249:). 4149:≅ π 3974:). 3907:). 3903:(a 3146:cos 3135:sin 3122:sin 3108:cos 2995:By 2885:on 2655:of 2516:). 2487:) ( 2364:by 2294:If 2229:If 2164:If 1741:on 1525:. 1521:by 1286:). 1155:of 1128:). 1105:). 1046:by 829:(R) 823:or 812:In 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 4720:: 4703:MR 4701:. 4676:MR 4674:. 4664:. 4598:. 4588:. 4582:MR 4580:. 4570:. 4560:38 4558:. 4554:. 4539:MR 4535:10 4533:. 4518:MR 4516:. 4508:. 4498:48 4496:. 4474:MR 4472:. 4462:. 4352:. 4284:SL 4200:. 4165:) 3858:SL 3804:SL 3750:SL 3693:SL 3677:. 3632:SL 3578:SL 3045:SL 3031:, 3027:, 2907:: 2889:. 2797:, 2677:: 2659:. 2582:. 1705:. 1690:. 1540:. 1312:: 1085:}, 1035:. 1027:, 1023:, 859:SL 825:SL 615:U( 591:E( 579:O( 37:→ 4709:. 4682:. 4660:: 4643:) 4639:R 4635:( 4630:2 4625:L 4622:S 4606:. 4574:: 4566:: 4545:. 4524:. 4504:: 4480:. 4458:: 4408:C 4357:R 4346:R 4342:C 4334:R 4319:R 4315:R 4307:C 4299:R 4292:) 4290:R 4288:( 4286:2 4262:Z 4258:R 4247:R 4243:R 4225:Z 4205:R 4194:R 4186:R 4170:n 4163:R 4155:R 4151:1 4147:Z 4143:Z 4140:n 4136:n 4132:R 4115:. 4112:) 4108:R 4104:, 4101:2 4098:( 4094:L 4091:S 4088:P 4081:) 4077:R 4073:, 4070:2 4067:( 4063:L 4060:S 4053:) 4049:R 4045:, 4042:2 4039:( 4035:p 4032:M 4013:) 4009:R 4005:, 4002:2 3999:( 3995:L 3992:S 3972:R 3968:R 3960:R 3949:3 3946:B 3938:Z 3932:. 3922:3 3919:B 3877:) 3873:R 3869:, 3866:2 3863:( 3823:) 3819:R 3815:, 3812:2 3809:( 3769:) 3765:R 3761:, 3758:2 3755:( 3712:) 3708:R 3704:, 3701:2 3698:( 3651:) 3647:R 3643:, 3640:2 3637:( 3597:) 3593:R 3589:, 3586:2 3583:( 3559:Z 3552:R 3541:R 3537:R 3517:R 3488:. 3484:} 3479:R 3472:x 3465:| 3458:) 3454:R 3450:, 3447:2 3444:( 3441:L 3438:S 3430:) 3424:1 3419:0 3412:x 3407:1 3401:( 3395:{ 3391:= 3387:N 3365:, 3361:} 3357:0 3351:r 3344:| 3337:) 3333:R 3329:, 3326:2 3323:( 3320:L 3317:S 3309:) 3301:1 3294:r 3288:0 3281:0 3276:r 3270:( 3264:{ 3260:= 3256:A 3234:, 3231:) 3228:2 3225:( 3222:O 3219:S 3212:} 3207:R 3193:| 3186:) 3182:R 3178:, 3175:2 3172:( 3169:L 3166:S 3158:) 3102:( 3096:{ 3092:= 3088:K 3064:) 3060:R 3056:, 3053:2 3050:( 3033:N 3029:A 3025:K 3005:C 3001:n 2966:} 2963:I 2957:{ 2950:) 2940:1 2916:( 2905:I 2875:R 2844:) 2836:1 2825:1 2817:1 2806:( 2784:) 2776:1 2768:1 2760:1 2752:( 2731:} 2728:I 2722:{ 2715:) 2707:1 2694:1 2686:( 2675:I 2645:R 2614:I 2610:i 2591:ω 2572:R 2521:R 2511:, 2493:R 2485:C 2481:C 2471:R 2454:1 2428:1 2425:= 2402:1 2386:R 2379:2 2376:/ 2373:1 2356:. 2346:A 2332:2 2325:| 2321:) 2318:A 2315:( 2311:r 2308:t 2303:| 2291:. 2281:A 2267:2 2264:= 2260:| 2256:) 2253:A 2250:( 2246:r 2243:t 2238:| 2226:. 2216:A 2202:2 2195:| 2191:) 2188:A 2185:( 2181:r 2178:t 2173:| 2145:. 2140:2 2134:4 2126:2 2122:) 2118:A 2115:( 2111:r 2108:t 2099:) 2096:A 2093:( 2089:r 2086:t 2079:= 2050:0 2046:= 2042:1 2038:+ 2030:) 2027:A 2024:( 2020:r 2017:t 2006:2 1985:R 1981:A 1961:R 1953:R 1945:R 1937:R 1916:. 1911:] 1903:2 1899:d 1893:d 1890:c 1887:2 1880:2 1876:c 1868:d 1865:b 1860:c 1857:b 1854:+ 1851:d 1848:a 1843:c 1840:a 1831:2 1827:b 1821:b 1818:a 1815:2 1808:2 1804:a 1797:[ 1787:] 1781:d 1776:c 1769:b 1764:a 1758:[ 1743:R 1735:R 1731:R 1719:R 1715:R 1669:R 1648:. 1643:) 1637:R 1630:d 1627:, 1624:c 1621:, 1618:b 1615:, 1612:a 1595:d 1592:+ 1589:z 1586:c 1581:b 1578:+ 1575:z 1572:a 1563:z 1550:R 1534:R 1515:C 1498:. 1494:] 1490:1 1484:, 1478:d 1475:+ 1472:x 1469:c 1464:b 1461:+ 1458:x 1455:a 1448:[ 1443:= 1437:] 1434:d 1431:+ 1428:x 1425:c 1419:, 1416:b 1413:+ 1410:x 1407:a 1404:[ 1398:= 1390:) 1384:d 1379:b 1372:c 1367:a 1361:( 1356:] 1353:1 1347:, 1344:x 1341:[ 1335:] 1332:1 1329:, 1326:x 1323:[ 1308:R 1296:R 1284:R 1280:Z 1276:Z 1264:R 1247:. 1232:. 1215:R 1195:R 1188:R 1176:R 1157:R 1149:R 1133:R 1122:R 1114:R 1103:Z 1091:I 1083:I 1079:R 1075:R 1067:R 1040:R 990:. 986:} 982:1 979:= 976:c 973:b 967:d 964:a 953:R 946:d 943:, 940:c 937:, 934:b 931:, 928:a 920:) 914:d 909:c 902:b 897:a 891:( 885:{ 881:= 878:) 874:R 870:, 867:2 864:( 827:2 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

PSL2(R)
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.