Knowledge

Video camera tube

Source 📝

913:, this deflection is not in a straight line, thus when the electrons reach the target they do so perpendicularly avoiding a sideways component. The target is nearly at ground potential with a small positive charge, thus when the electrons reach the target at low speed they are absorbed without ejecting more electrons. This adds negative charge to the positive charge until the region being scanned reaches some threshold negative charge, at which point the scanning electrons are reflected by the negative potential rather than absorbed (in this process the target recovers the electrons needed for the next scan). These reflected electrons return down the cathode ray tube toward the first dynode of the electron multiplier surrounding the electron gun which is at high potential. The number of reflected electrons is a linear measure of the target's original positive charge, which, in turn, is a measure of brightness. 1322:
striped filter having a fine pattern of vertical stripes of green, cyan and clear filters (i.e. green; green and blue; and green, blue and red) repeating across the target. The advantage of this arrangement was that for virtually every color, the video level of the green component was always less than the cyan, and similarly the cyan was always less than the white. Thus the contributing images could be separated without any reference electrodes in the tube. If the three levels were the same, then that part of the scene was green. This method suffered from the disadvantage that the light levels under the three filters were almost certain to be different, with the green filter passing not more than one third of the available light.
938:
very bright point on a captured image, a great preponderance of electrons is ejected from the photosensitive plate. So many may be ejected that the corresponding point on the collection mesh can no longer soak them up, and thus they fall back to nearby spots on the target instead, much as water splashes in a ring when a rock is thrown into it. Since the resultant splashed electrons do not contain sufficient energy to eject further electrons where they land, they will instead neutralize any positive charge that has been built-up in that region. Since darker images produce less positive charge on the target, the excess electrons deposited by the splash will be read as a dark region by the scanning electron beam.
1301:
biasing was a method whereby the photosensitive target was illuminated from a light source just enough that no appreciable output was obtained, but such that a slight increase in light level from the scene was enough to provide discernible output. The light came from either an illuminator mounted around the target, or in more professional cameras from a light source on the base of the tube and guided to the target by light piping. The technique would not work with the baseline vidicon tube because it suffered from the limitation that as the target was fundamentally an insulator, the constant low light level built up a charge which would manifest itself as a form of
698: 1140:
the Plumbicons and the Saticon. Compared to Saticons, Plumbicons have much higher resistance to burn-in, and comet and trailing artifacts from bright lights in the shot. Saticons though, usually have slightly higher resolution. After 1980, and the introduction of the diode-gun Plumbicon tube, the resolution of both types was so high, compared to the maximum limits of the broadcasting standard, that the Saticon's resolution advantage became moot. While broadcast cameras migrated to solid-state charge-coupled devices, Plumbicon tubes remained a staple imaging device in the medical field. High resolution Plumbicons were made for the
1074:
a trail that eventually fades into the image. It cannot be avoided or eliminated, as it is inherent to the technology. To what degree the image generated by the Vidicon is affected will depend on the properties of the target material used on the Vidicon, and the capacitance of the target material (known as the storage effect) as well as the resistance of the electron beam used to scan the target. The higher the capacitance of the target, the higher the charge it can hold and the longer it will take for the trail to disappear. The remmanant charges on the target eventually dissipate making the trail disappear.
390: 49: 491:
and 9 in page 2: "The photoelectric material, such as potassium hydride, is evaporated on the aluminum oxide, or other insulating medium, and treated so as to form a colloidal deposit of potassium hydride consisting of minute globules. Each globule is very active photoelectrically and constitutes, to all intents and purposes, a minute individual photoelectric cell". Its first image was transmitted in late summer of 1925, and a patent was issued in 1928. However the quality of the transmitted image failed to impress H.P. Davis, the general manager of
232: 427:) suffered from a very disappointing and fatal flaw: They scanned the subject and what was seen at each point was only the tiny piece of light viewed at the instant that the scanning system passed over it. A practical functional camera tube needed a different technological approach, which later became known as Charge - Storage camera tube. It was based on a new physical phenomenon which was discovered and patented in Hungary in 1926, but became widely understood and recognised only from around 1930. 767: 410: 1013: 640:. Each individual electron from the electron image produces several secondary electrons after reaching the target, so that an amplification effect is produced, and the resulting positive charge is proportional to the integrated intensity of the scene light. The target is constructed of a mosaic of electrically isolated metallic granules separated from a common plate by a thin layer of isolating material, so that the positive charge resulting from the 402: 894:. On average, each image electron ejects several splash electrons (thus adding amplification by secondary emission), and these excess electrons are soaked up by the positive mesh effectively removing electrons from the target and causing a positive charge on it in relation to the incident light in the photocathode. The result is an image painted in positive charge, with the brightest portions having the largest positive charge. 1530:, elimination of the drive circuitry for the focusing coils, no warm-up time and a significantly lower overall power consumption. Despite these advantages, acceptance and incorporation of solid-state sensors into television and video cameras was not immediate. Early sensors were of lower resolution and performance than picture tubes, and were initially relegated to consumer-grade video recording equipment. 31: 163:) as both imaging and display devices. He noted that the "real difficulties lie in devising an efficient transmitter", and that it was possible that "no photoelectric phenomenon at present known will provide what is required". A cathode ray tube was successfully demonstrated as a displaying device by the German Professor Max Dieckmann in 1906; his experimental results were published by the journal 759: 1104: 985:
can scan the surface of the target. The beam deposits electrons on the target and when enough photons strike the target, a difference in current is produced between the two electrically conductive layers of the target, and due to a connection to an electrical resistor this difference is output as a voltage. The fluctuating voltage created in the target is coupled to a video
922: 357:). The entire electron image is deflected and a scanning aperture permits only those electrons emanating from a very small area of the photocathode to be captured by the detector at any given time. The output from the detector is an electric current whose magnitude is a measure of the brightness of the corresponding area of the image. The electron image is 579:. Each individual electron from the electron image produces several secondary electrons after reaching the target, so that an amplification effect is produced. The target is constructed of a mosaic of electrically isolated metallic granules separated from a common plate by a thin layer of isolating material, so that the positive charge resulting from the 909:) around the gun at a high positive voltage (approx. +1500 V). Once it exits the electron gun, its inertia makes the beam move away from the dynode towards the back side of the target. At this point the electrons lose speed and get deflected by the horizontal and vertical deflection coils, effectively scanning the target. Thanks to the 962: 981:(ITO) layer, on top of which the photoconductive surface is formed by depositing photoconductive material which can be applied as small squares with insulation between the squares. The photoconductor is normally an insulator but becomes partially conductive when struck by electrons. The output of the tube comes from the ITO layer. 211:. Both teams succeeded in transmitting "very faint" images with the original Campbell-Swinton's selenium-coated plate, but much better images were obtained when the metal plate was covered with zinc sulphide or selenide, or with aluminum or zirconium oxide treated with caesium. These experiments would form the base of the future 721:, a negative (or slightly positive) grid lay very close to the plate, and a positive one was placed further away. The velocity and energy of the electrons in the scanning beam were reduced to zero by the decelerating electric field generated by this pair of grids, and so a low-velocity scanning beam tube was obtained. The 1127:. They have excellent resolution compared to image orthicons, but lack the artificially sharp edges of IO tubes, which cause some of the viewing audience to perceive them as softer. CBS Labs invented the first outboard edge enhancement circuits to sharpen the edges of Plumbicon generated images. Philips received the 1966 1090:. They are very resistant to burn-in, have low image lag and very high sensitivity but are not considered suitable for broadcast TV production as they suffer from high image blooming and image non uniformity. The targets in these tubes are made on silicon substrates and require 10 volts to operate, they are made with 670:, preventing the emission of secondary electrons. Not all the electrons in the scanning beam may be absorbed in the mosaic, because the stored positive charges are proportional to the integrated intensity of the scene light. The remaining electrons are then deflected back into the anode, captured by a special 1188:. Compared to the Plumbicon it has a less advantageous operating temperature range and has more image lag. The target in a Saticon has a transparent Tin oxide transparent electrically conductive layer, followed by a SeAsTe layer, a SeAs layer, and an Antimony trisulfide layer which faces the electron beam. 1437:. The result is expressed in inches and is usually, though not always, rounded to a convenient fraction (hence the approximation). For instance, a 6.4 mm × 4.8 mm (0.25 in × 0.19 in) sensor has a diagonal of 8.0 mm (0.31 in) and therefore an optical format of 8.0 × 1533:
Also, video tubes had progressed to a high standard of quality and were standard issue equipment to networks and production entities. Those entities had a substantial investment in not only tube cameras, but also in the ancillary equipment needed to correctly process tube-derived video. A switch-over
1300:
All the vidicon type tubes except the vidicon itself were able to use a light biasing technique to improve the sensitivity and contrast. The photosensitive target in these tubes suffered from the limitation that the light level had to rise to a particular level before any video output resulted. Light
1276:
Although the idea of using color stripe filters over the target was not new, the Trinicon was the only tube to use the primary RGB colors. This necessitated an additional electrode buried in the target to detect where the scanning electron beam was relative to the stripe filter. Previous color stripe
1272:
from 1971. It uses a vertically striped RGB color filter over the faceplate of an otherwise standard vidicon imaging tube to segment the scan into corresponding red, green and blue segments. Only one tube was used in the camera, instead of a tube for each color, as was standard for color cameras used
1139:
Plumbicons were the first commercially successful version of the Vidicon. They were smaller, had lower noise, higher sensitivity and resolution, had less image lag than Vidicons, and were a defining factor in the development of color TV cameras. The most widely used camera tubes in TV production were
1077:
Vidicons can be damaged by high intensity light exposure. Image burn-in occurs when an image is captured by a Vidicon for a long time and appears as a persistent outline of the image when it changes, and the outline disappears over time. Vidicons can become damaged by direct exposure to the sun which
1073:
All vidicon and similar tubes are prone to image lag, better known as ghosting, smearing, burn-in, comet tails, luma trails and luminance blooming. Image lag is visible as noticeable (usually white or colored) trails that appear after a bright object (such as a light or reflection) has moved, leaving
648:
The image iconoscope is essentially identical to the super-Emitron, but the target is constructed of a thin layer of isolating material placed on top of a conductive base, the mosaic of metallic granules is missing. Therefore, secondary electrons are emitted from the surface of the isolating material
526:
The iconoscope was presented to the general public at a press conference in June 1933, and two detailed technical papers were published in September and October of the same year. Unlike the Farnsworth image dissector, the Zworykin iconoscope was much more sensitive, useful with an illumination on the
937:
The mysterious dark "orthicon halo" around bright objects in an orthicon-captured image (also known as "blooming") is based on the fact that the IO relies on the emission of photoelectrons, but very bright illumination can produce more of them locally than the device can successfully deal with. At a
657:
The original iconoscope was very noisy due to the secondary electrons released from the photoelectric mosaic of the charge storage plate when the scanning beam swept it across. An obvious solution was to scan the mosaic with a low-velocity electron beam which produced less energy in the neighborhood
595:
On the other hand, in 1934, Zworykin shared some patent rights with the German licensee company Telefunken. The image iconoscope (Superikonoskop in Germany) was produced as a result of the collaboration. This tube is essentially identical to the super-Emitron, but the target is constructed of a thin
502:
The first practical iconoscope was constructed in 1931 by Sanford Essig, when he accidentally left a silvered mica sheet in the oven too long. Upon examination with a microscope, he noticed that the silver layer had broken up into a myriad of tiny isolated silver globules. He also noticed that, "the
1408:
The size of video camera tubes is simply the overall outside diameter of the glass envelope. This differs from the size of the sensitive area of the target which is typically two thirds of the size of the overall diameter. Tube sizes are always expressed in inches for historical reasons. A one-inch
1395:
In a conventional magnetically deflected CRT, such as in a TV receiver or computer monitor, basically the vertical deflection coils are equivalent to coils wound around an horizontal axis. That axis is perpendicular to the neck of the tube; lines of force are basically horizontal. (In detail, coils
1387:
paths as they travel along the length of the tube. The center (think local axis) of one of those helices is like a line of force of the magnetic field. While the electrons are traveling, the helices essentially don't matter. Assuming that they start from a point, the electrons will focus to a point
1351:
independently developed a field-sequential color disk system in Mexico in the early 1940s, for which he requested a patent in Mexico on August 19 of 1940 and in the US in 1941. Gonzalez Camarena produced his color television system in his laboratory Gon-Cam for the Mexican market and exported it to
1321:
solid state cameras today. It was also possible to construct a color camera that used a single image tube. One technique has already been described (Trinicon above). A more common technique and a simpler one from the tube construction standpoint was to overlay the photosensitive target with a color
984:
The target is kept at a positive voltage of 30 volts and the cathode in the tube is at a voltage of negative 30 volts. The cathode releases electrons which are modulated by grid G1 and accelerated by grid G2 creating an electron beam. Magnetic coils deflect, focus, and align the electron beam so it
806:
and the intermediate orthicon used capacitance between a multitude of small but discrete light sensitive collectors and an isolated signal plate for reading video information, the image orthicon employed direct charge readings from a continuous electronically charged collector. The resultant signal
567:
released from the mosaic of the charge storage plate when the scanning beam sweeps across it may be attracted back to the positively charged mosaic, thus neutralizing many of the stored charges. Lubszynski, Rodda, and McGee realized that the best solution was to separate the photo-emission function
490:
that included a charge storage plate constructed of a thin layer of isolating material (aluminum oxide) sandwiched between a screen (300 mesh) and a colloidal deposit of photoelectric material (potassium hydride) consisting of isolated globules. The following description can be read between lines 1
474:
in March 1926 for a television system he dubbed Radioskop. After further refinements included in a 1928 patent application, Tihanyi's patent was declared void in Great Britain in 1930, and so he applied for patents in the United States. Tihanyi's charge storage idea remains a basic principle in the
339:
Dissectors were used only briefly for research in television systems before being replaced by different much more sensitive tubes based on the charge-storage phenomenon like the iconoscope during the 1930s. Although camera tubes based on the idea of image dissector technology quickly and completely
1338:
were developed which used synchronized motor-driven color-filter disks at the camera's image tube and at the television receiver. Each disk consisted of red, blue, and green transparent color filters. In the camera, the disk was in the optical path, and in the receiver, it was in front of the CRT.
1183:
is The Japan Broadcasting Corporation). Introduced in 1973, Its surface consists of selenium with trace amounts of arsenic and tellurium added (SeAsTe) to make the signal more stable. SAT in the name is derived from (SeAsTe). Saticon tubes have an average light sensitivity equivalent to that of 64
684:
tubes have several advantages; there are low levels of spurious signals and high efficiency of conversion of light into signal, so that the signal output is maximum. However, there are serious problems as well, because the electron beam spreads and accelerates in a direction parallel to the target
885:
In the image store, light falls upon the photocathode which is a photosensitive plate at a very negative potential (approx. -600 V), and is converted into an electron image (a principle borrowed from the image dissector). This electron rain is then accelerated towards the target (a very thin
749:
began working in 1935 on a low-velocity scanning beam device they came to dub the orthicon. Iams and Rose solved the problem of guiding the beam and keeping it in focus by installing specially designed deflection plates and deflection coils near the charge storage plate to provide a uniform axial
693:
team were the first engineers in transmitting a clear and well focused image with such a tube. Another improvement is the use of a semitransparent charge storage plate. The scene image is then projected onto the back side of the plate, while the low-velocity electron beam scans the photoelectric
644:
is stored in the capacitor formed by the metallic granule and the common plate. Finally, an electron beam periodically sweeps across the target, effectively scanning the stored image and discharging each capacitor in turn such that the electrical output from each capacitor is proportional to the
1094:
processes. These tubes could be used with an image intensifier in which case they were known as silicon intensified tubes (SITs) which had an additional photocathode in front of the target that produced large amounts of electrons when struck by photons, and the electrons were accelerated to the
1399:
In a magnetically focused camera tube (there are electrostatically focused vidicons), the vertical deflection coils are above and below the tube, instead of being on both sides of it. One might say that this sort of deflection starts to create S-bends in the lines of force, but doesn't become
725:
team kept working on these devices, and Lubszynski discovered in 1936 that a clear image could be produced if the trajectory of the low-velocity scanning beam was nearly perpendicular (orthogonal) to the charge storage plate in a neighborhood of it. The resulting device was dubbed the cathode
466:) The problem of low sensitivity to light resulting in low electrical output from transmitting or camera tubes would be solved with the introduction of charge-storage technology by Tihanyi in the beginning of 1925. His solution was a camera tube that accumulated and stored electrical charges ( 611:
The image iconoscope (Superikonoskop) became the industrial standard for public broadcasting in Europe from 1936 until 1960, when it was replaced by the vidicon and plumbicon tubes. Indeed, it was the representative of the European tradition in electronic tubes competing against the American
169:
in 1909. Campbell-Swinton later expanded on his vision in a presidential address given to the Röntgen Society in November 1911. The photoelectric screen in the proposed transmitting device was a mosaic of isolated rubidium cubes. His concept for a fully electronic television system was later
1191:
A high-gain avalanche rushing amorphous photoconductor (HARP) made of amorphous Selenium (a-Se) can be used to increase light sensitivity to up to 10 times that of conventional saticons, and Saticons with this kind of target are known as HARPICONs. The target in HARPICONs is made up of ITO
957:
A vidicon tube is a video camera tube design in which the target material is a photoconductor. The vidicon was developed in 1950 at RCA by P. K. Weimer, S. V. Forgue and R. R. Goodrich as a simple alternative to the structurally and electrically complex image orthicon. While the initial
591:
by the BBC, for the first time, on Armistice Day 1937, when the general public could watch in a television set how the King laid a wreath at the Cenotaph. This was the first time that anyone could broadcast a live street scene from cameras installed on the roof of neighboring buildings.
90:
is scanned across an image of the scene to be broadcast focused on a target. This generated a current that is dependent on the brightness of the image on the target at the scan point. The size of the striking ray is tiny compared to the size of the target, allowing 480–486 horizontal
949:. (That is, giving the illusion of being more sharply focused than it actually is). The later vidicon tube and its descendants (see below) do not exhibit this effect, and so could not be used for broadcast purposes until special detail correction circuitry could be developed. 336:-type camera tube. This is among the first patents to propose the use of a "low-velocity" scanning beam and RCA had to buy it in order to sell image orthicon tubes to the general public. However, Farnsworth never transmitted a clear and well focused image with such a tube. 989:
and used to reproduce the scene being imaged, in other words it is the video output. The electrical charge produced by an image will remain in the face plate until it is scanned or until the charge dissipates. Special Vidicons can have resolutions of up to 5,000 TV lines.
1339:
Disk rotation was synchronized with vertical scanning so that each vertical scan in sequence was for a different primary color. This method allowed regular black-and-white image tubes and CRTs to generate and display color images. A field-sequential system developed by
325:/m). However, it was ideal for industrial applications, such as monitoring the bright interior of an industrial furnace. Due to their poor light sensitivity, image dissectors were rarely used in television broadcasting, except to scan film and other transparencies. 450:
periodically sweeps across the plate, effectively scanning the stored image and discharging each capacitor in turn such that the electrical output from each capacitor is proportional to the average intensity of the light striking it between each discharge event.
3140: 2991: 300:
that included a device for "the conversion and dissecting of light". Its first moving image was successfully transmitted on September 7 of 1927, and a patent was issued in 1930. Farnsworth quickly made improvements to the device, among them introducing an
1371:
Diagrams in this article show that the focus coil surrounds the camera tube; it is much longer than the focus coils for earlier TV CRTs. Camera-tube focus coils, by themselves, have essentially parallel lines of force, very different from the localized
789:
The image orthicon tube was developed at RCA by Albert Rose, Paul K. Weimer, and Harold B. Law. It represented a considerable advance in the television field, and after further development work, RCA created original models between 1939 and 1940. The
818:
An image orthicon camera can take television pictures by candlelight because of the more ordered light-sensitive area and the presence of an electron multiplier at the base of the tube, which operated as a high-efficiency amplifier. It also has a
750:
magnetic field. The orthicon's performance was similar to that of the image iconoscope, but it was also unstable under sudden flashes of bright light, producing "the appearance of a large drop of water evaporating slowly over part of the scene".
1325:
Variations on this scheme exist, the principal one being to use two filters with color stripes overlaid such that the colors form vertically oriented lozenge shapes overlaying the target. The method of extracting the color is similar however.
1510:
HD broadcasting system. While CCDs were tested for this application, as of 1993 broadcasters still found them inadequate due to issues achieving the necessary high resolution without compromising image quality with undesirable side-effects.
685:
when it scans the image's borders and corners, so that it produces secondary electrons and one gets an image that is well focused in the center but blurry in the borders. Henroteau was among the first inventors to propose in 1929 the use of
1388:
again at a distance determined by the strength of the field. Focusing a tube with this kind of coil is simply a matter of trimming the coil's current. In effect, the electrons travel along the lines of force, although helically, in detail.
1273:
in television broadcasting. It is used mostly in low-end consumer cameras, such as the HVC-2200 and HVC-2400 models, though Sony also used it in some moderate cost professional cameras in the 1970s and 1980s, such as the DXC-1600 series.
280:
Dieckmann and Hell submitted their application to the German patent office in April 1925, and a patent was issued in October 1927. Their experiments on the image dissector were announced in September 1927 issue of the popular magazine
340:
fell out of use in the field of television broadcasting, they continued to be used for imaging in early weather satellites and the Lunar lander, and for star attitude tracking in the Space Shuttle and the International Space Station.
1131:
for the Plumbicon. Targets in Plumbicons have two layers: a pure PbO layer, and a doped PbO layer. The pure PbO is an intrinsic I type semiconductor, and a layer of it is doped to create a P type PbO semiconductor, thus creating a
612:
tradition represented by the image orthicon. The German company Heimann produced the Superikonoskop for the 1936 Berlin Olympic Games, later Heimann also produced and commercialized it from 1940 to 1955, finally the Dutch company
554:
The original iconoscope was noisy, had a high ratio of interference to signal, and ultimately gave disappointing results, especially when compared to the high definition mechanical scanning systems then becoming available. The
1391:
These focus coils are essentially as long as the tubes themselves, and surround the deflection yoke (coils). Deflection fields bend the lines of force (with negligible defocusing), and the electrons follow the lines of force.
886:
glass plate acting as a semi-isolator) at ground potential (0 V), and passes through a very fine wire mesh (nearly 200 or 390 wires per cm), very near (a few hundredths of a cm) and parallel to the target, acting as a
596:
layer of isolating material placed on top of a conductive base, the mosaic of metallic granules is missing. The production and commercialization of the super-Emitron and image iconoscope in Europe were not affected by the
507:, Zworykin submitted a patent application in November 1931, and it was issued in 1935. Nevertheless, Zworykin's team was not the only engineering group working on devices that used a charge storage plate. In 1932, the 462:, he discovered a new hitherto unknown physical phenomenon, which led to a break-through in the development of electronic imaging devices. He named the new phenomenon as charge-storage principle. (further information: 658:
of the plate such that no secondary electrons were emitted at all. That is, an image is projected onto the photoelectric mosaic of a charge storage plate, so that positive charges are produced and stored there due to
583:
is stored in the granules. Finally, an electron beam periodically sweeps across the target, effectively scanning the stored image, discharging each granule, and producing an electronic signal like in the iconoscope.
1541:
rendered much of that equipment (and the investments behind it) obsolete and required new equipment optimized to work well with solid-state sensors, just as the old equipment was optimized for tube-sourced video.
1196:(Cerium oxide), Selenium doped with Arsenic and Lithium Fluoride, Selenium doped with Arsenic and Tellurium, amorphous Selenium made by doping it with Arsenic, and antimony trisulfide. Saticons were made for the 546:). It was also easier to manufacture and produced a very clear image. The iconoscope was the primary camera tube used by RCA broadcasting from 1936 until 1946, when it was replaced by the image orthicon tube. 694:
mosaic at the front side. This configurations allows the use of a straight camera tube, because the scene to be transmitted, the charge storage plate, and the electron gun can be aligned one after the other.
1078:
causes them to develop dark spots. Vidicons often used antimony trisulfide as the photoconductive material. They were not very successful because of image lag, which was seen in the RCA TK-42 color camera.
1277:
systems had used colors where the color circuitry was able to separate the colors purely from the relative amplitudes of the signals. As a result, the Trinicon featured a larger dynamic range of operation.
794:
entered into a contract with RCA where the NDRC paid for its further development. Upon RCA's development of the more sensitive image orthicon tube in 1943, RCA entered into a production contract with the
6473:
Busch, H. (1926). "Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde" [Calculation of the Paths of Cathode Rays in Axial Symmetric Electromagnetic Fields].
352:
system of the image dissector focuses an image onto a photocathode mounted inside a high vacuum. As light strikes the photocathode, electrons are emitted in proportion to the intensity of the light (see
1545:
Due to their relative insensitivity to radiation, compared to semi-conductor based devices, video camera tubes are still occasionally used in high radiation environments such as nuclear power plants.
3999: 499:
in 1923, but this filing is not a definitive reference because extensive revisions were done before a patent was issued fifteen years later and the file itself was divided into two patents in 1931.
1364:
was discovered by A. A. Campbell-Swinton in 1896. He found that a longitudinal magnetic field generated by an axial coil can focus an electron beam. This phenomenon was immediately corroborated by
571:
The new video camera tube developed by Lubszynski, Rodda and McGee in 1934 was dubbed "the super-Emitron". This tube is a combination of the image dissector and the Emitron. It has an efficient
4362: 4145: 4116: 3793: 3764: 3735: 3364: 3160: 587:
The super-Emitron was between ten and fifteen times more sensitive than the original Emitron and iconoscope tubes and, in some cases, this ratio was considerably greater. It was used for an
376:" characteristic; the vast majority of electrons emitted by the photocathode are excluded by the scanning aperture, and thus wasted rather than being stored on a photo-sensitive target. 1526:
and significantly higher reliability and ruggedness. Other advantages include the elimination of the respective high and low-voltage power supplies required for the electron beam and
2150: 4965: 1144:
standard. Since PbO is not stable in air, the deposition of PbO on the target is challenging. Vistacons developed by RCA and Leddicons made by EEV also use PbO in their targets.
5035:
Goss, A. J.; Nixon, R. D.; Watton, R.; Wreathall, W. M. (1985). "Progress in IR Television Using the Pyroelectric Vidicon". In Mollicone, Richard A.; Spiro, Irving J. (eds.).
600:
between Zworykin and Farnsworth, because Dieckmann and Hell had priority in Germany for the invention of the image dissector, having submitted a patent application for their
203:
beam. These experiments were conducted before March 1914, when Minchin died, but they were later repeated by two different teams in 1937, by H. Miller and J. W. Strange from
6582: 563:
analyzed how the Emitron (or iconoscope) produces an electronic signal and concluded that its real efficiency was only about 5% of the theoretical maximum. This is because
434:
plate containing a mosaic of electrically isolated photosensitive granules separated from a common plate by a thin layer of isolating material, somewhat analogous to the
4667: 199:
and J. C. M. Stanton. They had attempted to generate an electrical signal by projecting an image onto a selenium-coated metal plate that was simultaneously scanned by a
1522:
offer many advantages over their tube counterparts. These include a lack of image lag, high overall picture quality, high light sensitivity and dynamic range, a better
216: 1280:
Sony later combined the Saticon tube with the Trinicon's RGB color filter, providing low-light sensitivity and superior color. This type of tube was known as the
958:
photoconductor used was selenium, other targets—including silicon diode arrays—have been used. Vidicons with these targets are known as Si-vidicons or Ultricons.
317:"electron multiplier" in 1937 made Farnsworth's image dissector the first practical version of a fully electronic imaging device for television. It had very poor 1478:
Although the optical format size bears no relationship to any physical parameter of the sensor, its use means that a lens that would have been used with (say) a
835:
in the broadcast industry when image orthicon tubes were in operation. Image orthicons were used extensively in the early color television cameras such as the
486:
presented a project for a totally electronic television system to the company's general manager. In July 1925, Zworykin submitted a patent application titled
1045: 4049: 4020: 977:. This surface is on a glass plate and is also called the target. More specifically, this glass plate is covered in a transparent, electrically conductive, 3990: 815:
for capturing Apollo/Saturn rockets nearing orbit, although the television networks had phased the cameras out. Only they could provide sufficient detail.
4316:
Gibbons, D. J. (1960). McGee, J. D.; Wilcock, W. L. (eds.). "The Tri-alkali Stabilized C.P.S. Emitron: A New Television Camera Tube of High Sensitivity".
3166:. European Patent Office, Patent No. GB313456. Convention date UK application: 1928-06-11, declared void and published: 1930-11-11, retrieved: 2013-04-25. 1396:
in a deflection yoke extend some distance beyond the neck of the tube, and lie close to the flare of the bulb; they have a truly distinctive appearance.)
628:
The super-Emitron is a combination of the image dissector and the Emitron. The scene image is projected onto an efficient continuous-film semitransparent
6060: 5199: 5623: 1176: 503:
tiny dimension of the silver droplets would enhance the image resolution of the iconoscope by a quantum leap". As head of television development at
726:
potential stabilized Emitron, or CPS Emitron. The industrial production and commercialization of the CPS Emitron had to wait until the end of the
446:. Each photosensitive granule constitutes a tiny capacitor that accumulates and stores electrical charge in response to the light striking it. An 6631: 3417: 1380:; it focuses the "crossover" (between the CRT's cathode and G1 electrode, where the electrons pinch together and diverge again) onto the screen. 254: 2412: 1288:. SMF Trinicon tubes were used in the HVC-2800 and HVC-2500 consumer cameras, the DXC-1800 and BVP-1 professional cameras, as well as the first 890:
at a slightly positive voltage (approx +2 V). Once the image electrons reach the target, they cause a splash of electrons by the effect of
847: 575:
that transforms the scene light into an electron image; the latter is then accelerated towards a target specially prepared for the emission of
649:
when the electron image reaches the target, and the resulting positive charges are stored directly onto the surface of the isolated material.
5593: 463: 799:, the first tubes being delivered in January 1944. RCA began production of image orthicons for civilian use in the second quarter of 1946. 129:) television receivers and computer displays. The camera pickup tubes described in this article are also CRTs, but they display no image. 1252:
from 1973. Introduced in 1974, The Newvicon tubes were characterized by high light sensitivity. Its surface consists of a combination of
811:
from other parts of the target, and could yield extremely detailed images. For instance, image orthicon cameras were still being used by
4956: 2268: 5088: 1155:) lead oxide camera tube business, and gained a monopoly in lead-oxide tube production. Lead oxide tubes were also made by Matsushita. 195:
published in October 1926, Campbell-Swinton also announced the results of some "not very successful experiments" he had conducted with
4772: 4621: 365:") such that the entire image is read by the detector many times per second, producing an electrical signal that can be conveyed to a 7505: 3965: 3065: 2840: 1201: 851: 1506:
The lifespan of videotube technology reached as far as the 90s, when high definition, 1035-line videotubes were used in the early
1086:
Si-vidicons, silicon vidicons or Epicons, Vidicons using arrays of silicon diodes for the target, were introduced in 1969 for the
7146: 4747: 4652: 5558: 1507: 1205: 1128: 104: 5985:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
4664: 2807: 2777: 2747: 2494: 1292:
camcorders. Toshiba offered a similar tube in 1974, and Hitachi also developed a similar Saticon with a color filter in 1981.
774:
The image orthicon (sometimes abbreviated IO), was common in American broadcasting from 1946 until 1968. A combination of the
6555: 6369: 6253: 6175: 6148: 6095: 6070: 5959: 5921: 5821: 5773: 5746: 5685: 5658: 5502: 5475: 5399: 5389: 5348: 5321: 5294: 5237: 5019: 4992: 4939: 4931:
Measurement, Instrumentation, and Sensors Handbook: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement
4897: 4852: 4782: 4729: 4561: 4449: 4404: 4345: 4088: 3916: 3864: 3827: 3707: 3659: 3611: 3563: 3331: 3197: 3037: 2911: 2714: 2536: 2357: 2230: 2182: 1991: 1785: 1634: 1595: 1240:, hence the acronym 'pasecon'. It is not considered suitable for broadcast TV production, as it suffers from high image lag. 5811: 4887: 4800: 616:
produced and commercialized the image iconoscope and multicon from 1952 until 1963, when it was replaced by the much better
7063: 6243: 4982: 4828: 1260:(ZnCdTe). It is not considered suitable for broadcast TV production, as it suffers from high image lag and non uniformity. 6298: 6272:. September 5, 1940, p. 18. A color 16 mm film was shown; live pick-ups were first demonstrated to the press in 1941. 5009: 1423:
is still expressed as the equivalent size of a camera tube. For this purpose a new term was coined and it is known as the
6844: 6624: 4842: 3437: 1488:-inch camera tube will give roughly the same angle of view when used with a solid-state sensor with an optical format of 969:
The vidicon is a storage-type camera tube in which a charge-density pattern is formed by the imaged scene radiation on a
791: 5523: 5174: 2568: 1313:
Early color cameras used the obvious technique of using separate red, green and blue image tubes in conjunction with a
4719: 6827: 6723: 5648: 5338: 479: 470:) within the tube throughout each scanning cycle. The device was first described in a patent application he filed in 5675: 5492: 5284: 4929: 3944: 6967: 6694: 4181:. filed in Great Britain August 1934, filed in USA August 1935, patented December 1939. United States Patent Office 1347:
was demonstrated to the press on September 4, 1940, and was first shown to the general public on January 12, 1950.
1091: 321:
sensitivity, and was therefore primarily useful only where illumination was exceptionally high (typically over 685
5311: 5145: 705:
The first fully functional low-velocity scanning beam tube, the CPS Emitron, was invented and demonstrated by the
52:
A display of numerous video camera tubes from the 1930s and 1940s, photographed in 1954, with iconoscope inventor
7015: 6814: 273:, an element lacking in Dieckmann and Hell's design, and in the early dissector tubes built by American inventor 144: 2390: 7669: 6617: 5837: 1897: 1875: 1818: 5763: 1348: 223:
in August 1921, and published in 1922, although a working device was not demonstrated until some years later.
125:, is known as a cathode ray tube (CRT). These are usually seen as display devices as used in older (i.e., non- 3600: 2948:
Rose, A.; Iams, H. A. (September 1939). "Television Pickup Tubes Using Low-Velocity Electron-Beam Scanning".
1409:
camera tube has a sensitive area of approximately two thirds of an inch on the diagonal or about 16 mm.
1335: 394: 5203: 5119: 7046: 6798: 5630: 1840: 1828:. Vol. III, no. 4. New York: Experimenter Publishing Company. pp. 131–132 (in work pp. 5–6). 504: 495:, and Zworykin was asked "to work on something useful". A patent for a television system was also filed by 492: 83:
in the 1980s. Several different types of tubes were in use from the early 1930s, and as late as the 1990s.
2152:
Brevet d'invention No. 539,613: Procédé et appareillage pour la transmission des images mobiles à distance
2066:
Miller, H.; Strange, J. W. (1938). "The Electrical Reproduction of Images by the Photoconductive Effect".
1147:
Until 2016, Narragansett Imaging was the last company making Plumbicons, using factories Philips built in
6850: 6787: 3853: 3648: 3320: 2900: 2703: 1980: 632:
that transforms the scene light into a light-emitted electron image, the latter is then accelerated (and
6221: 2598: 2346: 2219: 1774: 1107:
Not-to-scale schematic of a Plumbicon tube (the width of the tube is exaggerated compared to the length)
7510: 7057: 2525: 1621: 516: 5447:"PLUMBICON Trademark - Registration Number 0770662 - Serial Number 72173123 :: Justia Trademarks" 4264: 3072:. filed in Germany 1928, filed in USA 1929, patented 1939. United States Patent Office. Archived from 1383:
The electron optics of camera tubes differ considerably. Electrons inside these long focus coils take
253:, which serves as an electron detector. Among the first to design such a device were German inventors 7264: 6978: 6821: 6706: 6192:"TRINICON Trademark - Registration Number 0940875 - Serial Number 72384234 :: Justia Trademarks" 6138: 6120:"NEWVICON Trademark - Registration Number 1079721 - Serial Number 73005338 :: Justia Trademarks" 5736: 4577: 3552: 2420: 1559: 6165: 5893: 5226: 4958:
The RCA Ultricon: An Improved Vidicon Camera Tube for General Closed-Circuit Television Applications
3125: 7273: 7131: 6983: 6839: 2873: 1462: 1413: 866:. The Image orthicon was used until the end of black and white television production in the 1960s. 859: 831:
in bright light, causing a dark halo to be seen around the object; this anomaly was referred to as
309:. The improved device was demonstrated to the press in early September 1928. The introduction of a 17: 5601: 7284: 7004: 6803: 5465: 1535: 1417: 1056: 746: 697: 6342:. filed in Mexico August 19, 1940, filed in USA 1941, patented 1942. United States Patent Office 7453: 7020: 6885: 6861: 5364: 4868: 1257: 1152: 1133: 459: 5446: 1735: 839:, where the increased sensitivity of the tube was essential to overcome the very inefficient, 7674: 7522: 7474: 7295: 7111: 7026: 6957: 6793: 6191: 6119: 1523: 1515: 1302: 1249: 1124: 1063: 269:). The term may apply specifically to a dissector tube employing magnetic fields to keep the 76: 5983:
Tanioka, K. (2009). "High-Gain Avalanche Rushing amorphous Photoconductor (HARP) detector".
5702: 5097: 3460:
Institution of Electrical Engineers - Proceedings of the Wireless Section of the Institution
3397:. filed in Great Britain 1932, filed in USA 1933, patented 1937. United States Patent Office 2106:
Iams, H.; Rose, A. (August 1937). "Television Pickup Tubes with Cathode-Ray Beam Scanning".
1123:. Used frequently in broadcast camera applications, these tubes have low output, but a high 7596: 7340: 7235: 7009: 6902: 6756: 6717: 6648: 6640: 6483: 6031: 5992: 5952:
High Definition Television: The Creation, Development, and Implementation of the Technology
5867: 5040: 4618: 4541: 4478: 4325: 2075: 2035: 1931: 1682: 1365: 1025: 659: 588: 483: 467: 389: 354: 160: 53: 6592: 5269: 3969: 3177: 3073: 2848: 2624: 1055:
Vidicon tubes were popular in 1970s and 1980s, after which they were rendered obsolete by
645:
average intensity of the scene light between each discharge event (as in the iconoscope).
48: 8: 7316: 7224: 7116: 6952: 6929: 4964:. Lancaster: Solid State Division, Radio Corporation of America. Electro-Optics AN-6994. 4429: 3771:. filed February 1935, patented October 1936. United Kingdom Intellectual Property Office 3213: 2998: 1519: 1376:
magnetic field geometry inside a TV receiver CRT focus coil. The latter is essentially a
1340: 906: 675: 637: 576: 564: 455: 302: 293: 165: 6487: 6035: 5996: 5871: 5044: 4545: 4532:
Rose, A. (1948). Marton, L. (ed.). "Television Pickup Tubes and the Problem of Vision".
4482: 4329: 2079: 2039: 1935: 1686: 1095:
target with several hundred volts. These tubes were used for tracking satellite debris.
7621: 7481: 7189: 7156: 6972: 6856: 6834: 6455: 5789: 5432: 5056: 4289: 2973: 2847:. filed 1933, patented 1937, reissued 1940. United States Patent Office. Archived from 2815: 2785: 2755: 2131: 1949: 1700: 1458: 1224:, Pasecon is a registered trademark of Heimann GmbH from 1977. Its surface consists of 998: 891: 796: 641: 580: 443: 231: 215:. A description of a CRT imaging device also appeared in a patent application filed by 126: 5202:. National Air and Space Museum, Smithsonian Institution. A19740052001. Archived from 4867:
P.K. Weimer, S.V. Forque, and R.R. Goodrich, The vidicon-photoconductive camera tube,
4744: 4553: 4337: 4152:. filed September 1934, patented May 1936. United Kingdom Intellectual Property Office 1475:-inch (3.4 cm) video-camera tube at approximately 22 millimetres (0.87 in). 523:
in 1936, and patents were issued in the United Kingdom in 1934 and in the US in 1937.
7616: 7537: 7428: 7209: 7136: 7098: 6561: 6551: 6509: 6414: 6406: 6375: 6365: 6249: 6171: 6144: 6101: 6091: 6066: 5965: 5955: 5927: 5917: 5817: 5769: 5742: 5717: 5681: 5654: 5498: 5471: 5395: 5344: 5317: 5290: 5243: 5233: 5060: 5015: 4988: 4935: 4893: 4848: 4778: 4725: 4557: 4445: 4410: 4400: 4369:. filed January 1936, patented July 1937. United Kingdom Intellectual Property Office 4341: 4245: 4094: 4084: 3922: 3912: 3870: 3860: 3833: 3823: 3800:. filed May 1936, patented November 1937. United Kingdom Intellectual Property Office 3742:. filed May 1934, patented February 1936. United Kingdom Intellectual Property Office 3713: 3703: 3665: 3655: 3617: 3607: 3569: 3559: 3510: 3475: 3337: 3327: 3193: 3043: 3033: 2965: 2917: 2907: 2720: 2710: 2542: 2532: 2363: 2353: 2236: 2226: 2188: 2178: 2123: 2087: 1997: 1987: 1907:. Vol. I, no. 2. New York: Experimenter Publishing Company. pp. 27–28. 1885:. Vol. I, no. 2. New York: Experimenter Publishing Company. pp. 25–26. 1846: 1791: 1781: 1754: 1640: 1630: 1601: 1591: 1465:
extension—the imaging area of the sensor in these cameras is approximately that of a
1447:= 12 mm (0.47 in), which is rounded to the convenient imperial fraction of 820: 636:) via electromagnetic fields towards a target specially prepared for the emission of 608:) in Germany in 1925, two years before Farnsworth did the same in the United States. 245:
An image dissector is a camera tube that creates an "electron image" of a scene from
68: 5566: 3998:. Koninklijke Philips. 1952–1958. 939 4097, 939 4098, 939 4099, 939 4100, 939 4101. 2977: 2502: 2135: 1427:. The optical format is approximately the true diagonal of the sensor multiplied by 1036:
used vidicon cameras on nearly all the unmanned deep space probes equipped with the
941:
This effect was actually cultivated by tube manufacturers to a certain extent, as a
121:
Any vacuum tube which operates using a focused beam of electrons, originally called
7332: 7279: 7106: 6745: 6603: 6543: 6491: 6445: 6402: 6398: 6039: 6000: 5875: 5428: 5048: 4549: 4486: 4437: 4392: 4333: 4237: 4123:. filed August 1934, patented May 1936. United Kingdom Intellectual Property Office 3904: 3502: 3467: 3185: 3025: 2957: 2330: 2326: 2115: 2083: 2043: 1953: 1939: 1731: 1704: 1690: 1225: 978: 730:; it was widely used in the UK until 1963, when it was replaced by the much better 727: 520: 393:
A graphic from Kálmán Tihanyi's "Radioskop" patent from 1926 (part of the UNESCO's
333: 289:. However, they never transmitted a clear and well focused image with such a tube. 274: 191: 156: 139: 116: 64: 7141: 1352:
the Columbia College of Chicago, who regarded it as the best system in the world.
7609: 7542: 7395: 7126: 7036: 6880: 6319:"Washington Chosen for First Color Showing; From Ages 4 to 90, Audience Amazed". 5251: 4804: 4797: 4751: 4671: 4625: 3878: 3673: 3625: 3577: 3345: 2925: 2728: 2550: 2371: 2244: 2005: 1854: 1799: 1648: 946: 942: 930: 710: 560: 512: 424: 240: 155:), discussed how a fully electronic television system could be realized by using 6767: 6308:. Vol. XI, no. 12. Springfield: Popular Book Corporation. p. 711. 6208: 5854:
Goto, N.; Isozaki, Y.; Shidara, K.; Maruyama, E.; Hirai, T.; Fujita, T. (1974).
4637: 1457:
inch (13 mm). The parameter is also the source of the "Four Thirds" in the
689:
for stabilizing the potential of a charge storage plate, but Lubszynski and the
7584: 7365: 7355: 7121: 6924: 6537: 6004: 5855: 5416: 4685: 2961: 2119: 1986:. London: The Institution of Electrical Engineers. pp. 123, 358–361, 383. 1424: 1314: 1116: 1037: 1006: 970: 840: 832: 196: 175: 6547: 6335: 6044: 6019: 5178: 4507: 4203: 4174: 3908: 3390: 3293: 3267: 3241: 3098: 3029: 2676: 2650: 2468: 2442: 2296: 1305:. The other types had semiconducting targets which did not have this problem. 846:
The image orthicon tube was at one point colloquially referred to as an Immy.
7663: 7646: 7469: 7385: 7204: 7031: 6999: 6565: 6495: 6410: 5969: 5931: 5721: 5531: 4396: 4249: 3903:. NATO Science Series D. Dordrecht: Kluwer Academic Publishers. p. 222. 3837: 3717: 3514: 3506: 3479: 3447:. Vol. XXXIII, no. 9 (731). London: Iliffe & Sons. p. 197. 3184:. Vol. 88. Washington, D.C.: The National Academies Press. p. 371. 3047: 2969: 2127: 1538: 1420: 1377: 1253: 1164: 1059: 447: 366: 305:
made of nickel and using a "longitudinal magnetic field" in order to sharply
148: 80: 6379: 6105: 5879: 5247: 4436:. Vol. 6. Washington, D.C.: The National Academies Press. p. 196. 4098: 3926: 3874: 3669: 3621: 3573: 3371:. filed May 1932, patented 1934. United Kingdom Intellectual Property Office 3341: 2921: 2724: 2576: 2554: 2546: 2375: 2367: 2270:
Patentschrift Nr. 450 187: Lichtelektrische Bildzerlegerröehre für Fernseher
2248: 2240: 2192: 2001: 1803: 1795: 1644: 1605: 568:
from the charge storage one, and so communicated their results to Zworykin.
7527: 7515: 7403: 7370: 7199: 7184: 6751: 6450: 6433: 6418: 6020:"Recent Developments of Amorphous Selenium-Based X-Ray Detectors: A Review" 5255: 4816: 4414: 4241: 4228:
McGee, J. D. (November 1950). "A review of some television pick-up tubes".
3882: 3650:
Media Technology and Society, a History: From the Telegraph to the Internet
3629: 3581: 3349: 2929: 2732: 2009: 1859: 1850: 1758: 1652: 1233: 1185: 1148: 1087: 994: 898: 879: 875: 836: 718: 671: 629: 572: 246: 6434:"The Effects of a Strong Magnetic Field upon Electric Discharges in Vacuo" 3677: 3471: 401: 7569: 7311: 7260: 7166: 7151: 6934: 6896: 3954:. Vol. 12, no. 7. Bristol: Caldwell-Clements. pp. 57, 125. 3528:"R.C.A. Officials Continue to Be Vague Concerning Future of Television". 1527: 1067: 887: 663: 543: 431: 409: 373: 362: 310: 258: 200: 122: 87: 6609: 6364:. Vol. 1 (2nd ed.). New York: Fitzroy Dearborn. p. 1484. 1044:
earth imaging satellites launched in 1972, as part of each spacecraft's
897:
A sharply focused beam of electrons (a cathode ray) is generated by the
7641: 7631: 7564: 7438: 7408: 7375: 7350: 7345: 7322: 7194: 7174: 7052: 6914: 6891: 6777: 6679: 6674: 6669: 5153: 3458:
Zworykin, V. K. (September 1933). "Television with cathode-ray tubes".
1168: 1012: 926: 863: 828: 713:. In 1934, the EMI engineers Blumlein and McGee filed for patents for 597: 418: 328:
In April 1933, Farnsworth submitted a patent application also entitled
178:
and H. Winfield Secor in the August 1915 issue of the popular magazine
72: 6459: 5074: 5052: 4491: 4466: 4230:
Proceedings of the IEE - Part III: Radio and Communication Engineering
1368:, and Hans Busch gave a complete mathematical interpretation in 1926. 766: 7604: 7448: 7443: 7433: 7360: 7240: 7074: 7069: 6994: 6919: 6587: 4210:. filed January 1941, patented June 1942. United States Patent Office 4048:
De Haan, E. F.; Van der Drift, A.; Schampers, P. P. M. (1964-07-07).
3493:
Zworykin, V. K. (October 1933). "Television with cathode-ray tubes".
2048: 2024: 1944: 1919: 1695: 1670: 1554: 1289: 1197: 1001:(TGS) as the target, a vidicon sensitive over a broad portion of the 986: 855: 824: 808: 666:, respectively. These stored charges are then gently discharged by a 435: 358: 92: 3362: 3147:, United Nations Educational, Scientific and Cultural Organization ( 1719: 7626: 7574: 7554: 7532: 7418: 7413: 7301: 7290: 7219: 6989: 5090:
Spacecraft Imaging III: First Voyage into the Planetary Data System
4984:
Modern Television Practice Principles,Technology and Servicing 2/Ed
3189: 1120: 1002: 974: 854:, decided to have their award named after this nickname. Since the 738: 515:
applied for a patent for a new device they dubbed the "Emitron". A
496: 430:
An iconoscope is a camera tube that projects an image on a special
249:
emissions (electrons) which pass through a scanning aperture to an
5494:
Behind the Tube: A History of Broadcasting Technology and Business
4441: 4172: 4114: 3968:. Hilliard: Early Television Foundation and Museum. Archived from 3855:
Behind the Tube: A History of Broadcasting Technology and Business
878:
with an image store (target), a scanner that reads this image (an
7486: 7423: 7245: 7230: 7084: 7041: 6689: 5856:"SATICON: A new photoconductive camera tube with Se-As-Te target" 3762: 3733: 3700:
The Inventor of Stereo: The Life and Works of Alan Dower Blumlein
2321:
Brittain, B. J. (September 1927). "Television on the Continent".
1217: 1112: 1041: 1029: 613: 471: 322: 6597: 5896:. Dempa Publications. February 6, 1992 – via Google Books. 5840:. Dempa Publications. February 6, 1984 – via Google Books. 5464:
Vries, Marc J. de; Cross, Nigel; Grant, D. P. (March 31, 1993).
4886:
Vries, Marc J. de; Cross, Nigel; Grant, D. P. (March 31, 1993).
4146:"Improvements in or relating to television transmitting systems" 4117:"Improvements in or relating to television transmitting systems" 4083:. London: the Institution of Electrical Engineers. p. 181. 3326:. London: The Institution of Electrical Engineers. p. 534. 2177:(2nd ed.). Cambridge University Press. pp. 1000–1001. 1005:
spectrum is possible. This technology was a precursor to modern
925:
Dark halo around bright rocket flame in the television image of
921: 7559: 7250: 7214: 7179: 6739: 6711: 6684: 6659: 5152:. National Aeronautics and Space Administration. Archived from 3365:"Improvements in or relating to cathode ray tubes and the like" 3322:
Communications: An International History of the Formative Years
3148: 2995: 2221:
Tele-visionaries: The People Behind the Invention of Television
1373: 1141: 1049: 902: 717:
where a charge storage plate was shielded by a pair of special
439: 349: 314: 220: 30: 4262: 3791: 3131:, International Electrotechnical Commission (IEC), 2009-07-15. 2527:
Distant Vision: Romance and Discovery on an Invisible Frontier
1751:
Electronic Motion Pictures: A History of the Television Camera
1151:. While still a part of Philips, the company purchased EEV's ( 910: 633: 306: 270: 7636: 7547: 7306: 7079: 6872: 6734: 6729: 5738:
Photoelectronic Imaging Devices: Devices and Their Evaluation
5126:. National Aeronautics and Space Administration. 1978-026A-01 5011:
Photoelectronic Imaging Devices: Devices and Their Evaluation
4363:"Improvements in and relating to television and like systems" 4047: 3558:. Jefferson: McFarland & Company. pp. 7–8, 18, 124. 3388: 2157:
Method and apparatus for remote transmission of moving images
1384: 1040:
ability. Vidicon tubes were also used aboard the first three
1009:
technology, and mainly used in firefighting thermal cameras.
783: 475:
design of imaging devices for television to the present day.
318: 250: 5954:. Jefferson: McFarland & Company. pp. 41, 67, 321. 2874:"The Farnsworth Chronicles, Who Invented What -- and When??" 2805: 2775: 2745: 1355: 1103: 1052:, a UV-variant Vidicon was also used by NASA for UV duties. 901:
at ground potential and accelerated by the anode (the first
482:
in Pittsburgh, Pennsylvania, Russian-born American engineer
7579: 6962: 6908: 6809: 6762: 6700: 4508:"Television Transmitting Apparatus and Method of Operation" 2159:]. Paris: Office National de la Propriété industrielle. 1982:
Television: An International History of the Formative Years
1318: 1269: 1172: 1033: 812: 758: 96: 6395:
Boletín de la Sociedad Mexicana de Geografía y Estadística
5853: 4807:
The Image Orthicon (Television Camera) Tube c. 1940 - 1960
4585: 4465:
Johnson, W.; Weimer, P. K.; Williams, R. (December 1991).
1627:
McGraw-Hill Concise Encyclopedia of Science and Technology
1119:(PbO) target vidicons. It was demonstrated in 1965 at the 961: 292:
In January 1927, American inventor and television pioneer
6059:
Mikla, Victor I.; Mikla, Victor V. (September 26, 2011).
3099:"Method of and Apparatus for Producing Images of Objects" 1845:. London: Sir Issac Pitman & Sons. pp. 102–106. 1629:(5th ed.). New York: McGraw-Hill. pp. 382–383. 1344: 1180: 1017: 945:
has the effect of crispening the visual image due to the
742: 722: 706: 690: 556: 539: 508: 208: 204: 100: 6538:
NHK Science and Technical Research Laboratories (1993).
6333: 5034: 4721:
Television Technology Demystified: A Non-technical Guide
4514:. filed 1942, patented 1946. United States Patent Office 4434:
Memorial Tributes of the National Academy of Engineering
4271:. filed 1929, patented 1933. United States Patent Office 3418:"Human-like Eye Made by Engineers to Televise Images..." 3248:. filed 1925, patented 1928. United States Patent Office 3182:
Biographical Memoirs of the National Academy of Sciences
3105:. filed 1931, patented 1935. United States Patent Office 2683:. filed 1937, patented 1940. United States Patent Office 2657:. filed 1937, patented 1939. United States Patent Office 2631:. filed 1935, patented 1937. United States Patent Office 2605:. filed 1933, patented 1937. United States Patent Office 1753:. Berkeley: University of California Press. p. 31. 973:
surface which is then scanned by a beam of low-velocity
6604:
Most of the TV tubes were shown and carefully explained
5849: 5847: 4221: 3606:. London: Routeledge & Kegan Paul. pp. 60–61. 3438:"The Iconoscope; America's Latest Television Favourite" 1819:"Television, or The Projection of Pictures Over a Wire" 770:
A 1960s-era RCA Radiotron Image Orthicon TV Camera Tube
152: 5588: 5586: 5584: 3545: 3543: 3541: 3539: 3300:. filed 1923, issued 1938. United States Patent Office 3274:. filed 1923, issued 1935. United States Patent Office 3141:"Kálmán Tihanyi's 1926 Patent Application 'Radioskop'" 2992:"Kalman Tihanyi's 1926 Patent Application "Radioskop"" 2325:. Vol. 8. London: John Murray. pp. 283–285. 413:
Diagram of the iconoscope, from Zworykin's 1931 patent
6062:
Amorphous Chalcogenides: The Past, Present and Future
5813:
Television Innovations: 50 Technological Developments
5765:
Television Innovations: 50 Technological Developments
5415:
Crowell, Merton H.; Labuda, Edward F. (May 6, 1969).
4464: 4043: 4041: 4014: 4012: 3820:
Television Innovations: 50 Technological Developments
2906:. Urbana: University of Illinois Press. p. 282. 782:
in the United States, which required a great deal of
549: 5844: 5624:"Emmy, 1966 Technology & Engineering Emmy Award" 5518: 5516: 5514: 5283:
Miller, Richard K.; Zeuch, Nello (August 31, 1989).
4360: 3899:
De Vries, M. J.; Cross, Nigel; Grant, D. P. (1993).
2893: 2891: 2889: 2492: 2466: 2440: 2294: 2225:. Hoboken: Wiley-Interscience. pp. 30, 34, 65. 1175:. It was developed in a joint effort by Hitachi and 511:
engineers Tedham and McGee under the supervision of
226: 6282:"Columbia Broadcasting Exhibits Color Television". 5581: 4928:Webster, John G.; Eren, Halit (December 19, 2017). 3536: 2709:. Jefferson: McFarland & Company. p. 159. 943:
small, carefully controlled amount of the dark halo
5553: 5551: 5549: 5225: 4584:. Microsoft Corporation. 1997–2000. Archived from 4038: 4009: 3898: 3852: 3647: 3641: 3639: 3599: 3551: 3495:Journal of the Institution of Electrical Engineers 3416: 3363:EMI LTD; Tedham, William F. & McGee, James D. 3319: 2899: 2702: 2531:. Salt Lake City: PemberlyKent. pp. 108–109. 2524: 2516: 2345: 2218: 1979: 1889: 1773: 1620: 1177:NHK Science & Technology Research Laboratories 519:service employing the Emitron began at studios in 6583:Orthicon: Brief history, description and diagram. 5511: 5467:Design Methodology and Relationships with Science 5177:. United States Geological Survey. Archived from 4889:Design Methodology and Relationships with Science 4074: 4072: 4070: 3901:Design Methodology and Relationships with Science 3291: 3265: 2886: 2323:Discovery: A Monthly Popular Journal of Knowledge 2275:Photoelectric Image Dissector Tube for Television 2101: 2099: 2097: 2061: 2059: 606:Photoelectric Image Dissector Tube for Television 369:, such as a CRT monitor, to reproduce the image. 267:Photoelectric Image Dissector Tube for Television 7661: 6540:High Definition Television: Hi-Vision Technology 6431: 5700: 4640:Telescopic Tracking of the Apollo Lunar Missions 4536:. Advances in Electronics and Electron Physics. 4311: 4309: 3593: 3591: 3022:The Electronics Revolution: Inventing the Future 2838: 2648: 2622: 2596: 2400:. Vol. XIII, no. 5. pp. 397, 406. 2337: 1973: 1971: 1969: 1967: 1965: 1963: 1917: 1867: 1668: 1329: 602:Lichtelektrische Bildzerlegerröhre für Fernseher 263:Lichtelektrische Bildzerlegerröhre für Fernseher 6336:"Chromoscopic adapter for television equipment" 6017: 5546: 5463: 4885: 4173:Blumlein, Alan Dower & McGee, James Dwyer. 4115:Blumlein, Alan Dower & McGee, James Dwyer. 4050:"The "Plumbicon", a New Television Camera Tube" 4021:"The "Plumbicon", a New Television Camera Tube" 3636: 2694: 2674: 2573:The Virtual Museum of the City of San Francisco 2108:Proceedings of the Institute of Radio Engineers 1896:Gernsback, H.; Secor, H. W., eds. (July 1928). 1874:Gernsback, H.; Secor, H. W., eds. (July 1928). 1765: 1742: 1720:"The Problem of Television; A Partial Solution" 778:and the orthicon technologies, it replaced the 261:, who had titled their 1925 patent application 4718:Todorovic, Aleksandar Louis (August 7, 2014). 4380: 4143: 4067: 3763:Lubszynski, Hans Gerhard & Rodda, Sydney. 3734:Lubszynski, Hans Gerhard & Rodda, Sydney. 3121: 3119: 2806:ITT Industrial Laboratories. (December 1964). 2776:ITT Industrial Laboratories. (December 1964). 2746:ITT Industrial Laboratories. (December 1964). 2094: 2056: 1895: 1873: 1590:. Amsterdam: Newnes Press. pp. 143, 148. 1585: 6625: 6425: 6090:. Indianapolis: Howard W. Sams. p. 320. 5414: 5096:. The Planetary Society. 2001. Archived from 5075:"Heritage TICs EEV P4428 & P4430 Cameras" 4628:RCA 2P23, One of the earliest image orthicons 4386: 4306: 3822:. Tiverton: Kelly Publications. p. 114. 3588: 2501:. United States Patent Office. Archived from 2410: 2382: 2266: 2065: 1960: 1832: 1664: 1662: 1588:Dictionary of Video and Television Technology 874:An image orthicon consists of three parts: a 172:"Campbell-Swinton Electronic Scanning System" 6598:The German TV museum with a lot of knowledge 6299:"CBS Makes Live Pick-up in Color Television" 4318:Advances in Electronics and Electron Physics 4197: 4195: 4168: 4166: 3765:"Improvements in and relating to television" 3693: 3691: 3689: 3687: 3408: 3235: 3233: 3154: 3092: 3090: 3059: 3057: 2943: 2941: 2939: 2867: 2865: 2834: 2832: 2290: 2288: 2286: 2284: 2172: 1810: 1711: 1024:Prior to the design and construction of the 423:The early electronic camera tubes (like the 5282: 5223: 5124:NASA Space Science Data Coordinated Archive 4927: 4648: 4646: 4391:. London: Academic Press. pp. 46, 53. 4201: 4139: 4137: 4110: 4108: 3938: 3936: 3794:"Improvements in or relating to television" 3787: 3785: 3758: 3756: 3736:"Improvements in or relating to television" 3729: 3727: 3239: 3116: 3096: 3063: 2871: 2262: 2260: 2258: 2168: 2166: 1911: 652: 6632: 6618: 6438:Proceedings of the Royal Society of London 6327: 6058: 5945: 5943: 5941: 5232:. Lilburn: the Fairmont Press. p. 9. 4677: 4582:Microsoft Encarta Online Encyclopedia 2000 2522: 2314: 1842:The Electrical Transmission of Photographs 1776:Television: The Life Story of a Technology 1659: 285:and in the May 1928 issue of the magazine 184:The Electrical Transmission of Photographs 6639: 6510:"Making (some) sense out of sensor sizes" 6449: 6386: 6296: 6202: 6043: 6018:Huang, Heyuan; Abbaszadeh, Shiva (2020). 5741:. Springer Science & Business Media. 5470:. Springer Science & Business Media. 5383: 5381: 5289:. Springer Science & Business Media. 5014:. Springer Science & Business Media. 4892:. Springer Science & Business Media. 4881: 4879: 4877: 4847:. Springer Science & Business Media. 4766: 4764: 4762: 4760: 4717: 4692:. Academy of Television Arts and Sciences 4655:Westinghouse Non-blooming Image Orthicon. 4499: 4490: 4387:McLean, T. P.; Schagen, P., eds. (1979). 4256: 4192: 4163: 3702:. Oxford: Focal Press. pp. 217–219. 3697: 3684: 3389:Tedham, William F. & McGee, James D. 3382: 3285: 3259: 3230: 3134: 3087: 3054: 2936: 2862: 2829: 2668: 2642: 2616: 2590: 2486: 2460: 2434: 2281: 2047: 1943: 1858: 1780:. Westport: Greenwood Press. p. 12. 1736:10.1038/scientificamerican07241909-61supp 1717: 1694: 1356:Magnetic focusing in typical camera tubes 911:axial magnetic field of the focusing coil 882:), and a multistage electron multiplier. 852:Academy of Television Arts & Sciences 182:and by Marcus J. Martin in the 1921 book 159:(or "Braun" tubes, after their inventor, 6353: 6241: 6136: 5916:(2nd ed.). New Delhi: McGraw-Hill. 5734: 5673: 5309: 5007: 4954: 4923: 4921: 4919: 4917: 4915: 4913: 4911: 4909: 4713: 4711: 4709: 4707: 4643: 4505: 4354: 4134: 4105: 3933: 3894: 3892: 3782: 3753: 3724: 3549: 3492: 3457: 3414: 3356: 3175: 3019: 2947: 2897: 2700: 2320: 2255: 2163: 2148: 2142: 2105: 1748: 1102: 1011: 960: 920: 765: 757: 696: 408: 400: 388: 361:deflected horizontally and vertically (" 235:Farnsworth Image Dissector tube 1931.jpg 230: 47: 29: 6542:. Boston: Springer US. pp. 55–60. 6393:"Historia de la televisión en México". 6359: 6245:The History of Television, 1942 to 2000 6242:Abramson, Albert (September 29, 2007). 5982: 5938: 5491:Inglis, Andrew F. (December 22, 2023). 4971:from the original on 20 September 2021. 4315: 4018: 3983: 3811: 3645: 3597: 3554:The History of Television, 1942 to 2000 2808:"Vidissector - Image Dissector, page 3" 2778:"Vidissector - Image Dissector, page 2" 2748:"Vidissector - Image Dissector, page 1" 2705:The History of Television, 1880 to 1941 2417:The TIME 100: Scientists & Thinkers 2404: 2343: 2212: 2210: 2208: 2206: 2204: 2202: 2022: 2016: 1876:"Vacuum Cameras to Speed Up Television" 1618: 1612: 1501: 1129:Technology & Engineering Emmy Award 1111:Plumbicon is a registered trademark of 1020:vidicon tube, showing the electron gun. 823:light sensitivity curve similar to the 379: 14: 7662: 6533: 6531: 6466: 6085: 5949: 5907: 5905: 5903: 5809: 5761: 5735:Biberman, Lucien (November 11, 2013). 5716:. European Broadcasting Union: 25–32. 5701:Tejerina, J. L.; Visintin, F. (1993). 5674:Whitaker, Jerry C. (October 3, 2018). 5646: 5490: 5387: 5378: 5365:"Pick-up Tube, the heart of TV Camera" 5167: 5137: 5008:Biberman, Lucien (November 11, 2013). 4874: 4831:Morpheus Technology 4.5.1 Camera Tubes 4757: 4683: 4525: 4427: 3850: 3844: 3817: 3792:EMI LTD and Lubszynski; Hans Gerhard. 3435: 3311: 1918:Campbell-Swinton, A. A. (1926-10-23). 1838: 1771: 1669:Campbell-Swinton, A. A. (1908-06-18). 1581: 1579: 1577: 1575: 1412:Although the video camera tube is now 1268:Trinicon is a registered trademark of 1248:Newvicon is a registered trademark of 1206:multiple sub-Nyquist sampling encoding 6613: 6472: 6268:"Color Television Achieves Realism". 6163: 6137:Clifford, Martin (February 6, 1989). 5911: 5860:IEEE Transactions on Electron Devices 5417:"The Silicon Diode Array Camera Tube" 5336: 5313:Museum, Archive, and Library Security 5310:Fennelly, Lawrence J. (12 May 2014). 4906: 4704: 4227: 4078: 3952:Tele-Tech & Electronic Industries 3942: 3889: 3486: 3317: 3024:. Cham: Springer Nature. p. 29. 2799: 2769: 2739: 2677:"Image Analyzing and Dissecting Tube" 2569:"Philo Taylor Farnsworth (1906–1971)" 2388: 1977: 1816: 1163:Saticon is a registered trademark of 807:was immune to most extraneous signal 731: 617: 137:In June 1908, the scientific journal 75:images, prior to the introduction of 7064:Three-dimensional integrated circuit 6140:The Camcorder: Use, Care, and Repair 5703:"The HDTV Demonstrations at Expo 92" 4840: 4531: 4263:Henroteau, François Charles Pierre. 4081:The Life and Times of A. D. Blumlein 3859:. Boston: Focal Press. p. 172. 3429: 3163:Improvements in television apparatus 2216: 2199: 1898:"Campbell Swinton Television System" 1081: 775: 6845:Programmable unijunction transistor 6528: 5900: 5894:"Journal of Electronic Engineering" 5838:"Journal of Electronic Engineering" 5143: 3958: 2068:Proceedings of the Physical Society 1572: 1098: 1032:, in the late 1970s to early 1980s 792:National Defense Research Committee 668:low-velocity electron scanning beam 405:Zworykin holding an iconoscope tube 110: 24: 6746:Multi-gate field-effect transistor 6164:White, Gordon (February 6, 1988). 5810:Howett, Dicky (February 6, 2006). 5647:Gulati, R. R. (December 6, 2005). 5433:10.1002/j.1538-7305.1969.tb04277.x 5388:Gulati, R. R. (December 4, 2005). 5337:Inoue, Shinya (11 November 2013). 5120:"Return Beam Vidicon Camera (RBV)" 4770: 4684:Parker, Sandra (August 12, 2013). 3654:. London: Routledge. p. 105. 1263: 1243: 1136:. The PbO is in crystalline form. 709:team under the supervision of Sir 550:Super-Emitron and image iconoscope 505:Radio Corporation of America (RCA) 207:, and by H. Iams and A. Rose from 25: 7686: 6724:Insulated-gate bipolar transistor 6576: 6297:Gernsback, H., ed. (April 1941). 5524:"History of Narragansett Imaging" 5224:Zuech, N.; Miller, R. K. (1987). 4540:. New York: Academic Press: 153. 4324:. New York: Academic Press: 204. 3945:"Multicon – A New TV Camera Tube" 3436:Pocock, H. S., ed. (1933-09-01). 2352:. London: Routledge. p. 72. 2267:Dieckmann, M.; Hell, R. (1927) . 1586:Jack, K.; Tsatsoulin, V. (2002). 1211: 1202:analog high-definition television 1158: 753: 480:Westinghouse Electric Corporation 227:Experiments with image dissectors 132: 27:Device used in television cameras 6968:Heterostructure barrier varactor 6695:Chemical field-effect transistor 6593:CCD Technology – A Brief History 6502: 6432:Campbell-Swinton, A. A. (1897). 6397:(in Spanish). 97–99: 287. 1964. 6312: 6290: 6275: 6262: 6235: 6214: 6184: 6157: 6130: 6112: 6079: 6052: 6011: 5976: 5914:Television and Video Engineering 5886: 5830: 5803: 5782: 5755: 5728: 5694: 5667: 5650:Monochrome and Colour Television 5640: 5616: 5484: 5457: 5439: 5408: 5391:Monochrome and Colour Television 5357: 5330: 5303: 5276: 5262: 5217: 5192: 5117: 5111: 5081: 5067: 5028: 5001: 4975: 4955:Newcomer, C. D. (October 1981). 4948: 4861: 4834: 4822: 4810: 4791: 4754:3" image orthicon camera project 4738: 4175:"Television Transmitting System" 4005:from the original on 2006-09-03. 2495:"Electrical Discharge Apparatus" 1317:, a technique still in use with 1308: 1295: 1092:semiconductor device fabrication 762:Schematic of image orthicon tube 332:, but which actually detailed a 7016:Mixed-signal integrated circuit 4686:"History of the Emmy Statuette" 4658: 4631: 4612: 4609:, 120 F. Supp. 912, 913 (1944). 4600: 4570: 4458: 4421: 4282: 3521: 3451: 3206: 3169: 3013: 2984: 2902:Zworykin, Pioneer of Television 2651:"Two-stage Electron Multiplier" 2561: 2396:. In the World's Laboratories. 2277:]. Berlin: Reichspatentamt. 2173:Horowitz, P.; Hill, W. (1989). 1400:anywhere near to that extreme. 803: 779: 715:television transmitting systems 478:In 1924, while employed by the 145:Alan Archibald Campbell-Swinton 103:, and as many as 1035 lines in 6334:Gonzalez Camarena, Guillermo. 6170:. Heinemann Professional Pub. 5039:. Vol. 510. p. 154. 4841:Rose, Albert (June 29, 2013). 4204:"Television Transmitting Tube" 3415:Laurence, W. L. (1933-06-27). 3151:), 2005, retrieved 2009-01-29. 3126:"Kálmán Tihanyi (1897–1947)", 2493:Farnsworth, Philo T. (1935) . 2467:Farnsworth, Philo T. (1939) . 2441:Farnsworth, Philo T. (1934) . 2389:Yates, R. F., ed. (May 1928). 2295:Farnsworth, Philo T. (1930) . 1724:Scientific American Supplement 1336:field-sequential color systems 1200:system, used to produce early 869: 843:optical system of the camera. 623: 559:team under the supervision of 13: 1: 5421:Bell System Technical Journal 5200:"Detector, Uvicon, Celescope" 4554:10.1016/S0065-2539(08)61102-6 4338:10.1016/S0065-2539(08)60635-6 4019:De Haan, E. F. (1962-12-05). 2599:"Electron Multiplying Device" 2475:. United States Patent Office 2449:. United States Patent Office 2303:. United States Patent Office 2025:"Prof. G. M. Minchin, F.R.S." 2023:Gregory, R. A. (1914-04-02). 1565: 1330:Field-sequential color system 1238:panchromatic selenium vidicon 701:CPS Emitron television camera 395:Memory of the World Programme 384: 296:applied for a patent for his 44:inch (17 mm) in diameter 7047:Silicon controlled rectifier 6909:Organic light-emitting diode 6799:Diffused junction transistor 4844:Vision: Human and Electronic 4674:Non-blooming Image Orthicon. 4607:Remington Rand Inc., v. U.S. 2411:Postman, Neil (1999-03-29). 1817:Secor, H. W. (August 1915). 1718:Dieckmann, M. (1909-07-24). 1334:During the 1930s and 1940s, 1167:from 1973, also produced by 916: 850:, the then-President of the 674:, or deflected back into an 372:The image dissector has no " 343: 313:in October 1933 and a multi- 212: 143:published a letter in which 7: 6851:Static induction transistor 6788:Bipolar junction transistor 6740:MOS field-effect transistor 6712:Fin field-effect transistor 5594:"Plumbicon Broadcast Tubes" 4777:. Khanna Publishing House. 2625:"Multipactor Phase Control" 1826:The Electrical Experimenter 1548: 1349:Guillermo González Camarena 10: 7691: 7058:Static induction thyristor 6514:Digital Photography Review 6362:Encyclopedia of Television 6005:10.1016/j.nima.2009.05.066 4361:Lubszynski, Hans Gerhard. 3698:Alexander, R. C. (2000) . 2962:10.1109/JRPROC.1939.228710 2523:Farnsworth, E. G. (1990). 2419:. TIME.com. Archived from 2120:10.1109/JRPROC.1937.228423 2088:10.1088/0959-5309/50/3/307 1048:(RBV) imaging system. The 952: 682:Low-velocity scanning beam 416: 238: 114: 7595: 7495: 7462: 7394: 7331: 7259: 7227:(Hexode, Heptode, Octode) 7165: 7097: 6979:Hybrid integrated circuit 6943: 6871: 6822:Light-emitting transistor 6776: 6658: 6647: 6588:The Cathode Ray Tube site 6548:10.1007/978-1-4684-6536-5 6323:. 1950-01-13. p. B2. 6258:– via Google Books. 6180:– via Google Books. 6153:– via Google Books. 6075:– via Google Books. 6045:10.1109/JSEN.2019.2950319 5826:– via Google Books. 5751:– via Google Books. 5690:– via Google Books. 5663:– via Google Books. 5653:. New Age International. 5507:– via Google Books. 5480:– via Google Books. 5404:– via Google Books. 5394:. New Age International. 5316:. Butterworth-Heinemann. 5299:– via Google Books. 5024:– via Google Books. 4997:– via Google Books. 4987:. New Age International. 4944:– via Google Books. 4902:– via Google Books. 4857:– via Google Books. 4787:– via Google Books. 4734:– via Google Books. 4638:The University of Alabama 4624:January 29, 2012, at the 3909:10.1007/978-94-015-8220-9 3532:. 1936-11-15. p. B2. 3214:"Vladimir Kosma Zworykin" 3178:"Vladimir Kosma Zworykin" 3030:10.1007/978-3-319-49088-5 2443:"Photoelectric Apparatus" 2149:Schoultz, E.-G. (1922) . 1671:"Distant Electric Vision" 1560:Professional video camera 1226:cadmium selenide trioxide 965:Schematic of vidicon tube 737:On the other side of the 454:After Hungarian engineer 63:are devices based on the 7274:Backward-wave oscillator 6984:Light emitting capacitor 6840:Point-contact transistor 6810:Junction Gate FET (JFET) 6496:10.1002/andp.19263862507 6286:. 1941-01-10. p. 4. 5677:The Electronics Handbook 5497:. Taylor & Francis. 4745:roysvintagevideo.741.com 4057:Philips Technical Review 4028:Philips Technical Review 3507:10.1049/jiee-1.1933.0150 3020:Williams, J. B. (2017). 2391:"Cathode Ray Television" 1414:technologically obsolete 1360:The phenomenon known as 1216:Originally developed by 653:Orthicon and CPS Emitron 464:Charge-storage principle 307:focus the electron image 7285:Crossed-field amplifier 6804:Field-effect transistor 6403:2027/inu.30000117893929 6340:Patent No. US 2,296,019 6284:The Wall Street Journal 6222:"Toshiba Vidicon Tubes" 5880:10.1109/T-ED.1974.17991 5270:"Image Lag | AVAA" 4534:Advances in Electronics 4294:Encyclopædia Britannica 3943:Smith, H. (July 1953). 3218:Encyclopædia Britannica 2331:2027/mdp.39015031957916 1619:Patrick, N. W. (2005). 1403: 1192:(indium-tin oxide), CeO 827:. However, it tends to 442:and its arrangement of 271:electron image in focus 180:Electrical Experimenter 7454:Voltage-regulator tube 7021:MOS integrated circuit 6886:Constant-current diode 6862:Unijunction transistor 6451:10.1098/rspl.1896.0032 6306:Radio & Television 6086:Csorba, I. P. (1985). 5950:Cianci, P. J. (2012). 5816:. Kelly Publications. 5768:. Kelly Publications. 5762:Howett, Dicky (2006). 5600:. 2004. Archived from 5565:. 2004. Archived from 5530:. 2004. Archived from 4829:morpheustechnology.com 4803:April 4, 2004, at the 4428:Weimer, P. K. (1993). 4269:Patent No. 1,903,112 A 4242:10.1049/pi-3.1950.0073 3851:Inglis, A. F. (1990). 3602:Misunderstanding Media 3292:Zworykin, Vladimir K. 3266:Zworykin, Vladimir K. 3066:"Television Apparatus" 2950:Proceedings of the IRE 2175:The Art of Electronics 1839:Martin, M. J. (1921). 1772:Magoun, A. B. (2007). 1258:zinc cadmium Telluride 1153:English Electric Valve 1134:semiconductor junction 1108: 1021: 966: 934: 771: 763: 702: 687:low-velocity electrons 414: 406: 398: 236: 217:Edvard-Gustav Schoultz 57: 45: 7670:Television technology 7523:Electrolytic detector 7296:Inductive output tube 7112:Low-dropout regulator 7027:Organic semiconductor 6958:Printed circuit board 6794:Darlington transistor 6641:Electronic components 6196:trademarks.justia.com 6124:trademarks.justia.com 5912:Dhake, A. M. (1995). 5451:trademarks.justia.com 5435:– via CrossRef. 5037:Infrared Technology X 4367:Patent No. GB 468,965 4290:"Sir Isaac Shoenberg" 4150:Patent No. GB 446,664 4121:Patent No. GB 446,661 4079:Burns, R. W. (2000). 3992:Image Iconoscope 5854 3966:"Prewar Camera Tubes" 3798:Patent No. GB 475,928 3769:Patent No. GB 455,085 3740:Patent No. GB 442,666 3550:Abramson, A. (2003). 3472:10.1049/pws.1933.0024 3369:Patent No. GB 406,353 3318:Burns, R. W. (2004). 3176:Rajchman, J. (2006). 2898:Abramson, A. (1995). 2839:Farnsworth, Philo T. 2814:. ITT. Archived from 2784:. ITT. Archived from 2754:. ITT. Archived from 2701:Abramson, A. (1987). 2649:Farnsworth, Philo T. 2623:Farnsworth, Philo T. 2597:Farnsworth, Philo T. 1978:Burns, R. W. (1998). 1920:"Electric Television" 1749:Abramson, A. (1955). 1524:signal-to-noise ratio 1516:charge-coupled device 1125:signal-to-noise ratio 1106: 1064:charge-coupled device 1015: 964: 924: 769: 761: 700: 517:405-line broadcasting 412: 404: 392: 234: 99:format, 576 lines in 77:charge-coupled device 51: 33: 7341:Beam deflection tube 7010:Metal oxide varistor 6903:Light-emitting diode 6757:Thin-film transistor 6718:Floating-gate MOSFET 6444:(359–367): 179–182. 6360:Newcomb, H. (2004). 6024:IEEE Sensors Journal 5710:EBU Technical Review 5598:Narragansett Imaging 5563:Narragansett Imaging 5528:Narragansett Imaging 5372:lampes-et-tubes.info 4512:Patent No. 2,407,905 4208:Patent No. 2,288,402 4179:Patent No. 2,182,578 4144:McGee, James Dwyer. 3646:Winston, B. (1998). 3598:Winston, B. (1986). 3395:Patent No. 2,077,422 3298:Patent No. 2,141,059 3272:Patent No. 2,022,450 3246:Patent No. 1,691,324 3103:Patent No. 2,021,907 3070:Patent No. 2,158,259 2845:Patent No. 2,087,683 2812:Tentative Data-sheet 2782:Tentative Data-sheet 2752:Tentative Data-sheet 2681:Patent No. 2,200,166 2675:Gardner, Bernard C. 2655:Patent No. 2,161,620 2629:Patent No. 2,071,517 2603:Patent No. 2,071,515 2499:Patent No. 1,986,330 2473:Patent No. 2,168,768 2447:Patent No. 1,970,036 2344:Hartley, J. (1999). 2301:Patent No. 1,773,980 2217:Webb, R. C. (2005). 1502:Late use and decline 1236:, it is labelled as 786:to work adequately. 380:Charge-storage tubes 355:photoelectric effect 54:Vladimir K. Zworykin 7317:Traveling-wave tube 7117:Switching regulator 6953:Printed electronics 6930:Step recovery diode 6707:Depletion-load NMOS 6488:1926AnP...386..974B 6321:The Washington Post 6211:, LabGuysWorld.com. 6036:2020ISenJ..20.1694H 5997:2009NIMPA.608S..15T 5872:1974ITED...21..662G 5175:"Landsat 2 History" 5144:Rocchio, L. (ed.). 5045:1985SPIE..510..154G 4819:The Image Converter 4771:Biswas, Sambunath. 4546:1948AEEP....1..131R 4483:1991PhT....44l..98J 4330:1960AEEP...12..203G 3818:Howett, D. (2006). 3530:The Washington Post 3294:"Television System" 3268:"Television System" 3242:"Television System" 3145:Memory of the World 2999:Memory of the World 2469:"Television Method" 2297:"Television System" 2080:1938PPS....50..374M 2040:1914Natur..93..115R 1936:1926Natur.118..590S 1687:1908Natur..78..151S 1286:Saticon Mixed Field 1232:). Due to its wide 1115:from 1963, for its 1066:(CCD) and then the 1046:Return Beam Vidicon 907:electron multiplier 858:was female, it was 676:electron multiplier 638:secondary electrons 577:secondary electrons 565:secondary electrons 460:Maxwell's equations 303:electron multiplier 294:Philo T. Farnsworth 170:popularized as the 166:Scientific American 86:In these tubes, an 7622:Crystal oscillator 7482:Variable capacitor 7157:Switched capacitor 7099:Voltage regulators 6973:Integrated circuit 6857:Tetrode transistor 6835:Pentode transistor 6828:Organic LET (OLET) 6815:Organic FET (OFET) 6476:Annalen der Physik 6304:. March of Radio. 4750:2021-01-19 at the 4670:2015-02-20 at the 4588:on October 4, 2009 4389:Electronic Imaging 3423:The New York Times 3391:"Cathode Ray Tube" 3161:Tihanyi, Koloman, 2413:"Philo Farnsworth" 2348:Uses of Television 1622:"Cathode-ray tube" 1520:CMOS-based sensors 1459:Four Thirds system 1109: 1022: 999:triglycine sulfate 967: 935: 892:secondary emission 772: 764: 703: 642:secondary emission 581:secondary emission 415: 407: 399: 237: 69:television cameras 67:that were used in 61:Video camera tubes 58: 46: 7657: 7656: 7617:Ceramic resonator 7429:Mercury-arc valve 7381:Video camera tube 7333:Cathode-ray tubes 7093: 7092: 6701:Complementary MOS 6557:978-1-4684-6538-9 6371:978-1-57958-411-5 6255:978-0-7864-3243-1 6177:978-0-434-92290-1 6150:978-0-13-113689-2 6143:. Prentice Hall. 6097:978-0-672-22023-4 6072:978-0-12-388429-9 5961:978-0-7864-4975-0 5923:978-0-07-460105-1 5823:978-1-903053-22-5 5775:978-1-903053-22-5 5748:978-1-4684-2931-2 5687:978-1-4200-3666-4 5660:978-81-224-1776-0 5636:on July 20, 2019. 5534:on 17 August 2016 5504:978-1-003-81974-5 5477:978-0-7923-2191-0 5401:978-81-224-1776-0 5350:978-1-4757-6925-8 5323:978-1-4832-2103-8 5296:978-0-442-23737-0 5239:978-0-88173-017-3 5053:10.1117/12.945018 5021:978-1-4684-2931-2 4994:978-81-224-1360-1 4941:978-1-4398-4893-7 4899:978-0-7923-2191-0 4854:978-1-4684-2037-1 4784:978-81-87522-16-4 4774:Basic Electronics 4731:978-1-136-06853-9 4563:978-0-12-014501-0 4492:10.1063/1.2810377 4451:978-0-309-04847-7 4406:978-0-12-485050-7 4397:2027/uc1.b4164703 4347:978-0-12-014512-6 4090:978-0-85296-773-7 3918:978-0-7923-2191-0 3866:978-0-240-80043-1 3829:978-1-903053-22-5 3709:978-0-240-51628-8 3661:978-0-415-14230-4 3613:978-0-7102-0002-0 3565:978-0-7864-1220-4 3333:978-0-86341-327-8 3199:978-0-309-10389-3 3064:Tihanyi, Kalman. 3039:978-3-319-49088-5 2913:978-0-252-02104-6 2872:Schatzkin, Paul. 2841:"Image Dissector" 2716:978-0-89950-284-7 2538:978-0-9623276-0-5 2359:978-0-415-08509-0 2232:978-0-471-71156-8 2184:978-0-521-37095-0 2034:(2318): 115–116. 1993:978-0-85296-914-4 1787:978-0-313-33128-2 1636:978-0-07-142957-3 1597:978-1-878707-99-4 1463:Micro Four Thirds 1362:magnetic focusing 1234:spectral response 1149:Rhode Island, USA 1082:Si-vidicon (1969) 997:material such as 589:outside broadcast 527:target between 40 488:Television System 484:Vladimir Zworykin 298:Television System 157:cathode ray tubes 95:per image in the 16:(Redirected from 7682: 7511:electrical power 7396:Gas-filled tubes 7280:Cavity magnetron 7107:Linear regulator 6656: 6655: 6634: 6627: 6620: 6611: 6610: 6570: 6569: 6535: 6526: 6525: 6523: 6521: 6516:. 7 October 2002 6506: 6500: 6499: 6470: 6464: 6463: 6453: 6429: 6423: 6422: 6390: 6384: 6383: 6357: 6351: 6350: 6348: 6347: 6331: 6325: 6324: 6316: 6310: 6309: 6303: 6294: 6288: 6287: 6279: 6273: 6266: 6260: 6259: 6239: 6233: 6232: 6229:frank.pocnet.net 6226: 6218: 6212: 6206: 6200: 6199: 6188: 6182: 6181: 6167:Video Techniques 6161: 6155: 6154: 6134: 6128: 6127: 6116: 6110: 6109: 6083: 6077: 6076: 6056: 6050: 6049: 6047: 6030:(4): 1694–1704. 6015: 6009: 6008: 5980: 5974: 5973: 5947: 5936: 5935: 5909: 5898: 5897: 5890: 5884: 5883: 5851: 5842: 5841: 5834: 5828: 5827: 5807: 5801: 5800: 5797:frank.pocnet.net 5794: 5786: 5780: 5779: 5759: 5753: 5752: 5732: 5726: 5725: 5707: 5698: 5692: 5691: 5671: 5665: 5664: 5644: 5638: 5637: 5635: 5629:. Archived from 5628: 5620: 5614: 5613: 5611: 5609: 5590: 5579: 5578: 5576: 5574: 5555: 5544: 5543: 5541: 5539: 5520: 5509: 5508: 5488: 5482: 5481: 5461: 5455: 5454: 5443: 5437: 5436: 5427:(5): 1481–1528. 5412: 5406: 5405: 5385: 5376: 5375: 5369: 5361: 5355: 5354: 5340:Video Microscopy 5334: 5328: 5327: 5307: 5301: 5300: 5280: 5274: 5273: 5266: 5260: 5259: 5231: 5221: 5215: 5214: 5212: 5211: 5196: 5190: 5189: 5187: 5186: 5171: 5165: 5164: 5162: 5161: 5141: 5135: 5134: 5132: 5131: 5118:Bell, E. (ed.). 5115: 5109: 5108: 5106: 5105: 5095: 5085: 5079: 5078: 5071: 5065: 5064: 5032: 5026: 5025: 5005: 4999: 4998: 4979: 4973: 4972: 4970: 4963: 4952: 4946: 4945: 4925: 4904: 4903: 4883: 4872: 4865: 4859: 4858: 4838: 4832: 4826: 4820: 4814: 4808: 4795: 4789: 4788: 4768: 4755: 4742: 4736: 4735: 4715: 4702: 4701: 4699: 4697: 4681: 4675: 4662: 4656: 4650: 4641: 4635: 4629: 4616: 4610: 4604: 4598: 4597: 4595: 4593: 4574: 4568: 4567: 4529: 4523: 4522: 4520: 4519: 4503: 4497: 4496: 4494: 4462: 4456: 4455: 4425: 4419: 4418: 4384: 4378: 4377: 4375: 4374: 4358: 4352: 4351: 4313: 4304: 4303: 4301: 4300: 4286: 4280: 4279: 4277: 4276: 4260: 4254: 4253: 4225: 4219: 4218: 4216: 4215: 4202:Iams, Harley A. 4199: 4190: 4189: 4187: 4186: 4170: 4161: 4160: 4158: 4157: 4141: 4132: 4131: 4129: 4128: 4112: 4103: 4102: 4076: 4065: 4064: 4054: 4045: 4036: 4035: 4025: 4016: 4007: 4006: 4004: 3997: 3987: 3981: 3980: 3978: 3977: 3962: 3956: 3955: 3949: 3940: 3931: 3930: 3896: 3887: 3886: 3858: 3848: 3842: 3841: 3815: 3809: 3808: 3806: 3805: 3789: 3780: 3779: 3777: 3776: 3760: 3751: 3750: 3748: 3747: 3731: 3722: 3721: 3695: 3682: 3681: 3653: 3643: 3634: 3633: 3605: 3595: 3586: 3585: 3557: 3547: 3534: 3533: 3525: 3519: 3518: 3501:(442): 437–451. 3490: 3484: 3483: 3455: 3449: 3448: 3442: 3433: 3427: 3426: 3420: 3412: 3406: 3405: 3403: 3402: 3386: 3380: 3379: 3377: 3376: 3360: 3354: 3353: 3325: 3315: 3309: 3308: 3306: 3305: 3289: 3283: 3282: 3280: 3279: 3263: 3257: 3256: 3254: 3253: 3240:Zworykin, V. K. 3237: 3228: 3227: 3225: 3224: 3210: 3204: 3203: 3173: 3167: 3158: 3152: 3138: 3132: 3123: 3114: 3113: 3111: 3110: 3097:Zworykin, V. K. 3094: 3085: 3084: 3082: 3081: 3061: 3052: 3051: 3017: 3011: 3010: 3008: 3006: 2988: 2982: 2981: 2945: 2934: 2933: 2905: 2895: 2884: 2883: 2881: 2880: 2869: 2860: 2859: 2857: 2856: 2836: 2827: 2826: 2824: 2823: 2803: 2797: 2796: 2794: 2793: 2773: 2767: 2766: 2764: 2763: 2743: 2737: 2736: 2708: 2698: 2692: 2691: 2689: 2688: 2672: 2666: 2665: 2663: 2662: 2646: 2640: 2639: 2637: 2636: 2620: 2614: 2613: 2611: 2610: 2594: 2588: 2587: 2585: 2584: 2579:on June 22, 2011 2575:. Archived from 2565: 2559: 2558: 2530: 2520: 2514: 2513: 2511: 2510: 2490: 2484: 2483: 2481: 2480: 2464: 2458: 2457: 2455: 2454: 2438: 2432: 2431: 2429: 2428: 2408: 2402: 2401: 2395: 2386: 2380: 2379: 2351: 2341: 2335: 2334: 2318: 2312: 2311: 2309: 2308: 2292: 2279: 2278: 2264: 2253: 2252: 2224: 2214: 2197: 2196: 2170: 2161: 2160: 2146: 2140: 2139: 2114:(8): 1048–1070. 2103: 2092: 2091: 2063: 2054: 2053: 2051: 2049:10.1038/093115a0 2020: 2014: 2013: 1985: 1975: 1958: 1957: 1947: 1945:10.1038/118590a0 1915: 1909: 1908: 1902: 1893: 1887: 1886: 1880: 1871: 1865: 1864: 1862: 1836: 1830: 1829: 1823: 1814: 1808: 1807: 1779: 1769: 1763: 1762: 1746: 1740: 1739: 1715: 1709: 1708: 1698: 1696:10.1038/078151a0 1666: 1657: 1656: 1624: 1616: 1610: 1609: 1583: 1497: 1496: 1492: 1487: 1486: 1482: 1474: 1473: 1469: 1456: 1455: 1451: 1446: 1445: 1441: 1436: 1435: 1431: 1099:Plumbicon (1965) 979:indium tin oxide 728:Second World War 538: 534: 530: 521:Alexandra Palace 275:Philo Farnsworth 147:, fellow of the 117:Cathode-ray tube 111:Cathode ray tube 65:cathode-ray tube 43: 42: 38: 21: 7690: 7689: 7685: 7684: 7683: 7681: 7680: 7679: 7660: 7659: 7658: 7653: 7591: 7506:audio and video 7491: 7458: 7390: 7327: 7255: 7236:Photomultiplier 7161: 7089: 7037:Quantum circuit 6945: 6939: 6881:Avalanche diode 6867: 6779: 6772: 6661: 6650: 6643: 6638: 6579: 6574: 6573: 6558: 6536: 6529: 6519: 6517: 6508: 6507: 6503: 6482:(25): 974–993. 6471: 6467: 6430: 6426: 6392: 6391: 6387: 6372: 6358: 6354: 6345: 6343: 6332: 6328: 6318: 6317: 6313: 6301: 6295: 6291: 6281: 6280: 6276: 6267: 6263: 6256: 6240: 6236: 6224: 6220: 6219: 6215: 6209:"Sony DXC-1600" 6207: 6203: 6190: 6189: 6185: 6178: 6162: 6158: 6151: 6135: 6131: 6118: 6117: 6113: 6098: 6084: 6080: 6073: 6057: 6053: 6016: 6012: 5981: 5977: 5962: 5948: 5939: 5924: 5910: 5901: 5892: 5891: 5887: 5866:(11): 662–666. 5852: 5845: 5836: 5835: 5831: 5824: 5808: 5804: 5792: 5790:"EEV Leddicons" 5788: 5787: 5783: 5776: 5760: 5756: 5749: 5733: 5729: 5705: 5699: 5695: 5688: 5672: 5668: 5661: 5645: 5641: 5633: 5626: 5622: 5621: 5617: 5607: 5605: 5604:on 15 July 2016 5592: 5591: 5582: 5572: 5570: 5557: 5556: 5547: 5537: 5535: 5522: 5521: 5512: 5505: 5489: 5485: 5478: 5462: 5458: 5445: 5444: 5440: 5413: 5409: 5402: 5386: 5379: 5367: 5363: 5362: 5358: 5351: 5335: 5331: 5324: 5308: 5304: 5297: 5281: 5277: 5268: 5267: 5263: 5240: 5222: 5218: 5209: 5207: 5198: 5197: 5193: 5184: 5182: 5173: 5172: 5168: 5159: 5157: 5150:Landsat Science 5142: 5138: 5129: 5127: 5116: 5112: 5103: 5101: 5093: 5087: 5086: 5082: 5073: 5072: 5068: 5033: 5029: 5022: 5006: 5002: 4995: 4981: 4980: 4976: 4968: 4961: 4953: 4949: 4942: 4926: 4907: 4900: 4884: 4875: 4866: 4862: 4855: 4839: 4835: 4827: 4823: 4815: 4811: 4805:Wayback Machine 4796: 4792: 4785: 4769: 4758: 4752:Wayback Machine 4743: 4739: 4732: 4716: 4705: 4695: 4693: 4682: 4678: 4672:Wayback Machine 4663: 4659: 4651: 4644: 4636: 4632: 4626:Wayback Machine 4617: 4613: 4605: 4601: 4591: 4589: 4576: 4575: 4571: 4564: 4530: 4526: 4517: 4515: 4504: 4500: 4463: 4459: 4452: 4426: 4422: 4407: 4385: 4381: 4372: 4370: 4359: 4355: 4348: 4314: 4307: 4298: 4296: 4288: 4287: 4283: 4274: 4272: 4261: 4257: 4236:(50): 380–381. 4226: 4222: 4213: 4211: 4200: 4193: 4184: 4182: 4171: 4164: 4155: 4153: 4142: 4135: 4126: 4124: 4113: 4106: 4091: 4077: 4068: 4063:(6/7): 133–151. 4052: 4046: 4039: 4023: 4017: 4010: 4002: 3995: 3989: 3988: 3984: 3975: 3973: 3964: 3963: 3959: 3947: 3941: 3934: 3919: 3897: 3890: 3867: 3849: 3845: 3830: 3816: 3812: 3803: 3801: 3790: 3783: 3774: 3772: 3761: 3754: 3745: 3743: 3732: 3725: 3710: 3696: 3685: 3662: 3644: 3637: 3614: 3596: 3589: 3566: 3548: 3537: 3527: 3526: 3522: 3491: 3487: 3466:(24): 219–233. 3456: 3452: 3440: 3434: 3430: 3413: 3409: 3400: 3398: 3387: 3383: 3374: 3372: 3361: 3357: 3334: 3316: 3312: 3303: 3301: 3290: 3286: 3277: 3275: 3264: 3260: 3251: 3249: 3238: 3231: 3222: 3220: 3212: 3211: 3207: 3200: 3174: 3170: 3159: 3155: 3139: 3135: 3124: 3117: 3108: 3106: 3095: 3088: 3079: 3077: 3062: 3055: 3040: 3018: 3014: 3004: 3002: 2990: 2989: 2985: 2946: 2937: 2914: 2896: 2887: 2878: 2876: 2870: 2863: 2854: 2852: 2837: 2830: 2821: 2819: 2804: 2800: 2791: 2789: 2774: 2770: 2761: 2759: 2744: 2740: 2717: 2699: 2695: 2686: 2684: 2673: 2669: 2660: 2658: 2647: 2643: 2634: 2632: 2621: 2617: 2608: 2606: 2595: 2591: 2582: 2580: 2567: 2566: 2562: 2539: 2521: 2517: 2508: 2506: 2491: 2487: 2478: 2476: 2465: 2461: 2452: 2450: 2439: 2435: 2426: 2424: 2423:on May 31, 2000 2409: 2405: 2393: 2387: 2383: 2360: 2342: 2338: 2319: 2315: 2306: 2304: 2293: 2282: 2265: 2256: 2233: 2215: 2200: 2185: 2171: 2164: 2147: 2143: 2104: 2095: 2064: 2057: 2021: 2017: 1994: 1976: 1961: 1916: 1912: 1900: 1894: 1890: 1878: 1872: 1868: 1837: 1833: 1821: 1815: 1811: 1788: 1770: 1766: 1747: 1743: 1730:(1751): 61–62. 1716: 1712: 1667: 1660: 1637: 1617: 1613: 1598: 1584: 1573: 1568: 1551: 1528:heater filament 1504: 1494: 1490: 1489: 1484: 1480: 1479: 1471: 1467: 1466: 1453: 1449: 1448: 1443: 1439: 1438: 1433: 1429: 1428: 1406: 1358: 1332: 1315:color separator 1311: 1298: 1266: 1264:Trinicon (1971) 1246: 1244:Newvicon (1974) 1231: 1214: 1195: 1161: 1101: 1084: 1016:Close-up of an 971:photoconductive 955: 947:contrast effect 931:Mercury-Atlas 6 919: 872: 776:image dissector 756: 711:Isaac Shoenberg 655: 626: 561:Isaac Shoenberg 552: 536: 532: 528: 513:Isaac Shoenberg 425:image dissector 421: 387: 382: 363:raster scanning 346: 330:Image Dissector 243: 241:Image dissector 229: 189:In a letter to 135: 119: 113: 40: 36: 35: 28: 23: 22: 15: 12: 11: 5: 7688: 7678: 7677: 7672: 7655: 7654: 7652: 7651: 7650: 7649: 7644: 7634: 7629: 7624: 7619: 7614: 7613: 7612: 7601: 7599: 7593: 7592: 7590: 7589: 7588: 7587: 7585:Wollaston wire 7577: 7572: 7567: 7562: 7557: 7552: 7551: 7550: 7545: 7535: 7530: 7525: 7520: 7519: 7518: 7513: 7508: 7499: 7497: 7493: 7492: 7490: 7489: 7484: 7479: 7478: 7477: 7466: 7464: 7460: 7459: 7457: 7456: 7451: 7446: 7441: 7436: 7431: 7426: 7421: 7416: 7411: 7406: 7400: 7398: 7392: 7391: 7389: 7388: 7383: 7378: 7373: 7368: 7366:Selectron tube 7363: 7358: 7356:Magic eye tube 7353: 7348: 7343: 7337: 7335: 7329: 7328: 7326: 7325: 7320: 7314: 7309: 7304: 7299: 7293: 7288: 7282: 7277: 7270: 7268: 7257: 7256: 7254: 7253: 7248: 7243: 7238: 7233: 7228: 7222: 7217: 7212: 7207: 7202: 7197: 7192: 7187: 7182: 7177: 7171: 7169: 7163: 7162: 7160: 7159: 7154: 7149: 7144: 7139: 7134: 7129: 7124: 7119: 7114: 7109: 7103: 7101: 7095: 7094: 7091: 7090: 7088: 7087: 7082: 7077: 7072: 7067: 7061: 7055: 7050: 7044: 7039: 7034: 7029: 7024: 7018: 7013: 7007: 7002: 6997: 6992: 6987: 6981: 6976: 6970: 6965: 6960: 6955: 6949: 6947: 6941: 6940: 6938: 6937: 6932: 6927: 6925:Schottky diode 6922: 6917: 6912: 6906: 6900: 6894: 6889: 6883: 6877: 6875: 6869: 6868: 6866: 6865: 6859: 6854: 6848: 6842: 6837: 6832: 6831: 6830: 6819: 6818: 6817: 6812: 6801: 6796: 6791: 6784: 6782: 6774: 6773: 6771: 6770: 6765: 6760: 6754: 6749: 6743: 6737: 6732: 6727: 6721: 6715: 6709: 6704: 6698: 6692: 6687: 6682: 6677: 6672: 6666: 6664: 6653: 6645: 6644: 6637: 6636: 6629: 6622: 6614: 6608: 6607: 6601: 6595: 6590: 6585: 6578: 6577:External links 6575: 6572: 6571: 6556: 6527: 6501: 6465: 6424: 6385: 6370: 6352: 6326: 6311: 6289: 6274: 6270:New York Times 6261: 6254: 6234: 6213: 6201: 6183: 6176: 6156: 6149: 6129: 6111: 6096: 6078: 6071: 6051: 6010: 5991:(1): S15–S17. 5975: 5960: 5937: 5922: 5899: 5885: 5843: 5829: 5822: 5802: 5781: 5774: 5754: 5747: 5727: 5693: 5686: 5666: 5659: 5639: 5615: 5580: 5569:on 31 May 2016 5559:"Camera Tubes" 5545: 5510: 5503: 5483: 5476: 5456: 5438: 5407: 5400: 5377: 5356: 5349: 5329: 5322: 5302: 5295: 5286:Machine Vision 5275: 5261: 5238: 5228:Machine Vision 5216: 5191: 5166: 5136: 5110: 5080: 5066: 5027: 5020: 5000: 4993: 4974: 4947: 4940: 4905: 4898: 4873: 4860: 4853: 4833: 4821: 4809: 4790: 4783: 4756: 4737: 4730: 4703: 4676: 4657: 4642: 4630: 4611: 4599: 4569: 4562: 4524: 4506:Rose, Albert. 4498: 4457: 4450: 4420: 4405: 4379: 4353: 4346: 4305: 4281: 4255: 4220: 4191: 4162: 4133: 4104: 4089: 4066: 4037: 4008: 3982: 3957: 3932: 3917: 3888: 3865: 3843: 3828: 3810: 3781: 3752: 3723: 3708: 3683: 3660: 3635: 3612: 3587: 3564: 3535: 3520: 3485: 3450: 3445:Wireless World 3428: 3407: 3381: 3355: 3332: 3310: 3284: 3258: 3229: 3205: 3198: 3190:10.17226/11807 3168: 3153: 3133: 3115: 3086: 3053: 3038: 3012: 2983: 2956:(9): 547–555. 2935: 2912: 2885: 2861: 2828: 2798: 2768: 2738: 2715: 2693: 2667: 2641: 2615: 2589: 2560: 2537: 2515: 2485: 2459: 2433: 2403: 2381: 2358: 2336: 2313: 2280: 2254: 2231: 2198: 2183: 2162: 2141: 2093: 2074:(3): 374–384. 2055: 2015: 1992: 1959: 1910: 1888: 1866: 1831: 1809: 1786: 1764: 1741: 1710: 1658: 1635: 1611: 1596: 1570: 1569: 1567: 1564: 1563: 1562: 1557: 1550: 1547: 1503: 1500: 1425:optical format 1416:, the size of 1405: 1402: 1357: 1354: 1341:Peter Goldmark 1331: 1328: 1310: 1307: 1297: 1294: 1265: 1262: 1245: 1242: 1229: 1213: 1212:Pasecon (1972) 1210: 1193: 1160: 1159:Saticon (1973) 1157: 1117:lead(II) oxide 1100: 1097: 1083: 1080: 1038:remote sensing 1007:microbolometer 954: 951: 933:liftoff, 1962. 918: 915: 871: 868: 841:beam-splitting 755: 754:Image orthicon 752: 660:photo-emission 654: 651: 625: 622: 551: 548: 468:photoelectrons 456:Kálmán Tihanyi 444:photoreceptors 432:charge storage 417:Main article: 386: 383: 381: 378: 374:charge storage 367:display device 345: 342: 239:Main article: 228: 225: 176:Hugo Gernsback 134: 133:Early research 131: 115:Main article: 112: 109: 26: 9: 6: 4: 3: 2: 7687: 7676: 7673: 7671: 7668: 7667: 7665: 7648: 7647:mercury relay 7645: 7643: 7640: 7639: 7638: 7635: 7633: 7630: 7628: 7625: 7623: 7620: 7618: 7615: 7611: 7608: 7607: 7606: 7603: 7602: 7600: 7598: 7594: 7586: 7583: 7582: 7581: 7578: 7576: 7573: 7571: 7568: 7566: 7563: 7561: 7558: 7556: 7553: 7549: 7546: 7544: 7541: 7540: 7539: 7536: 7534: 7531: 7529: 7526: 7524: 7521: 7517: 7514: 7512: 7509: 7507: 7504: 7503: 7501: 7500: 7498: 7494: 7488: 7485: 7483: 7480: 7476: 7473: 7472: 7471: 7470:Potentiometer 7468: 7467: 7465: 7461: 7455: 7452: 7450: 7447: 7445: 7442: 7440: 7437: 7435: 7432: 7430: 7427: 7425: 7422: 7420: 7417: 7415: 7412: 7410: 7407: 7405: 7402: 7401: 7399: 7397: 7393: 7387: 7386:Williams tube 7384: 7382: 7379: 7377: 7374: 7372: 7369: 7367: 7364: 7362: 7359: 7357: 7354: 7352: 7349: 7347: 7344: 7342: 7339: 7338: 7336: 7334: 7330: 7324: 7321: 7318: 7315: 7313: 7310: 7308: 7305: 7303: 7300: 7297: 7294: 7292: 7289: 7286: 7283: 7281: 7278: 7275: 7272: 7271: 7269: 7266: 7262: 7258: 7252: 7249: 7247: 7244: 7242: 7239: 7237: 7234: 7232: 7229: 7226: 7223: 7221: 7218: 7216: 7213: 7211: 7208: 7206: 7205:Fleming valve 7203: 7201: 7198: 7196: 7193: 7191: 7188: 7186: 7183: 7181: 7178: 7176: 7173: 7172: 7170: 7168: 7164: 7158: 7155: 7153: 7150: 7148: 7145: 7143: 7140: 7138: 7135: 7133: 7130: 7128: 7125: 7123: 7120: 7118: 7115: 7113: 7110: 7108: 7105: 7104: 7102: 7100: 7096: 7086: 7083: 7081: 7078: 7076: 7073: 7071: 7068: 7065: 7062: 7059: 7056: 7054: 7051: 7048: 7045: 7043: 7040: 7038: 7035: 7033: 7032:Photodetector 7030: 7028: 7025: 7022: 7019: 7017: 7014: 7011: 7008: 7006: 7003: 7001: 7000:Memtransistor 6998: 6996: 6993: 6991: 6988: 6985: 6982: 6980: 6977: 6974: 6971: 6969: 6966: 6964: 6961: 6959: 6956: 6954: 6951: 6950: 6948: 6942: 6936: 6933: 6931: 6928: 6926: 6923: 6921: 6918: 6916: 6913: 6910: 6907: 6904: 6901: 6898: 6895: 6893: 6890: 6887: 6884: 6882: 6879: 6878: 6876: 6874: 6870: 6863: 6860: 6858: 6855: 6852: 6849: 6846: 6843: 6841: 6838: 6836: 6833: 6829: 6826: 6825: 6823: 6820: 6816: 6813: 6811: 6808: 6807: 6805: 6802: 6800: 6797: 6795: 6792: 6789: 6786: 6785: 6783: 6781: 6775: 6769: 6766: 6764: 6761: 6758: 6755: 6753: 6750: 6747: 6744: 6741: 6738: 6736: 6733: 6731: 6728: 6725: 6722: 6719: 6716: 6713: 6710: 6708: 6705: 6702: 6699: 6696: 6693: 6691: 6688: 6686: 6683: 6681: 6678: 6676: 6673: 6671: 6668: 6667: 6665: 6663: 6657: 6654: 6652: 6649:Semiconductor 6646: 6642: 6635: 6630: 6628: 6623: 6621: 6616: 6615: 6612: 6605: 6602: 6599: 6596: 6594: 6591: 6589: 6586: 6584: 6581: 6580: 6567: 6563: 6559: 6553: 6549: 6545: 6541: 6534: 6532: 6515: 6511: 6505: 6497: 6493: 6489: 6485: 6481: 6477: 6469: 6461: 6457: 6452: 6447: 6443: 6439: 6435: 6428: 6420: 6416: 6412: 6408: 6404: 6400: 6396: 6389: 6381: 6377: 6373: 6367: 6363: 6356: 6341: 6337: 6330: 6322: 6315: 6307: 6300: 6293: 6285: 6278: 6271: 6265: 6257: 6251: 6248:. McFarland. 6247: 6246: 6238: 6230: 6223: 6217: 6210: 6205: 6197: 6193: 6187: 6179: 6173: 6169: 6168: 6160: 6152: 6146: 6142: 6141: 6133: 6125: 6121: 6115: 6107: 6103: 6099: 6093: 6089: 6082: 6074: 6068: 6064: 6063: 6055: 6046: 6041: 6037: 6033: 6029: 6025: 6021: 6014: 6006: 6002: 5998: 5994: 5990: 5986: 5979: 5971: 5967: 5963: 5957: 5953: 5946: 5944: 5942: 5933: 5929: 5925: 5919: 5915: 5908: 5906: 5904: 5895: 5889: 5881: 5877: 5873: 5869: 5865: 5861: 5857: 5850: 5848: 5839: 5833: 5825: 5819: 5815: 5814: 5806: 5798: 5791: 5785: 5777: 5771: 5767: 5766: 5758: 5750: 5744: 5740: 5739: 5731: 5723: 5719: 5715: 5711: 5704: 5697: 5689: 5683: 5680:. CRC Press. 5679: 5678: 5670: 5662: 5656: 5652: 5651: 5643: 5632: 5625: 5619: 5603: 5599: 5595: 5589: 5587: 5585: 5568: 5564: 5560: 5554: 5552: 5550: 5533: 5529: 5525: 5519: 5517: 5515: 5506: 5500: 5496: 5495: 5487: 5479: 5473: 5469: 5468: 5460: 5452: 5448: 5442: 5434: 5430: 5426: 5422: 5418: 5411: 5403: 5397: 5393: 5392: 5384: 5382: 5373: 5366: 5360: 5352: 5346: 5342: 5341: 5333: 5325: 5319: 5315: 5314: 5306: 5298: 5292: 5288: 5287: 5279: 5271: 5265: 5257: 5253: 5249: 5245: 5241: 5235: 5230: 5229: 5220: 5206:on 2019-04-11 5205: 5201: 5195: 5181:on 2016-04-28 5180: 5176: 5170: 5156:on 2015-09-08 5155: 5151: 5147: 5140: 5125: 5121: 5114: 5100:on 2012-01-26 5099: 5092: 5091: 5084: 5076: 5070: 5062: 5058: 5054: 5050: 5046: 5042: 5038: 5031: 5023: 5017: 5013: 5012: 5004: 4996: 4990: 4986: 4985: 4978: 4967: 4960: 4959: 4951: 4943: 4937: 4934:. CRC Press. 4933: 4932: 4924: 4922: 4920: 4918: 4916: 4914: 4912: 4910: 4901: 4895: 4891: 4890: 4882: 4880: 4878: 4871:, May (1950). 4870: 4864: 4856: 4850: 4846: 4845: 4837: 4830: 4825: 4818: 4817:fazano.pro.br 4813: 4806: 4802: 4799: 4794: 4786: 4780: 4776: 4775: 4767: 4765: 4763: 4761: 4753: 4749: 4746: 4741: 4733: 4727: 4724:. CRC Press. 4723: 4722: 4714: 4712: 4710: 4708: 4691: 4687: 4680: 4673: 4669: 4666: 4661: 4654: 4649: 4647: 4639: 4634: 4627: 4623: 4620: 4615: 4608: 4603: 4587: 4583: 4579: 4573: 4565: 4559: 4555: 4551: 4547: 4543: 4539: 4535: 4528: 4513: 4509: 4502: 4493: 4488: 4484: 4480: 4476: 4472: 4471:Physics Today 4468: 4467:"Albert Rose" 4461: 4453: 4447: 4443: 4442:10.17226/2231 4439: 4435: 4431: 4430:"Albert Rose" 4424: 4416: 4412: 4408: 4402: 4398: 4394: 4390: 4383: 4368: 4364: 4357: 4349: 4343: 4339: 4335: 4331: 4327: 4323: 4319: 4312: 4310: 4295: 4291: 4285: 4270: 4266: 4259: 4251: 4247: 4243: 4239: 4235: 4231: 4224: 4209: 4205: 4198: 4196: 4180: 4176: 4169: 4167: 4151: 4147: 4140: 4138: 4122: 4118: 4111: 4109: 4100: 4096: 4092: 4086: 4082: 4075: 4073: 4071: 4062: 4058: 4051: 4044: 4042: 4033: 4029: 4022: 4015: 4013: 4001: 3994: 3993: 3986: 3972:on 2011-06-17 3971: 3967: 3961: 3953: 3946: 3939: 3937: 3928: 3924: 3920: 3914: 3910: 3906: 3902: 3895: 3893: 3884: 3880: 3876: 3872: 3868: 3862: 3857: 3856: 3847: 3839: 3835: 3831: 3825: 3821: 3814: 3799: 3795: 3788: 3786: 3770: 3766: 3759: 3757: 3741: 3737: 3730: 3728: 3719: 3715: 3711: 3705: 3701: 3694: 3692: 3690: 3688: 3679: 3675: 3671: 3667: 3663: 3657: 3652: 3651: 3642: 3640: 3631: 3627: 3623: 3619: 3615: 3609: 3604: 3603: 3594: 3592: 3583: 3579: 3575: 3571: 3567: 3561: 3556: 3555: 3546: 3544: 3542: 3540: 3531: 3524: 3516: 3512: 3508: 3504: 3500: 3496: 3489: 3481: 3477: 3473: 3469: 3465: 3461: 3454: 3446: 3439: 3432: 3424: 3419: 3411: 3396: 3392: 3385: 3370: 3366: 3359: 3351: 3347: 3343: 3339: 3335: 3329: 3324: 3323: 3314: 3299: 3295: 3288: 3273: 3269: 3262: 3247: 3243: 3236: 3234: 3219: 3215: 3209: 3201: 3195: 3191: 3187: 3183: 3179: 3172: 3165: 3164: 3157: 3150: 3146: 3142: 3137: 3130: 3129: 3122: 3120: 3104: 3100: 3093: 3091: 3076:on 2011-07-22 3075: 3071: 3067: 3060: 3058: 3049: 3045: 3041: 3035: 3031: 3027: 3023: 3016: 3000: 2997: 2993: 2987: 2979: 2975: 2971: 2967: 2963: 2959: 2955: 2951: 2944: 2942: 2940: 2931: 2927: 2923: 2919: 2915: 2909: 2904: 2903: 2894: 2892: 2890: 2875: 2868: 2866: 2851:on 2011-07-22 2850: 2846: 2842: 2835: 2833: 2818:on 2010-09-15 2817: 2813: 2809: 2802: 2788:on 2010-09-15 2787: 2783: 2779: 2772: 2758:on 2010-09-15 2757: 2753: 2749: 2742: 2734: 2730: 2726: 2722: 2718: 2712: 2707: 2706: 2697: 2682: 2678: 2671: 2656: 2652: 2645: 2630: 2626: 2619: 2604: 2600: 2593: 2578: 2574: 2570: 2564: 2556: 2552: 2548: 2544: 2540: 2534: 2529: 2528: 2519: 2505:on 2012-02-25 2504: 2500: 2496: 2489: 2474: 2470: 2463: 2448: 2444: 2437: 2422: 2418: 2414: 2407: 2399: 2398:Popular Radio 2392: 2385: 2377: 2373: 2369: 2365: 2361: 2355: 2350: 2349: 2340: 2332: 2328: 2324: 2317: 2302: 2298: 2291: 2289: 2287: 2285: 2276: 2272: 2271: 2263: 2261: 2259: 2250: 2246: 2242: 2238: 2234: 2228: 2223: 2222: 2213: 2211: 2209: 2207: 2205: 2203: 2194: 2190: 2186: 2180: 2176: 2169: 2167: 2158: 2154: 2153: 2145: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2102: 2100: 2098: 2089: 2085: 2081: 2077: 2073: 2069: 2062: 2060: 2050: 2045: 2041: 2037: 2033: 2029: 2026: 2019: 2011: 2007: 2003: 1999: 1995: 1989: 1984: 1983: 1974: 1972: 1970: 1968: 1966: 1964: 1955: 1951: 1946: 1941: 1937: 1933: 1930:(2973): 590. 1929: 1925: 1921: 1914: 1906: 1899: 1892: 1884: 1877: 1870: 1861: 1856: 1852: 1848: 1844: 1843: 1835: 1827: 1820: 1813: 1805: 1801: 1797: 1793: 1789: 1783: 1778: 1777: 1768: 1760: 1756: 1752: 1745: 1737: 1733: 1729: 1725: 1721: 1714: 1706: 1702: 1697: 1692: 1688: 1684: 1681:(2016): 151. 1680: 1676: 1672: 1665: 1663: 1654: 1650: 1646: 1642: 1638: 1632: 1628: 1623: 1615: 1607: 1603: 1599: 1593: 1589: 1582: 1580: 1578: 1576: 1571: 1561: 1558: 1556: 1553: 1552: 1546: 1543: 1540: 1539:image sensors 1537: 1531: 1529: 1525: 1521: 1517: 1512: 1509: 1499: 1476: 1464: 1460: 1426: 1422: 1421:image sensors 1419: 1415: 1410: 1401: 1397: 1393: 1389: 1386: 1381: 1379: 1378:magnetic lens 1375: 1369: 1367: 1366:J. A. Fleming 1363: 1353: 1350: 1346: 1342: 1337: 1327: 1323: 1320: 1316: 1309:Color cameras 1306: 1304: 1296:Light biasing 1293: 1291: 1287: 1283: 1278: 1274: 1271: 1261: 1259: 1255: 1254:zinc selenide 1251: 1241: 1239: 1235: 1227: 1223: 1219: 1209: 1207: 1203: 1199: 1189: 1187: 1182: 1178: 1174: 1170: 1166: 1156: 1154: 1150: 1145: 1143: 1137: 1135: 1130: 1126: 1122: 1118: 1114: 1105: 1096: 1093: 1089: 1079: 1075: 1071: 1069: 1065: 1061: 1060:image sensors 1058: 1053: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1019: 1014: 1010: 1008: 1004: 1000: 996: 991: 988: 982: 980: 976: 972: 963: 959: 950: 948: 944: 939: 932: 928: 923: 914: 912: 908: 904: 900: 895: 893: 889: 883: 881: 877: 867: 865: 861: 857: 853: 849: 844: 842: 838: 834: 830: 826: 822: 816: 814: 810: 805: 800: 798: 793: 787: 785: 781: 777: 768: 760: 751: 748: 744: 740: 735: 733: 729: 724: 720: 716: 712: 708: 699: 695: 692: 688: 683: 679: 677: 673: 669: 665: 661: 650: 646: 643: 639: 635: 631: 621: 619: 615: 609: 607: 603: 599: 593: 590: 585: 582: 578: 574: 569: 566: 562: 558: 547: 545: 541: 524: 522: 518: 514: 510: 506: 500: 498: 494: 489: 485: 481: 476: 473: 469: 465: 461: 457: 452: 449: 448:electron beam 445: 441: 437: 433: 428: 426: 420: 411: 403: 396: 391: 377: 375: 370: 368: 364: 360: 356: 351: 341: 337: 335: 331: 326: 324: 320: 316: 312: 308: 304: 299: 295: 290: 288: 287:Popular Radio 284: 278: 276: 272: 268: 264: 260: 256: 255:Max Dieckmann 252: 248: 242: 233: 224: 222: 218: 214: 210: 206: 202: 198: 197:G. M. Minchin 194: 193: 187: 185: 181: 177: 173: 168: 167: 162: 158: 154: 150: 149:Royal Society 146: 142: 141: 130: 128: 124: 118: 108: 106: 102: 98: 94: 89: 88:electron beam 84: 82: 81:image sensors 78: 74: 70: 66: 62: 55: 50: 34:Vidicon tube 32: 19: 7675:Vacuum tubes 7404:Cold cathode 7380: 7371:Storage tube 7261:Vacuum tubes 7210:Neutron tube 7185:Beam tetrode 7167:Vacuum tubes 6752:Power MOSFET 6539: 6518:. Retrieved 6513: 6504: 6479: 6475: 6468: 6441: 6437: 6427: 6394: 6388: 6361: 6355: 6344:. Retrieved 6339: 6329: 6320: 6314: 6305: 6292: 6283: 6277: 6269: 6264: 6244: 6237: 6228: 6216: 6204: 6195: 6186: 6166: 6159: 6139: 6132: 6123: 6114: 6087: 6081: 6065:. Elsevier. 6061: 6054: 6027: 6023: 6013: 5988: 5984: 5978: 5951: 5913: 5888: 5863: 5859: 5832: 5812: 5805: 5796: 5784: 5764: 5757: 5737: 5730: 5713: 5709: 5696: 5676: 5669: 5649: 5642: 5631:the original 5618: 5606:. Retrieved 5602:the original 5597: 5571:. Retrieved 5567:the original 5562: 5536:. Retrieved 5532:the original 5527: 5493: 5486: 5466: 5459: 5450: 5441: 5424: 5420: 5410: 5390: 5371: 5359: 5343:. Springer. 5339: 5332: 5312: 5305: 5285: 5278: 5264: 5227: 5219: 5208:. Retrieved 5204:the original 5194: 5183:. Retrieved 5179:the original 5169: 5158:. Retrieved 5154:the original 5149: 5139: 5128:. Retrieved 5123: 5113: 5102:. Retrieved 5098:the original 5089: 5083: 5069: 5036: 5030: 5010: 5003: 4983: 4977: 4957: 4950: 4930: 4888: 4863: 4843: 4836: 4824: 4812: 4793: 4773: 4740: 4720: 4694:. Retrieved 4689: 4679: 4665:oai.dtic.mil 4660: 4633: 4614: 4606: 4602: 4590:. Retrieved 4586:the original 4581: 4578:"Television" 4572: 4537: 4533: 4527: 4516:. Retrieved 4511: 4501: 4474: 4470: 4460: 4433: 4423: 4388: 4382: 4371:. Retrieved 4366: 4356: 4321: 4317: 4297:. Retrieved 4293: 4284: 4273:. Retrieved 4268: 4265:"Television" 4258: 4233: 4229: 4223: 4212:. Retrieved 4207: 4183:. Retrieved 4178: 4154:. Retrieved 4149: 4125:. Retrieved 4120: 4080: 4060: 4056: 4031: 4027: 3991: 3985: 3974:. Retrieved 3970:the original 3960: 3951: 3900: 3854: 3846: 3819: 3813: 3802:. Retrieved 3797: 3773:. Retrieved 3768: 3744:. Retrieved 3739: 3699: 3649: 3601: 3553: 3529: 3523: 3498: 3494: 3488: 3463: 3459: 3453: 3444: 3431: 3425:. p. 1. 3422: 3410: 3399:. Retrieved 3394: 3384: 3373:. Retrieved 3368: 3358: 3321: 3313: 3302:. Retrieved 3297: 3287: 3276:. Retrieved 3271: 3261: 3250:. Retrieved 3245: 3221:. Retrieved 3217: 3208: 3181: 3171: 3162: 3156: 3144: 3136: 3128:IEC Techline 3127: 3107:. Retrieved 3102: 3078:. Retrieved 3074:the original 3069: 3021: 3015: 3003:. Retrieved 2986: 2953: 2949: 2901: 2877:. Retrieved 2853:. Retrieved 2849:the original 2844: 2820:. Retrieved 2816:the original 2811: 2801: 2790:. Retrieved 2786:the original 2781: 2771: 2760:. Retrieved 2756:the original 2751: 2741: 2704: 2696: 2685:. Retrieved 2680: 2670: 2659:. Retrieved 2654: 2644: 2633:. Retrieved 2628: 2618: 2607:. Retrieved 2602: 2592: 2581:. Retrieved 2577:the original 2572: 2563: 2526: 2518: 2507:. Retrieved 2503:the original 2498: 2488: 2477:. Retrieved 2472: 2462: 2451:. Retrieved 2446: 2436: 2425:. Retrieved 2421:the original 2416: 2406: 2397: 2384: 2347: 2339: 2322: 2316: 2305:. Retrieved 2300: 2274: 2269: 2220: 2174: 2156: 2151: 2144: 2111: 2107: 2071: 2067: 2031: 2027: 2018: 1981: 1927: 1923: 1913: 1904: 1891: 1882: 1869: 1841: 1834: 1825: 1812: 1775: 1767: 1750: 1744: 1727: 1723: 1713: 1678: 1674: 1626: 1614: 1587: 1544: 1532: 1513: 1505: 1498:of an inch. 1477: 1411: 1407: 1398: 1394: 1390: 1382: 1370: 1361: 1359: 1333: 1324: 1312: 1299: 1285: 1282:SMF Trinicon 1281: 1279: 1275: 1267: 1247: 1237: 1221: 1215: 1190: 1162: 1146: 1138: 1110: 1088:Picturephone 1085: 1076: 1072: 1054: 1023: 995:pyroelectric 992: 983: 968: 956: 940: 936: 899:electron gun 896: 884: 880:electron gun 876:photocathode 873: 848:Harry Lubcke 845: 837:RCA TK-40/41 817: 801: 788: 773: 745:team led by 736: 714: 704: 686: 681: 680: 667: 656: 647: 630:photocathode 627: 610: 605: 601: 594: 586: 573:photocathode 570: 553: 525: 501: 493:Westinghouse 487: 477: 453: 429: 422: 371: 359:periodically 347: 338: 329: 327: 297: 291: 286: 282: 279: 266: 262: 247:photocathode 244: 190: 188: 183: 179: 171: 164: 138: 136: 123:cathode rays 120: 85: 60: 59: 7570:Transformer 7312:Sutton tube 7152:Charge pump 7005:Memory cell 6935:Zener diode 6897:Laser diode 6780:transistors 6662:transistors 6606:(in German) 6600:(in German) 6088:Image Tubes 4869:Electronics 4798:acmi.net.au 4034:(2): 57–58. 1536:solid-state 1418:solid-state 1256:(ZnSe) and 1220:in 1972 as 1068:CMOS sensor 1062:, with the 1057:solid-state 993:By using a 888:screen grid 821:logarithmic 747:Albert Rose 664:capacitance 311:multipactor 259:Rudolf Hell 201:cathode ray 71:to capture 7664:Categories 7642:reed relay 7632:Parametron 7565:Thermistor 7543:resettable 7502:Connector 7463:Adjustable 7439:Nixie tube 7409:Crossatron 7376:Trochotron 7351:Iconoscope 7346:Charactron 7323:X-ray tube 7195:Compactron 7175:Acorn tube 7132:Buck–boost 7053:Solaristor 6915:Photodiode 6892:Gunn diode 6888:(CLD, CRD) 6670:Transistor 6346:2017-04-22 5210:2018-10-30 5185:2007-01-16 5160:2016-03-25 5146:"Landsat1" 5130:2017-07-09 5104:2011-11-23 4518:2010-01-15 4477:(12): 98. 4373:2010-03-09 4299:2020-07-22 4275:2013-01-15 4214:2010-03-09 4185:2010-03-09 4156:2010-03-09 4127:2010-03-09 3976:2010-01-15 3804:2010-01-15 3775:2010-01-15 3746:2010-01-15 3401:2010-01-10 3375:2010-02-22 3304:2010-01-10 3278:2010-01-10 3252:2010-01-10 3223:2018-01-25 3109:2010-01-10 3080:2010-01-10 3005:29 January 2879:2010-01-10 2855:2010-01-10 2822:2010-02-22 2792:2010-02-22 2762:2010-02-22 2687:2010-02-22 2661:2010-02-22 2635:2010-02-22 2609:2010-02-22 2583:2009-07-15 2509:2009-07-29 2479:2010-01-15 2453:2010-01-15 2427:2009-07-28 2307:2009-07-28 1905:Television 1883:Television 1566:References 1518:(CCD) and 1250:Matsushita 927:John Glenn 804:iconoscope 802:While the 780:iconoscope 598:patent war 419:Iconoscope 385:Iconoscope 161:Karl Braun 127:flat panel 93:scan lines 73:television 7605:Capacitor 7449:Trigatron 7444:Thyratron 7434:Neon lamp 7361:Monoscope 7241:Phototube 7225:Pentagrid 7190:Barretter 7075:Trancitor 7070:Thyristor 6995:Memristor 6920:PIN diode 6697:(ChemFET) 6566:852789572 6411:0188-1442 5970:760531886 5932:731971346 5722:1019-6587 5061:111164581 4696:March 14, 4250:0369-8947 3838:312624263 3718:166482305 3515:0099-2887 3480:2050-2613 3048:999399256 2970:0096-8390 2555:26320909M 2376:24271926M 2249:22379634M 2128:0731-5996 1804:10420449M 1555:Monoscope 1290:Betamovie 1284:tube, or 1222:chalnicon 1198:Sony HDVS 1028:probe to 987:amplifier 975:electrons 917:Dark halo 870:Operation 860:feminized 856:statuette 825:human eye 809:crosstalk 797:U.S. Navy 732:Plumbicon 624:Operation 618:Plumbicon 436:human eye 344:Operation 283:Discovery 105:Hi-Vision 7627:Inductor 7597:Reactive 7575:Varistor 7555:Resistor 7533:Antifuse 7419:Ignitron 7414:Dekatron 7302:Klystron 7291:Gyrotron 7220:Nuvistor 7137:Split-pi 7023:(MOS IC) 6990:Memistor 6748:(MuGFET) 6742:(MOSFET) 6714:(FinFET) 6380:54462093 6106:12366280 5256:2552098M 5248:13760379 4966:Archived 4801:Archived 4748:Archived 4668:Archived 4653:dtic.mil 4622:Archived 4619:aade.com 4099:43501972 4000:Archived 3927:27642302 3883:2215220M 3875:20220579 3670:37567233 3630:2499006M 3622:15222064 3582:9798525M 3574:48837571 3350:9576009M 3342:52921676 2978:51670303 2930:1083768M 2922:29954436 2733:2740120M 2725:15366931 2547:19971738 2368:40534751 2241:61916360 2193:19125711 2136:51668505 2010:3542553M 2002:38435423 1860:7057092M 1796:85828932 1653:9254941M 1645:56198760 1606:50761489 1549:See also 1461:and its 1374:toroidal 1208:(MUSE). 1186:ASA film 1121:NAB Show 1003:infrared 833:blooming 739:Atlantic 497:Zworykin 458:studied 18:Orthicon 7528:Ferrite 7496:Passive 7487:Varicap 7475:digital 7424:Krytron 7246:Tetrode 7231:Pentode 7085:Varicap 7066:(3D IC) 7042:RF CMOS 6946:devices 6720:(FGMOS) 6651:devices 6520:29 June 6484:Bibcode 6419:1765736 6032:Bibcode 5993:Bibcode 5868:Bibcode 5608:29 June 5573:29 June 5538:29 June 5041:Bibcode 4592:29 June 4542:Bibcode 4479:Bibcode 4415:5724473 4326:Bibcode 3678:687811M 2076:Bibcode 2036:Bibcode 1954:4081053 1932:Bibcode 1851:1110454 1759:1282602 1705:3956737 1683:Bibcode 1514:Modern 1493:⁄ 1483:⁄ 1470:⁄ 1452:⁄ 1442:⁄ 1432:⁄ 1385:helical 1303:fogging 1218:Toshiba 1169:Thomson 1165:Hitachi 1113:Philips 1042:Landsat 1030:Jupiter 1026:Galileo 953:Vidicon 905:of the 634:focused 614:Philips 472:Hungary 350:optical 213:vidicon 39:⁄ 7560:Switch 7251:Triode 7215:Nonode 7180:Audion 7060:(SITh) 6944:Other 6911:(OLED) 6873:Diodes 6824:(LET) 6806:(FET) 6778:Other 6726:(IGBT) 6703:(CMOS) 6690:BioFET 6685:BiCMOS 6564:  6554:  6460:115833 6458:  6417:  6409:  6378:  6368:  6252:  6174:  6147:  6104:  6094:  6069:  5968:  5958:  5930:  5920:  5820:  5772:  5745:  5720:  5684:  5657:  5501:  5474:  5398:  5347:  5320:  5293:  5254:  5246:  5236:  5059:  5018:  4991:  4938:  4896:  4851:  4781:  4728:  4560:  4448:  4413:  4403:  4344:  4248:  4097:  4087:  3925:  3915:  3881:  3873:  3863:  3836:  3826:  3716:  3706:  3676:  3668:  3658:  3628:  3620:  3610:  3580:  3572:  3562:  3513:  3478:  3348:  3340:  3330:  3196:  3149:UNESCO 3046:  3036:  3001:. 2001 2996:UNESCO 2976:  2968:  2928:  2920:  2910:  2731:  2723:  2713:  2553:  2545:  2535:  2374:  2366:  2356:  2247:  2239:  2229:  2191:  2181:  2134:  2126:  2028:Nature 2008:  2000:  1990:  1952:  1924:Nature 1857:  1849:  1802:  1794:  1784:  1757:  1703:  1675:Nature 1651:  1643:  1633:  1604:  1594:  1228:(CdSeO 1204:using 1142:HD-MAC 1050:Uvicon 903:dynode 741:, the 542:(4–20 537:  533:  529:  440:retina 315:dynode 221:France 192:Nature 140:Nature 79:(CCD) 7637:Relay 7610:types 7548:eFUSE 7319:(TWT) 7307:Maser 7298:(IOT) 7287:(CFA) 7276:(BWO) 7200:Diode 7147:SEPIC 7127:Boost 7080:TRIAC 7049:(SCR) 7012:(MOV) 6986:(LEC) 6905:(LED) 6864:(UJT) 6853:(SIT) 6847:(PUT) 6790:(BJT) 6759:(TFT) 6735:LDMOS 6730:ISFET 6456:JSTOR 6302:(PDF) 6225:(PDF) 5793:(PDF) 5706:(PDF) 5634:(PDF) 5627:(PDF) 5368:(PDF) 5094:(PPT) 5057:S2CID 4969:(PDF) 4962:(PDF) 4690:Emmys 4053:(PDF) 4024:(PDF) 4003:(PDF) 3996:(PDF) 3948:(PDF) 3441:(PDF) 2974:S2CID 2394:(PDF) 2273:[ 2155:[ 2132:S2CID 1950:S2CID 1901:(PDF) 1879:(PDF) 1822:(PDF) 1701:S2CID 1372:semi- 862:into 829:flare 784:light 719:grids 319:light 251:anode 7580:Wire 7538:Fuse 7122:Buck 6975:(IC) 6963:DIAC 6899:(LD) 6768:UMOS 6763:VMOS 6680:PMOS 6675:NMOS 6660:MOS 6562:OCLC 6552:ISBN 6522:2012 6415:OCLC 6407:ISSN 6376:OCLC 6366:ISBN 6250:ISBN 6172:ISBN 6145:ISBN 6102:OCLC 6092:ISBN 6067:ISBN 5966:OCLC 5956:ISBN 5928:OCLC 5918:ISBN 5818:ISBN 5770:ISBN 5743:ISBN 5718:ISSN 5682:ISBN 5655:ISBN 5610:2012 5575:2012 5540:2012 5499:ISBN 5472:ISBN 5396:ISBN 5345:ISBN 5318:ISBN 5291:ISBN 5244:OCLC 5234:ISBN 5016:ISBN 4989:ISBN 4936:ISBN 4894:ISBN 4849:ISBN 4779:ISBN 4726:ISBN 4698:2017 4594:2012 4558:ISBN 4446:ISBN 4411:OCLC 4401:ISBN 4342:ISBN 4246:ISSN 4095:OCLC 4085:ISBN 3923:OCLC 3913:ISBN 3871:OCLC 3861:ISBN 3834:OCLC 3824:ISBN 3714:OCLC 3704:ISBN 3666:OCLC 3656:ISBN 3618:OCLC 3608:ISBN 3570:OCLC 3560:ISBN 3511:ISSN 3476:ISSN 3338:OCLC 3328:ISBN 3194:ISBN 3044:OCLC 3034:ISBN 3007:2009 2966:ISSN 2918:OCLC 2908:ISBN 2721:OCLC 2711:ISBN 2543:OCLC 2533:ISBN 2364:OCLC 2354:ISBN 2237:OCLC 2227:ISBN 2189:OCLC 2179:ISBN 2124:ISSN 1998:OCLC 1988:ISBN 1847:OCLC 1792:OCLC 1782:ISBN 1755:OCLC 1641:OCLC 1631:ISBN 1602:OCLC 1592:ISBN 1508:MUSE 1404:Size 1343:for 1319:3CCD 1270:Sony 1173:Sony 1171:and 1034:NASA 864:Emmy 813:NASA 672:grid 662:and 544:ft-c 348:The 257:and 97:NTSC 7142:Ćuk 6544:doi 6492:doi 6480:386 6446:doi 6399:hdl 6040:doi 6001:doi 5989:608 5876:doi 5714:254 5429:doi 5049:doi 4550:doi 4487:doi 4438:doi 4393:hdl 4334:doi 4322:XII 4238:doi 3905:doi 3503:doi 3468:doi 3186:doi 3026:doi 2958:doi 2327:hdl 2116:doi 2084:doi 2044:doi 1940:doi 1928:118 1732:doi 1691:doi 1534:to 1345:CBS 1181:NHK 1018:RCA 929:'s 743:RCA 723:EMI 707:EMI 691:EMI 557:EMI 540:lux 535:215 531:and 509:EMI 438:'s 334:CRT 219:in 209:RCA 205:EMI 174:by 101:PAL 7666:: 7516:RF 7265:RF 6560:. 6550:. 6530:^ 6512:. 6490:. 6478:. 6454:. 6442:60 6440:. 6436:. 6413:. 6405:. 6374:. 6338:. 6227:. 6194:. 6122:. 6100:. 6038:. 6028:20 6026:. 6022:. 5999:. 5987:. 5964:. 5940:^ 5926:. 5902:^ 5874:. 5864:21 5862:. 5858:. 5846:^ 5795:. 5712:. 5708:. 5596:. 5583:^ 5561:. 5548:^ 5526:. 5513:^ 5449:. 5425:48 5423:. 5419:. 5380:^ 5370:. 5252:OL 5250:. 5242:. 5148:. 5122:. 5055:. 5047:. 4908:^ 4876:^ 4759:^ 4706:^ 4688:. 4645:^ 4580:. 4556:. 4548:. 4510:. 4485:. 4475:44 4473:. 4469:. 4444:. 4432:. 4409:. 4399:. 4365:. 4340:. 4332:. 4320:. 4308:^ 4292:. 4267:. 4244:. 4234:97 4232:. 4206:. 4194:^ 4177:. 4165:^ 4148:. 4136:^ 4119:. 4107:^ 4093:. 4069:^ 4061:25 4059:. 4055:. 4040:^ 4032:24 4030:. 4026:. 4011:^ 3950:. 3935:^ 3921:. 3911:. 3891:^ 3879:OL 3877:. 3869:. 3832:. 3796:. 3784:^ 3767:. 3755:^ 3738:. 3726:^ 3712:. 3686:^ 3674:OL 3672:. 3664:. 3638:^ 3626:OL 3624:. 3616:. 3590:^ 3578:OL 3576:. 3568:. 3538:^ 3509:. 3499:73 3497:. 3474:. 3462:. 3443:. 3421:. 3393:. 3367:. 3346:OL 3344:. 3336:. 3296:. 3270:. 3244:. 3232:^ 3216:. 3192:. 3180:. 3143:, 3118:^ 3101:. 3089:^ 3068:. 3056:^ 3042:. 3032:. 2994:. 2972:. 2964:. 2954:27 2952:. 2938:^ 2926:OL 2924:. 2916:. 2888:^ 2864:^ 2843:. 2831:^ 2810:. 2780:. 2750:. 2729:OL 2727:. 2719:. 2679:. 2653:. 2627:. 2601:. 2571:. 2551:OL 2549:. 2541:. 2497:. 2471:. 2445:. 2415:. 2372:OL 2370:. 2362:. 2299:. 2283:^ 2257:^ 2245:OL 2243:. 2235:. 2201:^ 2187:. 2165:^ 2130:. 2122:. 2112:25 2110:. 2096:^ 2082:. 2072:50 2070:. 2058:^ 2042:. 2032:93 2030:. 2006:OL 2004:. 1996:. 1962:^ 1948:. 1938:. 1926:. 1922:. 1903:. 1881:. 1855:OL 1853:. 1824:. 1800:OL 1798:. 1790:. 1728:68 1726:. 1722:. 1699:. 1689:. 1679:78 1677:. 1673:. 1661:^ 1649:OL 1647:. 1639:. 1625:. 1600:. 1574:^ 1070:. 734:. 678:. 620:. 323:cd 277:. 186:. 153:UK 107:. 7267:) 7263:( 6633:e 6626:t 6619:v 6568:. 6546:: 6524:. 6498:. 6494:: 6486:: 6462:. 6448:: 6421:. 6401:: 6382:. 6349:. 6231:. 6198:. 6126:. 6108:. 6048:. 6042:: 6034:: 6007:. 6003:: 5995:: 5972:. 5934:. 5882:. 5878:: 5870:: 5799:. 5778:. 5724:. 5612:. 5577:. 5542:. 5453:. 5431:: 5374:. 5353:. 5326:. 5272:. 5258:. 5213:. 5188:. 5163:. 5133:. 5107:. 5077:. 5063:. 5051:: 5043:: 4700:. 4596:. 4566:. 4552:: 4544:: 4538:I 4521:. 4495:. 4489:: 4481:: 4454:. 4440:: 4417:. 4395:: 4376:. 4350:. 4336:: 4328:: 4302:. 4278:. 4252:. 4240:: 4217:. 4188:. 4159:. 4130:. 4101:. 3979:. 3929:. 3907:: 3885:. 3840:. 3807:. 3778:. 3749:. 3720:. 3680:. 3632:. 3584:. 3517:. 3505:: 3482:. 3470:: 3464:8 3404:. 3378:. 3352:. 3307:. 3281:. 3255:. 3226:. 3202:. 3188:: 3112:. 3083:. 3050:. 3028:: 3009:. 2980:. 2960:: 2932:. 2882:. 2858:. 2825:. 2795:. 2765:. 2735:. 2690:. 2664:. 2638:. 2612:. 2586:. 2557:. 2512:. 2482:. 2456:. 2430:. 2378:. 2333:. 2329:: 2310:. 2251:. 2195:. 2138:. 2118:: 2090:. 2086:: 2078:: 2052:. 2046:: 2038:: 2012:. 1956:. 1942:: 1934:: 1863:. 1806:. 1761:. 1738:. 1734:: 1707:. 1693:: 1685:: 1655:. 1608:. 1495:3 1491:4 1485:3 1481:4 1472:3 1468:4 1454:2 1450:1 1444:2 1440:3 1434:2 1430:3 1230:3 1194:2 1179:( 604:( 397:) 265:( 151:( 56:. 41:3 37:2 20:)

Index

Orthicon


Vladimir K. Zworykin
cathode-ray tube
television cameras
television
charge-coupled device
image sensors
electron beam
scan lines
NTSC
PAL
Hi-Vision
Cathode-ray tube
cathode rays
flat panel
Nature
Alan Archibald Campbell-Swinton
Royal Society
UK
cathode ray tubes
Karl Braun
Scientific American
Hugo Gernsback
Nature
G. M. Minchin
cathode ray
EMI
RCA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.