Knowledge

p-group

Source 📝

48: 2497: 1715:
the analogy becomes strained. There is a different family of examples that more closely mimics the dihedral groups of order 2, but that requires a bit more setup. Let ζ denote a primitive
2136:, though the sheer number of families of such groups grows so quickly that further classifications along these lines are judged difficult for the human mind to comprehend. For example, 3085: 2873: 2614: 493: 468: 431: 2989: 2817: 2757: 2660: 3032: 3409: 3523: 2881: 2211: 3593: 795: 2214:
consisting of only finitely many coclass trees whose (infinitely many) members are characterized by finitely many parametrized presentations.
3388:— An exhaustive catalog of the 340 non-abelian groups of order dividing 64 with detailed tables of defining relations, constants, and 2132:≤ 4 were classified early in the history of group theory, and modern work has extended these classifications to groups whose order divides 2694: 353: 3575: 3557: 3535: 3469: 1044: 303: 2379: 2892:, and others classified those simple groups whose Sylow 2-subgroups were abelian, dihedral, semidihedral, or quaternion. 2428: 2557: 1063: 1040: 788: 298: 3325: 2206:
are due to A. Shalev and independently to C. R. Leedham-Green, both in 1994. They admit a classification of finite
1239:
by conjugation. Since every central subgroup is normal, it follows that every minimal normal subgroup of a finite
2499:, and these are dominated by the classes that are two-step nilpotent. Because of this rapid growth, there is a 714: 3271:
Besche, Hans Ulrich; Eick, Bettina; O'Brien, E. A. (2002), "A millennium project: constructing small groups",
3357: 2885: 2137: 781: 1291: 3041: 2872:
classified all groups whose Sylow 2-subgroups are the direct product of two cyclic groups of order 4, and
398: 212: 3392:
presentations of each group in the notation the text defines. "Of enduring value to those interested in
3317: 130: 3223: 2851: 20: 2666:-subgroup. This subgroup need not be unique, but any subgroups of this order are conjugate, and any 2855: 2847: 1419: 1387: 1379: 835: 596: 330: 207: 95: 2567: 476: 451: 414: 3461: 2954: 2863: 2820: 2783: 2519:
tends to infinity. For instance, of the 49 910 529 484 different groups of order at most 2000,
746: 536: 2726: 3453: 3404: 2500: 1106: 620: 2635: 3507: 3479: 3438: 3389: 3384: 3350: 3292: 3010: 2152: 2057: 1875: 1427: 1295: 1227:-group intersects the center non-trivially as may be proved by considering the elements of 985: 560: 548: 166: 100: 2819:
These groups are related (for different primes), possess important properties such as the
8: 3570:, de Gruyter Expositions in Mathematics 56, vol. 3, Berlin: Walter de Gruyter GmbH, 3552:, de Gruyter Expositions in Mathematics 47, vol. 2, Berlin: Walter de Gruyter GmbH, 3530:, de Gruyter Expositions in Mathematics 46, vol. 1, Berlin: Walter de Gruyter GmbH, 3106: 2775: 2182: 859: 839: 831: 135: 30: 2701:-groups arise both as subgroups and as quotient groups. As subgroups, for a given prime 3442: 3296: 2859: 2173: 1748: 1508: 1423: 1367: 120: 92: 3624: 3597: 3571: 3553: 3531: 3465: 3446: 3426: 3372: 3334: 3321: 2889: 2877: 2831:
Much of the structure of a finite group is carried in the structure of its so-called
2508: 1407: 1048: 525: 368: 262: 3300: 2392: = 2, both the semi-direct products mentioned above are isomorphic to the 691: 3495: 3418: 3307: 3280: 3235: 2901: 2401: 2273: 2222: 2199: 1724: 1504: 1468: 1435: 1248: 913: 874: 676: 668: 660: 652: 644: 632: 572: 512: 502: 344: 286: 161: 3239: 2693:-groups are fundamental tools in understanding the structure of groups and in the 1511:. Together the dihedral, semidihedral, and quaternion groups form the 2-groups of 3503: 3475: 3434: 3380: 3346: 3311: 3288: 3183: 2911: 2850:
of a finite group exert control over the group that was used in the proof of the
2177: 2078:
are those upper triangular matrices with 1s one the diagonal and 0s on the first
1660: 1580: 1255:-group is the subgroup of the center consisting of the central elements of order 1217: 1210: 1131: 959: 760: 753: 739: 696: 584: 507: 337: 251: 191: 71: 974: 3545: 3499: 3342: 2943:-group so has non-trivial center, so given a non-trivial element of the center 2869: 2679: 2393: 2194:. The coclass conjectures were proven in the 1980s using techniques related to 1528: 1489: 1150: 1102: 1001: 925: 767: 703: 393: 373: 310: 275: 196: 186: 171: 156: 110: 87: 3422: 3284: 2906: 3618: 3600: 3430: 3393: 1512: 1485: 1059: 884: 686: 608: 442: 315: 181: 2504: 1458: 1005: 978: 905: 817: 813: 541: 240: 229: 176: 151: 146: 105: 76: 39: 1503:
The dihedral groups are both very similar to and very dissimilar from the
3400: 2823:, and allow one to determine many aspects of the structure of the group. 2195: 2191: 2148: 1732: 1454: 941: 809: 2236:
The trivial group is the only group of order one, and the cyclic group C
2836: 1124: 708: 436: 3605: 2109: 1627:, and its lower central series, upper central series, lower exponent- 529: 3460:, London Mathematical Society Monographs. New Series, vol. 27, 1635:
central series are equal. It is generated by its elements of order
1496:
of order 8 is a non-abelian 2-group. However, every group of order
929: 66: 1430:, so very well understood. The map from the automorphism group of 2511:
of 2-groups among isomorphism classes of groups of order at most
2168: 408: 3376: 2718: 47: 3339:
Finite simple groups (Proc. Instructional Conf., Oxford, 1969)
2370:. The first one can be described in other terms as group UT(3, 1671:
are always regular groups, it is also a minimal such example.
1298:. Generalizing the earlier comments about the socle, a finite 877:. The orders of different elements may be different powers of 2159:-groups into families based on large quotient and subgroups. 1703:) provides an analogue for the dihedral group for all primes 1205:, creating an infinite descent. As a corollary, every finite 2190:-groups of fixed coclass as perturbations of finitely many 1477:
are both 2-groups of order 4, but they are not isomorphic.
2766:-subgroup), and various others. As quotients, the largest 2400:
of order 8. The other non-abelian group of order 8 is the
1278:, and so it too has a non-trivial center. The preimage in 1093:, and the result follows from the Correspondence Theorem. 16:
Group in which the order of every element is a power of p
3337:(1971), "Global and local properties of finite groups", 2678:-subgroup. This and other properties are proved in the 1515:, that is those groups of order 2 and nilpotency class 2685: 1047:
for groups. A proof sketch is as follows: because the
3270: 3044: 3013: 2957: 2786: 2729: 2638: 2570: 2431: 2421:
The number of isomorphism classes of groups of order
2140:
and James K. Senior classified groups of order 2 for
1695:) is the dihedral group of order 8, so in some sense 479: 454: 417: 2862:help describe the structure of groups as acting on 2492:{\displaystyle p^{{\frac {2}{27}}n^{3}+O(n^{8/3})}} 2374:) of unitriangular matrices over finite field with 2105:is the least integer at least as large as the base 1434:into this general linear group has been studied by 1116:This forms the basis for many inductive methods in 3452: 3170: 3131: 3079: 3026: 3007:(since the subgroup they generate must have order 2983: 2811: 2751: 2654: 2608: 2491: 1979:, the set of invertible linear transformations of 1862:) are irregular groups of maximal class and order 487: 462: 425: 3038:is central, so the group is abelian, and in fact 2340: ≠ 2, one is a semi-direct product of C 3616: 3591: 3566:Berkovich, Yakov; Janko, Zvonimir (2011-06-16), 3273:International Journal of Algebra and Computation 2717:-subgroup not unique but all conjugate) and the 2532:, or just over 99%, are 2-groups of order 1024. 1878:are another fundamental family of examples. Let 1382:is a proper quotient of the group, every finite 1089:. We may now apply the inductive hypothesis to 965:The remainder of this article deals with finite 3410:Journal für die reine und angewandte Mathematik 2540:Every finite group whose order is divisible by 2162:An entirely different method classifies finite 1374:-groups are well studied. Just as every finite 969:-groups. For an example of an infinite abelian 3565: 3543: 3486:Sims, Charles (1965), "Enumerating p-groups", 3356: 3144: 1869: 1674: 1453:-groups of the same order are not necessarily 1438:, who showed that the kernel of this map is a 2358:, and the other is a semi-direct product of C 1719:th root of unity in the complex numbers, let 789: 3458:The structure of groups of prime power order 1651:-group of maximal class, since it has order 1378:-group has a non-trivial center so that the 1101:One of the first standard results using the 2544:contains a subgroup which is a non-trivial 1522: 1335:. If a normal subgroup is not contained in 916:(the number of its elements) is a power of 3405:"The classification of prime-power groups" 3333: 3253: 2147:Rather than classify the groups by order, 1591:-subgroups of the general linear group GL( 1539:-groups. Denote the cyclic group of order 796: 782: 3522: 3176: 2333:. There are also two non-abelian groups. 1842:) is the dihedral group of order 2. When 1623: − 1). It has nilpotency class 481: 456: 419: 3306: 3118: 2293:There are three abelian groups of order 2246:. There are exactly two groups of order 2172:, that is, the difference between their 1770:acts as multiplication by ζ. The powers 3224:"On the number of groups of order 1024" 3221: 3215: 2991:), or it generates a subgroup of order 2548:-group, namely a cyclic group of order 1113:-group cannot be the trivial subgroup. 3617: 2695:classification of finite simple groups 1918:to be the vector space generated by { 1173:, but then there is a smaller example 1004:since by definition every element has 354:Classification of finite simple groups 3592: 2564:-group of maximal possible order: if 2503:conjecture asserting that almost all 1096: 3485: 3399: 3209: 3157: 3080:{\displaystyle G=C_{p}\times C_{p}.} 2947:this either generates the group (so 2858:of elementary abelian groups called 1711: = 2. However, for higher 1039:. This follows by induction, using 977:, and for an example of an infinite 2770:-group quotient is the quotient of 2686:Application to structure of a group 1631:central series, and upper exponent- 1318:, and any normal subgroup of order 1306:contains normal subgroups of order 13: 3515: 14: 3636: 3585: 2552:generated by an element of order 2535: 2268:. For example, the cyclic group C 2119: 1599:) are direct products of various 873:, and not fewer, is equal to the 3313:Theory of groups of finite order 2826: 2186:described the set of all finite 1361: 1243:-group is central and has order 46: 3246: 3190:. Stack Exchange. 24 March 2012 2935:To prove that a group of order 2416: 1882:be a vector space of dimension 1547:(1), and the wreath product of 1535:are very important examples of 1027:has a normal subgroup of order 3202: 3171:Leedham-Green & McKay 2002 3163: 3150: 3137: 3132:Leedham-Green & McKay 2002 3124: 3111: 3100: 2939:is abelian, note that it is a 2929: 2803: 2797: 2746: 2740: 2580: 2572: 2507:are 2-groups: the fraction of 2484: 2463: 2290:are both 2-groups of order 4. 1830:-group of maximal class. When 1782:), and the example groups are 715:Infinite dimensional Lie group 1: 3263: 3240:10.1080/00927872.2021.2006680 3222:Burrell, David (2021-12-08). 2411: 2082:−1 superdiagonals. The group 1344:, then its intersection with 991: 928:guarantee the existence of a 3093: 2917: 2848:elementary abelian subgroups 2609:{\displaystyle |G|=n=p^{k}m} 1216:In another direction, every 846:. That is, for each element 488:{\displaystyle \mathbb {Z} } 463:{\displaystyle \mathbb {Z} } 426:{\displaystyle \mathbb {Z} } 7: 3568:Groups of Prime Power Order 3550:Groups of Prime Power Order 3528:Groups of Prime Power Order 3360:; Senior, James K. (1964), 2984:{\displaystyle G=C_{p^{2}}} 2895: 2515:is thought to tend to 1 as 2242:is the only group of order 2228: 2151:proposed using a notion of 1870:Unitriangular matrix groups 1739:be a cyclic group of order 1675:Generalized dihedral groups 1445: 1394:induces an automorphism on 1294:and these groups begin the 213:List of group theory topics 10: 3641: 3318:Cambridge University Press 3145:Hall Jr. & Senior 1964 3003:not in its orbit generate 2951:is cyclic, hence abelian: 2378:elements, also called the 2202:. The final proofs of the 1866:, but are not isomorphic. 1531:of cyclic groups of order 1062:(see below), according to 947:that divides the order of 912:-group if and only if its 18: 3423:10.1515/crll.1940.182.130 3285:10.1142/S0218196702001115 3228:Communications in Algebra 3034:) but they commute since 2812:{\displaystyle O^{p}(G).} 2560:. In fact, it contains a 1727:generated by it, and let 1643:. The second such group, 1386:-group has a non-trivial 1085:is necessarily normal in 865:such that the product of 21:n-group (category theory) 3500:10.1112/plms/s3-15.1.151 2922: 2864:symplectic vector spaces 2752:{\displaystyle O_{p}(G)} 2674:is contained in a Sylow 2250:, both abelian, namely C 2069:. In terms of matrices, 2056:), and the terms of its 1774:are normal subgroups of 1743:generated by an element 1667:. Since groups of order 1523:Iterated wreath products 1420:elementary abelian group 1390:. Every automorphism of 1388:outer automorphism group 1380:inner automorphism group 1109:of a non-trivial finite 890:-groups are also called 331:Elementary abelian group 208:Glossary of group theory 19:Not to be confused with 3488:Proc. London Math. Soc. 3462:Oxford University Press 3456:; McKay, Susan (2002), 2212:directed coclass graphs 2022:is a vector space over 2005:form a subgroup of Aut( 1874:The Sylow subgroups of 920:. Given a finite group 3184:"Every group of order 3081: 3028: 2985: 2821:focal subgroup theorem 2813: 2753: 2656: 2655:{\displaystyle p^{k},} 2610: 2493: 2155:which gathered finite 1735:generated by 1−ζ. Let 1639:, but its exponent is 1567: + 1). Then 1045:Correspondence Theorem 838:of every element is a 747:Linear algebraic group 489: 464: 427: 3396:" (from the preface). 3371:, London: Macmillan, 3362:The Groups of Order 2 3082: 3029: 3027:{\displaystyle p^{2}} 2986: 2852:Feit–Thompson theorem 2814: 2754: 2657: 2611: 2494: 2380:Heisenberg group mod 2217:Every group of order 1876:general linear groups 1822:and nilpotency class 1655:and nilpotency class 1231:which are fixed when 490: 465: 428: 3454:Leedham-Green, C. R. 3042: 3011: 2955: 2784: 2759:(the unique largest 2727: 2636: 2568: 2429: 2153:isoclinism of groups 2124:The groups of order 2058:lower central series 1428:general linear group 1322:is contained in the 1296:upper central series 1181:whose normalizer in 1077:. Being central in 1019:is a group of order 986:Tarski monster group 477: 452: 415: 2860:extraspecial groups 2509:isomorphism classes 2183:coclass conjectures 2093:, nilpotency class 1725:cyclotomic integers 1683: = 2 and 1509:semidihedral groups 1457:; for example, the 1414:. The quotient G/Φ( 1270:-group, then so is 860:nonnegative integer 121:Group homomorphisms 31:Algebraic structure 3598:Weisstein, Eric W. 3544:Berkovich, Yakov; 3358:Hall Jr., Marshall 3335:Glauberman, George 3077: 3024: 2981: 2856:central extensions 2809: 2779:-residual subgroup 2749: 2705:one has the Sylow 2652: 2606: 2489: 2174:composition length 1749:semidirect product 1424:automorphism group 1354:has size at least 1302:-group with order 1149:, because for any 1145:properly contains 1123:For instance, the 1097:Non-trivial center 597:Special orthogonal 485: 460: 423: 304:Lagrange's theorem 3577:978-3-1102-0717-0 3559:978-3-1102-0419-3 3537:978-3-1102-0418-6 3471:978-0-19-853548-5 3345:, pp. 1–64, 3308:Burnside, William 2999:and some element 2890:George Glauberman 2878:Daniel Gorenstein 2445: 2200:powerful p-groups 2166:-groups by their 2138:Marshall Hall Jr. 2044:-subgroup of Aut( 1619: − 1)/( 1579:-subgroup of the 1505:quaternion groups 1408:Frattini subgroup 1282:of the center of 1169:, and so also in 858:, there exists a 806: 805: 381: 380: 263:Alternating group 220: 219: 3632: 3611: 3610: 3580: 3562: 3540: 3524:Berkovich, Yakov 3510: 3482: 3449: 3417:(182): 130–141, 3387: 3353: 3330: 3303: 3257: 3250: 3244: 3243: 3234:(6): 2408–2410. 3219: 3213: 3206: 3200: 3199: 3197: 3195: 3180: 3174: 3167: 3161: 3154: 3148: 3141: 3135: 3128: 3122: 3115: 3109: 3104: 3087: 3086: 3084: 3083: 3078: 3073: 3072: 3060: 3059: 3033: 3031: 3030: 3025: 3023: 3022: 2990: 2988: 2987: 2982: 2980: 2979: 2978: 2977: 2933: 2902:Elementary group 2839:of non-identity 2818: 2816: 2815: 2810: 2796: 2795: 2758: 2756: 2755: 2750: 2739: 2738: 2661: 2659: 2658: 2653: 2648: 2647: 2620:does not divide 2615: 2613: 2612: 2607: 2602: 2601: 2583: 2575: 2558:Cauchy's theorem 2531: 2530: 2527: 2524: 2498: 2496: 2495: 2490: 2488: 2487: 2483: 2482: 2478: 2456: 2455: 2446: 2438: 2402:quaternion group 2274:Klein four-group 2204:coclass theorems 2180:. The so-called 2178:nilpotency class 1983:which take each 1834: = 2, 1687: = 2, 1607:). It has order 1469:Klein four-group 1165:is contained in 1064:Cauchy's theorem 1041:Cauchy's theorem 875:identity element 798: 791: 784: 740:Algebraic groups 513:Hyperbolic group 503:Arithmetic group 494: 492: 491: 486: 484: 469: 467: 466: 461: 459: 432: 430: 429: 424: 422: 345:Schur multiplier 299:Cauchy's theorem 287:Quaternion group 235: 234: 61: 60: 50: 37: 26: 25: 3640: 3639: 3635: 3634: 3633: 3631: 3630: 3629: 3615: 3614: 3588: 3583: 3578: 3560: 3546:Janko, Zvonimir 3538: 3518: 3516:Further reading 3513: 3472: 3328: 3266: 3261: 3260: 3254:Glauberman 1971 3251: 3247: 3220: 3216: 3207: 3203: 3193: 3191: 3182: 3181: 3177: 3168: 3164: 3155: 3151: 3142: 3138: 3129: 3125: 3116: 3112: 3105: 3101: 3096: 3091: 3090: 3068: 3064: 3055: 3051: 3043: 3040: 3039: 3018: 3014: 3012: 3009: 3008: 2973: 2969: 2968: 2964: 2956: 2953: 2952: 2934: 2930: 2925: 2920: 2912:Regular p-group 2898: 2833:local subgroups 2829: 2791: 2787: 2785: 2782: 2781: 2734: 2730: 2728: 2725: 2724: 2688: 2662:called a Sylow 2643: 2639: 2637: 2634: 2633: 2628:has a subgroup 2597: 2593: 2579: 2571: 2569: 2566: 2565: 2538: 2528: 2525: 2522: 2520: 2474: 2470: 2466: 2451: 2447: 2437: 2436: 2432: 2430: 2427: 2426: 2419: 2414: 2407: 2399: 2369: 2363: 2357: 2351: 2345: 2332: 2326: 2320: 2314: 2308: 2302: 2289: 2285: 2281: 2271: 2267: 2261: 2255: 2241: 2234: 2122: 2097:, and exponent 2088: 2077: 2068: 2039: 2017: 2004: 1991: 1971:. For each 1 ≤ 1962: 1945: 1936: 1926: 1917: 1908: 1899: 1892: 1872: 1723:be the ring of 1677: 1659:, but is not a 1647:(2), is also a 1581:symmetric group 1575:) is the Sylow 1529:wreath products 1525: 1495: 1476: 1466: 1448: 1364: 1353: 1343: 1334: 1218:normal subgroup 1132:proper subgroup 1099: 1069:has a subgroup 994: 812:, specifically 802: 773: 772: 761:Abelian variety 754:Reductive group 742: 732: 731: 730: 729: 680: 672: 664: 656: 648: 621:Special unitary 532: 518: 517: 499: 498: 480: 478: 475: 474: 455: 453: 450: 449: 418: 416: 413: 412: 404: 403: 394:Discrete groups 383: 382: 338:Frobenius group 283: 270: 259: 252:Symmetric group 248: 232: 222: 221: 72:Normal subgroup 58: 38: 29: 24: 17: 12: 11: 5: 3638: 3628: 3627: 3613: 3612: 3587: 3586:External links 3584: 3582: 3581: 3576: 3563: 3558: 3541: 3536: 3519: 3517: 3514: 3512: 3511: 3483: 3470: 3450: 3397: 3354: 3343:Academic Press 3341:, Boston, MA: 3331: 3326: 3304: 3279:(5): 623–644, 3267: 3265: 3262: 3259: 3258: 3245: 3214: 3201: 3188:is metabelian" 3175: 3162: 3149: 3136: 3134:, p. 214) 3123: 3110: 3098: 3097: 3095: 3092: 3089: 3088: 3076: 3071: 3067: 3063: 3058: 3054: 3050: 3047: 3021: 3017: 2976: 2972: 2967: 2963: 2960: 2927: 2926: 2924: 2921: 2919: 2916: 2915: 2914: 2909: 2904: 2897: 2894: 2870:Richard Brauer 2828: 2825: 2808: 2805: 2802: 2799: 2794: 2790: 2748: 2745: 2742: 2737: 2733: 2687: 2684: 2680:Sylow theorems 2651: 2646: 2642: 2605: 2600: 2596: 2592: 2589: 2586: 2582: 2578: 2574: 2556:obtained from 2537: 2536:Within a group 2534: 2486: 2481: 2477: 2473: 2469: 2465: 2462: 2459: 2454: 2450: 2444: 2441: 2435: 2418: 2415: 2413: 2410: 2405: 2397: 2394:dihedral group 2365: 2359: 2353: 2347: 2346: × C 2341: 2328: 2327: × C 2322: 2321: × C 2316: 2310: 2309: × C 2304: 2298: 2287: 2286: × C 2283: 2279: 2269: 2263: 2262: × C 2257: 2251: 2237: 2233: 2227: 2121: 2120:Classification 2118: 2086: 2073: 2064: 2037: 2013: 1996: 1987: 1958: 1941: 1931: 1922: 1913: 1904: 1897: 1890: 1871: 1868: 1794:) =  1676: 1673: 1615: = ( 1524: 1521: 1493: 1490:dihedral group 1474: 1464: 1447: 1444: 1363: 1360: 1348: 1339: 1330: 1290:is called the 1247:. Indeed, the 1151:counterexample 1103:class equation 1098: 1095: 1031:for every 1 ≤ 993: 990: 926:Sylow theorems 804: 803: 801: 800: 793: 786: 778: 775: 774: 771: 770: 768:Elliptic curve 764: 763: 757: 756: 750: 749: 743: 738: 737: 734: 733: 728: 727: 724: 721: 717: 713: 712: 711: 706: 704:Diffeomorphism 700: 699: 694: 689: 683: 682: 678: 674: 670: 666: 662: 658: 654: 650: 646: 641: 640: 629: 628: 617: 616: 605: 604: 593: 592: 581: 580: 569: 568: 561:Special linear 557: 556: 549:General linear 545: 544: 539: 533: 524: 523: 520: 519: 516: 515: 510: 505: 497: 496: 483: 471: 458: 445: 443:Modular groups 441: 440: 439: 434: 421: 405: 402: 401: 396: 390: 389: 388: 385: 384: 379: 378: 377: 376: 371: 366: 363: 357: 356: 350: 349: 348: 347: 341: 340: 334: 333: 328: 319: 318: 316:Hall's theorem 313: 311:Sylow theorems 307: 306: 301: 293: 292: 291: 290: 284: 279: 276:Dihedral group 272: 271: 266: 260: 255: 249: 244: 233: 228: 227: 224: 223: 218: 217: 216: 215: 210: 202: 201: 200: 199: 194: 189: 184: 179: 174: 169: 167:multiplicative 164: 159: 154: 149: 141: 140: 139: 138: 133: 125: 124: 116: 115: 114: 113: 111:Wreath product 108: 103: 98: 96:direct product 90: 88:Quotient group 82: 81: 80: 79: 74: 69: 59: 56: 55: 52: 51: 43: 42: 15: 9: 6: 4: 3: 2: 3637: 3626: 3623: 3622: 3620: 3608: 3607: 3602: 3599: 3595: 3594:Rowland, Todd 3590: 3589: 3579: 3573: 3569: 3564: 3561: 3555: 3551: 3547: 3542: 3539: 3533: 3529: 3525: 3521: 3520: 3509: 3505: 3501: 3497: 3493: 3489: 3484: 3481: 3477: 3473: 3467: 3463: 3459: 3455: 3451: 3448: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3412: 3411: 3406: 3402: 3398: 3395: 3394:finite groups 3391: 3386: 3382: 3378: 3374: 3370: 3366: 3363: 3359: 3355: 3352: 3348: 3344: 3340: 3336: 3332: 3329: 3327:9781440035456 3323: 3319: 3315: 3314: 3309: 3305: 3302: 3298: 3294: 3290: 3286: 3282: 3278: 3274: 3269: 3268: 3255: 3249: 3241: 3237: 3233: 3229: 3225: 3218: 3211: 3205: 3189: 3187: 3179: 3172: 3166: 3159: 3153: 3146: 3140: 3133: 3127: 3120: 3119:Burnside 1897 3114: 3108: 3103: 3099: 3074: 3069: 3065: 3061: 3056: 3052: 3048: 3045: 3037: 3019: 3015: 3006: 3002: 2998: 2994: 2974: 2970: 2965: 2961: 2958: 2950: 2946: 2942: 2938: 2932: 2928: 2913: 2910: 2908: 2905: 2903: 2900: 2899: 2893: 2891: 2887: 2886:Michio Suzuki 2883: 2882:Helmut Bender 2879: 2875: 2871: 2867: 2865: 2861: 2857: 2853: 2849: 2844: 2842: 2838: 2834: 2827:Local control 2824: 2822: 2806: 2800: 2792: 2788: 2780: 2778: 2773: 2769: 2765: 2762: 2743: 2735: 2731: 2723: 2721: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2683: 2681: 2677: 2673: 2670:-subgroup of 2669: 2665: 2649: 2644: 2640: 2631: 2627: 2623: 2619: 2603: 2598: 2594: 2590: 2587: 2584: 2576: 2563: 2559: 2555: 2551: 2547: 2543: 2533: 2518: 2514: 2510: 2506: 2505:finite groups 2502: 2479: 2475: 2471: 2467: 2460: 2457: 2452: 2448: 2442: 2439: 2433: 2424: 2409: 2403: 2395: 2391: 2386: 2384: 2383: 2377: 2373: 2368: 2362: 2356: 2350: 2344: 2339: 2334: 2331: 2325: 2319: 2313: 2307: 2301: 2296: 2291: 2278: 2275: 2266: 2260: 2254: 2249: 2245: 2240: 2232: 2226: 2224: 2220: 2215: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2184: 2179: 2175: 2171: 2170: 2165: 2160: 2158: 2154: 2150: 2145: 2144:≤ 6 in 1964. 2143: 2139: 2135: 2131: 2127: 2117: 2115: 2111: 2108: 2104: 2100: 2096: 2092: 2085: 2081: 2076: 2072: 2067: 2063: 2060:are just the 2059: 2055: 2051: 2047: 2043: 2036: 2032: 2029: 2025: 2021: 2016: 2012: 2008: 2003: 1999: 1995: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1961: 1957: 1954:, and define 1953: 1949: 1944: 1940: 1934: 1930: 1925: 1921: 1916: 1912: 1909:} and define 1907: 1903: 1896: 1889: 1886:with basis { 1885: 1881: 1877: 1867: 1865: 1861: 1857: 1853: 1849: 1846:is odd, both 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1750: 1746: 1742: 1738: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1672: 1670: 1666: 1664: 1658: 1654: 1650: 1646: 1642: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1527:The iterated 1520: 1518: 1514: 1513:maximal class 1510: 1506: 1501: 1499: 1491: 1487: 1483: 1478: 1473: 1470: 1463: 1460: 1456: 1452: 1443: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1362:Automorphisms 1359: 1357: 1351: 1347: 1342: 1338: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1292:second center 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1260: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1219: 1214: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1161:, the center 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1133: 1129: 1126: 1121: 1119: 1114: 1112: 1108: 1104: 1094: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1065: 1061: 1057: 1053: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1015:is prime and 1014: 1009: 1007: 1003: 999: 989: 987: 983: 980: 976: 972: 968: 963: 961: 957: 954:Every finite 952: 950: 946: 943: 939: 935: 931: 927: 923: 919: 915: 911: 907: 902: 900: 896: 894: 889: 886: 882: 880: 876: 872: 868: 864: 861: 857: 853: 849: 845: 841: 837: 834:in which the 833: 829: 827: 822: 819: 815: 811: 799: 794: 792: 787: 785: 780: 779: 777: 776: 769: 766: 765: 762: 759: 758: 755: 752: 751: 748: 745: 744: 741: 736: 735: 725: 722: 719: 718: 716: 710: 707: 705: 702: 701: 698: 695: 693: 690: 688: 685: 684: 681: 675: 673: 667: 665: 659: 657: 651: 649: 643: 642: 638: 634: 631: 630: 626: 622: 619: 618: 614: 610: 607: 606: 602: 598: 595: 594: 590: 586: 583: 582: 578: 574: 571: 570: 566: 562: 559: 558: 554: 550: 547: 546: 543: 540: 538: 535: 534: 531: 527: 522: 521: 514: 511: 509: 506: 504: 501: 500: 472: 447: 446: 444: 438: 435: 410: 407: 406: 400: 397: 395: 392: 391: 387: 386: 375: 372: 370: 367: 364: 361: 360: 359: 358: 355: 352: 351: 346: 343: 342: 339: 336: 335: 332: 329: 327: 325: 321: 320: 317: 314: 312: 309: 308: 305: 302: 300: 297: 296: 295: 294: 288: 285: 282: 277: 274: 273: 269: 264: 261: 258: 253: 250: 247: 242: 239: 238: 237: 236: 231: 230:Finite groups 226: 225: 214: 211: 209: 206: 205: 204: 203: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 144: 143: 142: 137: 134: 132: 129: 128: 127: 126: 123: 122: 118: 117: 112: 109: 107: 104: 102: 99: 97: 94: 91: 89: 86: 85: 84: 83: 78: 75: 73: 70: 68: 65: 64: 63: 62: 57:Basic notions 54: 53: 49: 45: 44: 41: 36: 32: 28: 27: 22: 3604: 3567: 3549: 3527: 3491: 3490:, Series 3, 3487: 3457: 3414: 3408: 3401:Hall, Philip 3368: 3364: 3361: 3338: 3312: 3276: 3272: 3248: 3231: 3227: 3217: 3204: 3192:. Retrieved 3185: 3178: 3165: 3152: 3139: 3126: 3113: 3102: 3035: 3004: 3000: 2996: 2992: 2948: 2944: 2940: 2936: 2931: 2868: 2845: 2843:-subgroups. 2840: 2832: 2830: 2776: 2771: 2767: 2763: 2760: 2719: 2714: 2710: 2706: 2702: 2698: 2690: 2689: 2675: 2671: 2667: 2663: 2629: 2625: 2621: 2617: 2561: 2553: 2549: 2545: 2541: 2539: 2516: 2512: 2422: 2420: 2417:Among groups 2389: 2387: 2381: 2375: 2371: 2366: 2360: 2354: 2348: 2342: 2337: 2335: 2329: 2323: 2317: 2311: 2305: 2299: 2294: 2292: 2276: 2264: 2258: 2252: 2247: 2243: 2238: 2235: 2230: 2218: 2216: 2207: 2203: 2196:Lie algebras 2192:pro-p groups 2187: 2181: 2167: 2163: 2161: 2156: 2146: 2141: 2133: 2129: 2125: 2123: 2113: 2106: 2102: 2098: 2094: 2090: 2083: 2079: 2074: 2070: 2065: 2061: 2053: 2049: 2045: 2041: 2034: 2030: 2027: 2023: 2019: 2014: 2010: 2006: 2001: 1997: 1993: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1959: 1955: 1951: 1947: 1942: 1938: 1932: 1928: 1923: 1919: 1914: 1910: 1905: 1901: 1894: 1887: 1883: 1879: 1873: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1818:) has order 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1744: 1740: 1736: 1728: 1720: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1678: 1668: 1662: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1526: 1516: 1502: 1500:is abelian. 1497: 1481: 1479: 1471: 1461: 1459:cyclic group 1450: 1449: 1439: 1431: 1415: 1411: 1403: 1399: 1395: 1391: 1383: 1375: 1371: 1368:automorphism 1365: 1355: 1349: 1345: 1340: 1336: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1261: 1256: 1252: 1251:of a finite 1244: 1240: 1236: 1232: 1228: 1224: 1223:of a finite 1220: 1215: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1146: 1142: 1138: 1137:of a finite 1134: 1127: 1122: 1117: 1115: 1110: 1105:is that the 1100: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1055: 1051: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1010: 1006:finite order 997: 995: 984:-group, see 981: 975:Prüfer group 973:-group, see 970: 966: 964: 955: 953: 948: 944: 937: 933: 921: 917: 909: 906:finite group 903: 898: 892: 891: 887: 883: 878: 870: 866: 862: 855: 851: 847: 843: 825: 824: 820: 818:prime number 814:group theory 807: 636: 624: 612: 600: 588: 576: 564: 552: 323: 322: 280: 267: 256: 245: 241:Cyclic group 119: 106:Free product 77:Group action 40:Group theory 35:Group theory 34: 3494:: 151–166, 2907:Prüfer rank 2874:John Walter 2837:normalizers 2709:-subgroups 2210:-groups in 2149:Philip Hall 2040:is a Sylow 1747:. Form the 1733:prime ideal 1587:). Maximal 1480:Nor need a 1402:), where Φ( 1060:non-trivial 942:prime power 810:mathematics 526:Topological 365:alternating 3369:≤ 6) 3264:References 2854:. Certain 2846:The large 2412:Prevalence 2297:, namely C 2282:which is C 2223:metabelian 2176:and their 2089:has order 2009:) denoted 1946:} for 1 ≤ 1826:, so is a 1484:-group be 1455:isomorphic 1370:groups of 1326:th center 1209:-group is 1125:normalizer 1000:-group is 992:Properties 958:-group is 940:for every 897:or simply 869:copies of 816:, given a 633:Symplectic 573:Orthogonal 530:Lie groups 437:Free group 162:continuous 101:Direct sum 3606:MathWorld 3601:"p-Group" 3447:122817195 3431:0075-4102 3210:Sims 1965 3194:7 January 3158:Hall 1940 3094:Citations 3062:× 2918:Footnotes 2713:(largest 2632:of order 2425:grows as 2110:logarithm 1963:= 0 when 1442:-group. 1406:) is the 1310:with 0 ≤ 1211:nilpotent 1120:-groups. 1073:of order 960:nilpotent 936:of order 697:Conformal 585:Euclidean 192:nilpotent 3625:P-groups 3619:Category 3548:(2008), 3526:(2008), 3403:(1940), 3377:64016861 3310:(1897), 3301:31716675 2896:See also 2501:folklore 2272:and the 2128:for 0 ≤ 1850:(2) and 1661:regular 1507:and the 1467:and the 1446:Examples 1436:Burnside 1422:and its 1418:) is an 1235:acts on 1043:and the 1002:periodic 930:subgroup 895:-primary 692:Poincaré 537:Solenoid 409:Integers 399:Lattices 374:sporadic 369:Lie type 197:solvable 187:dihedral 172:additive 157:infinite 67:Subgroup 3508:0169921 3480:1918951 3439:0003389 3390:lattice 3385:0168631 3351:0352241 3293:1935567 2774:by the 2315:, and C 2169:coclass 2048:) = GL( 2033:, then 1937:, ..., 1900:, ..., 1731:be the 1559:(1) as 1555:) with 1486:abelian 1141:-group 1023:, then 899:primary 885:Abelian 854:-group 687:Lorentz 609:Unitary 508:Lattice 448:PSL(2, 182:abelian 93:(Semi-) 3596:& 3574:  3556:  3534:  3506:  3478:  3468:  3445:  3437:  3429:  3383:  3375:  3349:  3324:  3299:  3291:  2835:, the 2761:normal 2616:where 2364:with C 2352:with C 2229:Up to 2101:where 1766:where 1665:-group 1611:where 1488:; the 1107:center 1049:center 996:Every 979:simple 924:, the 828:-group 542:Circle 473:SL(2, 362:cyclic 326:-group 177:cyclic 152:finite 147:simple 131:kernel 3443:S2CID 3297:S2CID 3107:proof 2923:Notes 2722:-core 2624:then 2256:and C 2018:. If 1967:> 1758:) of 1707:when 1679:When 1426:is a 1266:is a 1249:socle 1153:with 1130:of a 914:order 908:is a 850:of a 840:power 836:order 832:group 830:is a 726:Sp(∞) 723:SU(∞) 136:image 3572:ISBN 3554:ISBN 3532:ISBN 3466:ISBN 3427:ISSN 3415:1940 3373:LCCN 3322:ISBN 3196:2016 2388:For 2336:For 2198:and 1762:and 1583:Sym( 1366:The 823:, a 720:O(∞) 709:Loop 528:and 3496:doi 3419:doi 3281:doi 3236:doi 2995:so 2529:289 2526:367 2523:487 2396:Dih 2303:, C 2221:is 2112:of 1992:to 1838:(2, 1543:as 1492:Dih 1410:of 1398:/Φ( 1262:If 1189:is 1091:G/H 1058:is 1054:of 1011:If 962:. 951:. 932:of 842:of 808:In 635:Sp( 623:SU( 599:SO( 563:SL( 551:GL( 3621:: 3603:. 3504:MR 3502:, 3492:15 3476:MR 3474:, 3464:, 3441:, 3435:MR 3433:, 3425:, 3413:, 3407:, 3381:MR 3379:, 3347:MR 3320:, 3316:, 3295:, 3289:MR 3287:, 3277:12 3275:, 3232:50 3230:. 3226:. 3005:G, 2993:p, 2945:g, 2888:, 2884:, 2880:, 2876:, 2866:. 2697:. 2682:. 2622:m, 2521:49 2443:27 2408:. 2385:. 2225:. 2116:. 2052:, 1975:≤ 1950:≤ 1935:+1 1927:, 1893:, 1806:. 1802:)/ 1519:. 1358:. 1352:+1 1314:≤ 1259:. 1213:. 1197:= 1157:= 1081:, 1035:≤ 1008:. 988:. 904:A 901:. 881:. 611:U( 587:E( 575:O( 33:→ 3609:. 3498:: 3421:: 3367:n 3365:( 3283:: 3256:) 3252:( 3242:. 3238:: 3212:) 3208:( 3198:. 3186:p 3173:) 3169:( 3160:) 3156:( 3147:) 3143:( 3130:( 3121:) 3117:( 3075:. 3070:p 3066:C 3057:p 3053:C 3049:= 3046:G 3036:g 3020:2 3016:p 3001:h 2997:g 2975:2 2971:p 2966:C 2962:= 2959:G 2949:G 2941:p 2937:p 2841:p 2807:. 2804:) 2801:G 2798:( 2793:p 2789:O 2777:p 2772:G 2768:p 2764:p 2747:) 2744:G 2741:( 2736:p 2732:O 2720:p 2715:p 2711:P 2707:p 2703:p 2699:p 2691:p 2676:p 2672:G 2668:p 2664:p 2650:, 2645:k 2641:p 2630:P 2626:G 2618:p 2604:m 2599:k 2595:p 2591:= 2588:n 2585:= 2581:| 2577:G 2573:| 2562:p 2554:p 2550:p 2546:p 2542:p 2517:n 2513:n 2485:) 2480:3 2476:/ 2472:8 2468:n 2464:( 2461:O 2458:+ 2453:3 2449:n 2440:2 2434:p 2423:p 2406:8 2404:Q 2398:4 2390:p 2382:p 2376:p 2372:p 2367:p 2361:p 2355:p 2349:p 2343:p 2338:p 2330:p 2324:p 2318:p 2312:p 2306:p 2300:p 2295:p 2288:2 2284:2 2280:4 2277:V 2270:4 2265:p 2259:p 2253:p 2248:p 2244:p 2239:p 2231:p 2219:p 2208:p 2188:p 2164:p 2157:p 2142:n 2134:p 2130:n 2126:p 2114:n 2107:p 2103:k 2099:p 2095:n 2091:p 2087:1 2084:U 2080:m 2075:m 2071:U 2066:m 2062:U 2054:p 2050:n 2046:V 2042:p 2038:1 2035:U 2031:Z 2028:p 2026:/ 2024:Z 2020:V 2015:m 2011:U 2007:V 2002:m 2000:+ 1998:i 1994:V 1989:i 1985:V 1981:V 1977:n 1973:m 1969:n 1965:i 1960:i 1956:V 1952:n 1948:i 1943:n 1939:e 1933:i 1929:e 1924:i 1920:e 1915:i 1911:V 1906:n 1902:e 1898:2 1895:e 1891:1 1888:e 1884:n 1880:V 1864:p 1860:p 1858:, 1856:p 1854:( 1852:E 1848:W 1844:p 1840:n 1836:E 1832:p 1828:p 1824:n 1820:p 1816:n 1814:, 1812:p 1810:( 1808:E 1804:P 1800:p 1798:( 1796:E 1792:n 1790:, 1788:p 1786:( 1784:E 1780:p 1778:( 1776:E 1772:P 1768:z 1764:G 1760:Z 1756:p 1754:( 1752:E 1745:z 1741:p 1737:G 1729:P 1721:Z 1717:p 1713:n 1709:n 1705:p 1701:n 1699:( 1697:W 1693:n 1691:( 1689:W 1685:n 1681:p 1669:p 1663:p 1657:p 1653:p 1649:p 1645:W 1641:p 1637:p 1633:p 1629:p 1625:p 1621:p 1617:p 1613:k 1609:p 1605:n 1603:( 1601:W 1597:Q 1595:, 1593:n 1589:p 1585:p 1577:p 1573:n 1571:( 1569:W 1565:n 1563:( 1561:W 1557:W 1553:n 1551:( 1549:W 1545:W 1541:p 1537:p 1533:p 1517:n 1498:p 1494:4 1482:p 1475:4 1472:V 1465:4 1462:C 1451:p 1440:p 1432:G 1416:G 1412:G 1404:G 1400:G 1396:G 1392:G 1384:p 1376:p 1372:p 1356:p 1350:i 1346:Z 1341:i 1337:Z 1332:i 1328:Z 1324:i 1320:p 1316:n 1312:i 1308:p 1304:p 1300:p 1288:Z 1286:/ 1284:G 1280:G 1276:Z 1274:/ 1272:G 1268:p 1264:G 1257:p 1253:p 1245:p 1241:p 1237:N 1233:G 1229:N 1225:p 1221:N 1207:p 1203:Z 1201:/ 1199:H 1195:Z 1193:/ 1191:N 1187:Z 1185:/ 1183:G 1179:Z 1177:/ 1175:H 1171:H 1167:N 1163:Z 1159:N 1155:H 1147:H 1143:G 1139:p 1135:H 1128:N 1118:p 1111:p 1087:G 1083:H 1079:G 1075:p 1071:H 1067:Z 1056:G 1052:Z 1037:k 1033:m 1029:p 1025:G 1021:p 1017:G 1013:p 998:p 982:p 971:p 967:p 956:p 949:G 945:p 938:p 934:G 922:G 918:p 910:p 893:p 888:p 879:p 871:g 867:p 863:n 856:G 852:p 848:g 844:p 826:p 821:p 797:e 790:t 783:v 679:8 677:E 671:7 669:E 663:6 661:E 655:4 653:F 647:2 645:G 639:) 637:n 627:) 625:n 615:) 613:n 603:) 601:n 591:) 589:n 579:) 577:n 567:) 565:n 555:) 553:n 495:) 482:Z 470:) 457:Z 433:) 420:Z 411:( 324:p 289:Q 281:n 278:D 268:n 265:A 257:n 254:S 246:n 243:Z 23:.

Index

n-group (category theory)
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.