Knowledge

Atomic emission spectroscopy

Source đź“ť

150:
must be in a liquid solution. Inductively coupled plasma (ICP) source of the emission consists of an induction coil and plasma. An induction coil is a coil of wire that has an alternating current flowing through it. This current induces a magnetic field inside the coil, coupling a great deal of energy to plasma contained in a quartz tube inside the coil. Plasma is a collection of charged particles (cations and electrons) capable, by virtue of their charge, of interacting with a magnetic field. The plasmas used in atomic emissions are formed by ionizing a flowing stream of argon gas. Plasma's high-temperature results from resistive heating as the charged particles move through the gas. Because plasmas operate at much higher temperatures than flames, they provide better atomization and a higher population of excited states. The predominant form of sample matrix in ICP-AES today is a liquid sample: acidified water or solids digested into aqueous forms. Liquid samples are pumped into the nebulizer and sample chamber via a peristaltic pump. Then the samples pass through a nebulizer that creates a fine mist of liquid particles. Larger water droplets condense on the sides of the spray chamber and are removed via the drain, while finer water droplets move with the argon flow and enter the plasma. With plasma emission, it is possible to analyze solid samples directly. These procedures include incorporating electrothermal vaporization, laser and spark ablation, and glow-discharge vaporization.
127: 90: 1269: 699: 31: 723: 102: 735: 1281: 711: 385: 173:. In traditional arc spectroscopy methods, a sample of the solid was commonly ground up and destroyed during analysis. An electric arc or spark is passed through the sample, heating it to a high temperature to excite the atoms within it. The excited analyte atoms emit light at characteristic wavelengths that can be dispersed with a 149:
Advantages of ICP-AES are the excellent limit of detection and linear dynamic range, multi-element capability, low chemical interference and a stable and reproducible signal. Disadvantages are spectral interferences (many emission lines), cost and operating expense and the fact that samples typically
97:
The sample of a material (analyte) is brought into the flame as a gas, sprayed solution, or directly inserted into the flame by use of a small loop of wire, usually platinum. The heat from the flame evaporates the solvent and breaks intramolecular bonds to create free atoms. The thermal energy also
98:
excites the atoms into excited electronic states that subsequently emit light when they return to the ground electronic state. Each element emits light at a characteristic wavelength, which is dispersed by a grating or prism and detected in the spectrometer.
251:
Stefánsson A, Gunnarsson I, Giroud N (2007). "New methods for the direct determination of dissolved inorganic, organic and total carbon in natural waters by Reagent-Free Ion Chromatography and inductively coupled plasma atomic emission spectrometry".
181:. However, modern spark sources with controlled discharges can be considered quantitative. Both qualitative and quantitative spark analysis are widely used for production quality control in foundry and metal casting facilities. 1100: 200: 121: 646: 773: 165:
atomic emission spectroscopy is used for the analysis of metallic elements in solid samples. For non-conductive materials, the sample is ground with
417: 17: 389: 991: 177:
and detected. In the past, the spark or arc conditions were typically not well controlled, the analysis for the elements in the sample were
924: 869: 838: 833: 306: 1206: 1024: 886: 1155: 974: 112:
A frequent application of the emission measurement with the flame is the regulation of alkali metals for pharmaceutical analytics.
108:
atomic ions emitting light in a flame displays a brilliantly bright yellow emission at 588.9950 and 589.5924 nanometers wavelength.
1095: 897: 818: 798: 372: 287:
Mermet, J. M. (2005). "Is it still possible, necessary and beneficial to perform research in ICP-atomic emission spectrometry?".
1041: 1019: 766: 669: 457: 1107: 1029: 715: 964: 909: 859: 205: 554: 410: 1191: 943: 759: 354: 331: 1196: 1014: 1211: 1181: 1112: 1046: 739: 1312: 1307: 1140: 931: 828: 676: 442: 190: 1317: 1285: 938: 843: 703: 403: 77:
gives the identity of the element while the intensity of the emitted light is proportional to the number of
1072: 808: 1228: 1067: 1036: 969: 447: 1218: 1160: 1009: 881: 620: 135: 1244: 1223: 864: 523: 513: 346: 139: 986: 307:
http://www.rsc.org/publishing/journals/JA/article.asp?doi=b416511j%7Cformat=%7Caccessdate=2007-08-31
594: 1117: 813: 683: 564: 472: 158: 904: 662: 1273: 1145: 876: 790: 462: 518: 482: 434: 426: 70: 8: 1201: 914: 823: 559: 195: 1249: 1186: 1165: 981: 959: 892: 803: 589: 584: 579: 452: 376: 324:
Atomic absorption, fluorescence, and flame emission spectroscopy: a practical approach
1150: 1077: 1051: 722: 655: 630: 625: 615: 528: 487: 467: 350: 327: 269: 233: 74: 46: 727: 635: 296: 261: 178: 143: 66: 54: 508: 62: 265: 1301: 574: 174: 126: 782: 610: 533: 273: 162: 89: 58: 27:
Analytical method using radiation to identify chemical elements in a sample
343:
Element-specific chromatographic detection by atomic emission spectroscopy
237: 134:
Inductively coupled plasma atomic emission spectroscopy (ICP-AES) uses an
503: 569: 477: 395: 170: 30: 538: 300: 101: 166: 93:
A flame during the assessment of calcium ions in a flame photometer
751: 384: 105: 321: 81:
of the element. The sample may be excited by various methods.
50: 78: 65:
at a particular wavelength to determine the quantity of an
250: 201:
Inductively coupled plasma atomic emission spectroscopy
122:
Inductively coupled plasma atomic emission spectroscopy
34:
Inductively coupled plasma atomic emission spectrometer
130:Inductively coupled plasma atomic emission source 1299: 49:that uses the intensity of light emitted from a 340: 142:at wavelengths characteristic of a particular 767: 411: 115: 839:Vibrational spectroscopy of linear molecules 223: 138:to produce excited atoms and ions that emit 244: 834:Nuclear resonance vibrational spectroscopy 774: 760: 418: 404: 217: 1207:Inelastic electron tunneling spectroscopy 887:Resonance-enhanced multiphoton ionization 322:Reynolds, R. J.; Thompson, K. C. (1978). 975:Extended X-ray absorption fine structure 425: 125: 100: 88: 29: 373:"Atomic Emission Spectroscopy Tutorial" 14: 1300: 670:Analytical and Bioanalytical Chemistry 286: 755: 458:High-performance liquid chromatograph 399: 1280: 710: 206:Laser-induced breakdown spectroscopy 734: 69:in a sample. The wavelength of the 24: 25: 1329: 1192:Deep-level transient spectroscopy 944:Saturated absorption spectroscopy 365: 1279: 1268: 1267: 1197:Dual-polarization interferometry 781: 733: 721: 709: 698: 697: 383: 153: 1212:Scanning tunneling spectroscopy 1187:Circular dichroism spectroscopy 1182:Acoustic resonance spectroscopy 314: 224:Stáhlavská A (April 1973). "". 1141:Fourier-transform spectroscopy 829:Vibrational circular dichroism 443:Atomic absorption spectrometer 280: 191:Atomic absorption spectroscopy 18:Optical Emissions Spectrometer 13: 1: 939:Cavity ring-down spectroscopy 844:Thermal infrared spectroscopy 211: 1073:Inelastic neutron scattering 390:Atomic emission spectroscopy 39:Atomic emission spectroscopy 7: 1134:Data collection, processing 1010:Photoelectron/photoemission 448:Flame emission spectrometer 184: 10: 1334: 1219:Photoacoustic spectroscopy 1161:Time-resolved spectroscopy 136:inductively coupled plasma 119: 116:Inductively coupled plasma 1263: 1245:Astronomical spectroscopy 1237: 1224:Photothermal spectroscopy 1174: 1133: 1126: 1088: 1060: 1002: 952: 852: 789: 693: 644: 603: 547: 524:Ion mobility spectrometry 514:Electroanalytical methods 496: 433: 347:American Chemical Society 266:10.1016/j.aca.2006.09.001 140:electromagnetic radiation 84: 1229:Pump–probe spectroscopy 1118:Ferromagnetic resonance 910:Laser-induced breakdown 684:Analytical Biochemistry 473:Melting point apparatus 341:Uden, Peter C. (1992). 925:Glow-discharge optical 905:Raman optical activity 819:Rotational–vibrational 663:Analytica Chimica Acta 131: 109: 94: 35: 1313:Scientific techniques 1308:Emission spectroscopy 1146:Hyperspectral imaging 555:Coning and quartering 463:Infrared spectrometer 289:J. Anal. At. Spectrom 129: 104: 92: 33: 1318:Analytical chemistry 898:Coherent anti-Stokes 853:UV–Vis–NIR "Optical" 677:Analytical Chemistry 519:Gravimetric analysis 483:Optical spectrometer 427:Analytical chemistry 392:at Wikimedia Commons 71:atomic spectral line 1202:Hadron spectroscopy 992:Conversion electron 953:X-ray and Gamma ray 860:Ultraviolet–visible 326:. New York: Wiley. 196:Atomic spectroscopy 1250:Force spectroscopy 1175:Measured phenomena 1166:Video spectroscopy 870:Cold vapour atomic 590:Separation process 585:Sample preparation 169:powder to make it 132: 110: 95: 36: 1295: 1294: 1259: 1258: 1151:Spectrophotometry 1078:Neutron spin echo 1052:Beta spectroscopy 965:Energy-dispersive 749: 748: 631:Standard addition 626:Internal standard 616:Calibration curve 529:Mass spectrometry 488:Spectrophotometer 468:Mass spectrometer 453:Gas chromatograph 388:Media related to 75:emission spectrum 47:chemical analysis 45:) is a method of 16:(Redirected from 1325: 1283: 1282: 1271: 1270: 1131: 1130: 1042:phenomenological 791:Vibrational (IR) 776: 769: 762: 753: 752: 737: 736: 725: 713: 712: 701: 700: 636:Isotope dilution 420: 413: 406: 397: 396: 387: 380: 375:. Archived from 360: 345:. Columbus, OH: 337: 309: 304: 301:10.1039/b416511j 284: 278: 277: 254:Anal. Chim. Acta 248: 242: 241: 221: 21: 1333: 1332: 1328: 1327: 1326: 1324: 1323: 1322: 1298: 1297: 1296: 1291: 1255: 1233: 1170: 1122: 1084: 1056: 998: 948: 848: 809:Resonance Raman 785: 780: 750: 745: 689: 640: 599: 543: 492: 435:Instrumentation 429: 424: 371: 368: 363: 357: 334: 317: 312: 285: 281: 249: 245: 222: 218: 214: 187: 156: 124: 118: 87: 28: 23: 22: 15: 12: 11: 5: 1331: 1321: 1320: 1315: 1310: 1293: 1292: 1290: 1289: 1277: 1264: 1261: 1260: 1257: 1256: 1254: 1253: 1247: 1241: 1239: 1235: 1234: 1232: 1231: 1226: 1221: 1216: 1215: 1214: 1204: 1199: 1194: 1189: 1184: 1178: 1176: 1172: 1171: 1169: 1168: 1163: 1158: 1153: 1148: 1143: 1137: 1135: 1128: 1124: 1123: 1121: 1120: 1115: 1110: 1105: 1104: 1103: 1092: 1090: 1086: 1085: 1083: 1082: 1081: 1080: 1070: 1064: 1062: 1058: 1057: 1055: 1054: 1049: 1044: 1039: 1034: 1033: 1032: 1027: 1025:Angle-resolved 1022: 1017: 1006: 1004: 1000: 999: 997: 996: 995: 994: 984: 979: 978: 977: 972: 967: 956: 954: 950: 949: 947: 946: 941: 936: 935: 934: 929: 928: 927: 912: 907: 902: 901: 900: 890: 884: 879: 874: 873: 872: 862: 856: 854: 850: 849: 847: 846: 841: 836: 831: 826: 821: 816: 811: 806: 801: 795: 793: 787: 786: 779: 778: 771: 764: 756: 747: 746: 744: 743: 731: 719: 707: 694: 691: 690: 688: 687: 680: 673: 666: 659: 651: 649: 642: 641: 639: 638: 633: 628: 623: 618: 613: 607: 605: 601: 600: 598: 597: 592: 587: 582: 577: 572: 567: 562: 557: 551: 549: 545: 544: 542: 541: 536: 531: 526: 521: 516: 511: 509:Chromatography 506: 500: 498: 494: 493: 491: 490: 485: 480: 475: 470: 465: 460: 455: 450: 445: 439: 437: 431: 430: 423: 422: 415: 408: 400: 394: 393: 381: 379:on 2006-05-01. 367: 366:External links 364: 362: 361: 355: 338: 332: 318: 316: 313: 311: 310: 279: 243: 215: 213: 210: 209: 208: 203: 198: 193: 186: 183: 155: 152: 120:Main article: 117: 114: 86: 83: 26: 9: 6: 4: 3: 2: 1330: 1319: 1316: 1314: 1311: 1309: 1306: 1305: 1303: 1288: 1287: 1278: 1276: 1275: 1266: 1265: 1262: 1251: 1248: 1246: 1243: 1242: 1240: 1236: 1230: 1227: 1225: 1222: 1220: 1217: 1213: 1210: 1209: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1179: 1177: 1173: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1138: 1136: 1132: 1129: 1125: 1119: 1116: 1114: 1111: 1109: 1106: 1102: 1099: 1098: 1097: 1094: 1093: 1091: 1087: 1079: 1076: 1075: 1074: 1071: 1069: 1066: 1065: 1063: 1059: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1012: 1011: 1008: 1007: 1005: 1001: 993: 990: 989: 988: 985: 983: 980: 976: 973: 971: 968: 966: 963: 962: 961: 958: 957: 955: 951: 945: 942: 940: 937: 933: 930: 926: 923: 922: 921: 918: 917: 916: 913: 911: 908: 906: 903: 899: 896: 895: 894: 891: 888: 885: 883: 882:Near-infrared 880: 878: 875: 871: 868: 867: 866: 863: 861: 858: 857: 855: 851: 845: 842: 840: 837: 835: 832: 830: 827: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 800: 797: 796: 794: 792: 788: 784: 777: 772: 770: 765: 763: 758: 757: 754: 742: 741: 732: 730: 729: 724: 720: 718: 717: 708: 706: 705: 696: 695: 692: 686: 685: 681: 679: 678: 674: 672: 671: 667: 665: 664: 660: 658: 657: 653: 652: 650: 648: 643: 637: 634: 632: 629: 627: 624: 622: 621:Matrix effect 619: 617: 614: 612: 609: 608: 606: 602: 596: 593: 591: 588: 586: 583: 581: 580:Pulverization 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 552: 550: 546: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 501: 499: 495: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 440: 438: 436: 432: 428: 421: 416: 414: 409: 407: 402: 401: 398: 391: 386: 382: 378: 374: 370: 369: 358: 356:0-8412-2174-X 352: 348: 344: 339: 335: 333:0-470-26478-0 329: 325: 320: 319: 308: 302: 298: 294: 290: 283: 275: 271: 267: 263: 259: 255: 247: 239: 235: 231: 228:(in German). 227: 220: 216: 207: 204: 202: 199: 197: 194: 192: 189: 188: 182: 180: 176: 175:monochromator 172: 168: 164: 160: 154:Spark and arc 151: 147: 145: 141: 137: 128: 123: 113: 107: 103: 99: 91: 82: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 32: 19: 1284: 1272: 1252:(a misnomer) 1238:Applications 1156:Time-stretch 1047:paramagnetic 919: 865:Fluorescence 783:Spectroscopy 738: 726: 714: 702: 682: 675: 668: 661: 654: 647:publications 611:Chemometrics 595:Sub-sampling 534:Spectroscopy 377:the original 342: 323: 315:Bibliography 292: 288: 282: 260:(1): 69–74. 257: 253: 246: 232:(4): 238–9. 229: 225: 219: 157: 148: 133: 111: 96: 42: 38: 37: 824:Vibrational 740:WikiProject 604:Calibration 565:Dissolution 504:Calorimetry 179:qualitative 1302:Categories 1030:Two-photon 932:absorption 814:Rotational 645:Prominent 570:Filtration 497:Techniques 478:Microscope 212:References 171:conductive 1108:Terahertz 1089:Radiowave 987:Mössbauer 539:Titration 295:: 11–16. 226:Pharmazie 1274:Category 1003:Electron 970:Emission 920:emission 877:Vibronic 704:Category 560:Dilution 548:Sampling 274:17386476 185:See also 167:graphite 1286:Commons 1113:ESR/EPR 1061:Nucleon 889:(REMPI) 716:Commons 656:Analyst 575:Masking 238:4716605 144:element 73:in the 67:element 1127:Others 915:Atomic 728:Portal 353:  330:  272:  236:  106:Sodium 55:plasma 1068:Alpha 1037:Auger 1015:X-ray 982:Gamma 960:X-ray 893:Raman 804:Raman 799:FT-IR 305:|url= 159:Spark 85:Flame 79:atoms 63:spark 61:, or 51:flame 351:ISBN 328:ISBN 270:PMID 234:PMID 1096:NMR 297:doi 262:doi 258:582 163:arc 161:or 59:arc 43:AES 1304:: 1101:2D 1020:UV 349:. 293:20 291:. 268:. 256:. 230:28 146:. 57:, 53:, 775:e 768:t 761:v 419:e 412:t 405:v 359:. 336:. 303:. 299:: 276:. 264:: 240:. 41:( 20:)

Index

Optical Emissions Spectrometer

chemical analysis
flame
plasma
arc
spark
element
atomic spectral line
emission spectrum
atoms


Sodium
Inductively coupled plasma atomic emission spectroscopy

inductively coupled plasma
electromagnetic radiation
element
Spark
arc
graphite
conductive
monochromator
qualitative
Atomic absorption spectroscopy
Atomic spectroscopy
Inductively coupled plasma atomic emission spectroscopy
Laser-induced breakdown spectroscopy
PMID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑