Knowledge

Oppenauer oxidation

Source đź“ť

203: 109: 622: 311: 425: 391: 355: 589: 496: 469: 523: 546: 711:
Oppenauer, R. V. (1937). "Eine Methode der Dehydrierung von Sekundären Alkoholen zu Ketonen. I. Zur Herstellung von Sterinketonen und Sexualhormonen" [Dehydration of secondary alcohols to ketones. I. Preparation of sterol ketones and sex hormones].
1012:
Almeida, Maria L.S.; Kočovský, Paval; Bäckvall, Jan-E. (1996). "Ruthenium-Catalyzed Oppenauer-Type Oxidation of 3β-Hydroxy Steroids. A Highly Efficient Entry into the Steroidal Hormones with 4-En-3-one Functionality".
175:
due to its use of relatively mild and non-toxic reagents (e.g. the reaction is run in acetone/benzene mixtures). The Oppenauer oxidation is commonly used in various industrial processes such as the synthesis of
252:
An advantage of the Oppenauer oxidation is its use of relatively inexpensive and non-toxic reagents. Reaction conditions are mild and gentle since the substrates are generally heated in acetone/
772:
Otvos, L.; Gruber, L.; Meisel-Agoston, J. (1965). "The Meerwein-Ponndorf-Verley-Oppenauer. Investigation of the reaction mechanism with radiocarbon. Racemization of secondary alcohols".
83: 155:
products. The Oppenauer oxidation is still used for the oxidation of acid labile substrates. The method has been largely displaced by oxidation methods based on
951:
Stéphane Caron; Robert W. Dugger; Sally Gut Ruggeri; John A. Ragan & David H. Brown Ripin (2006). "Large-Scale Oxidations in the Pharmaceutical Industry".
877:
Ooi, T.; Otsuka, H.; Miura, T.; Ichikawa, H.; Maruoka, K. (2002). "Practical Oppenauer (OPP) oxidation of alcohols with a modified aluminum catalyst".
373:
have been also reported. For example, a highly active aluminium catalyst was reported by Maruoka and co-workers which was utilized in the oxidation of
345:
to quininone, as the traditional aluminium catalytic system failed to oxidize quinine due to the complex formed by coordination of the Lewis-basic
147:. Though primary alcohols can be oxidized under Oppenauer conditions, primary alcohols are seldom oxidized by this method due to the competing 66: 117: 914:
Graves, C. R.; Zeng, B. S.; Nguyen, S. T. (2006). "Efficient and Selective Al-Catalyzed Alcohol Oxidation via Oppenauer Chemistry".
1084: 916: 333:, is used when certain alcohol groups do not oxidize under the standard Oppenauer reaction conditions. For example, Woodward used 108: 805: 202: 1177: 621: 577: 1140:
Reich, Richard; Keana, John F. W. (1972). "Oppenauer Oxidations Using 1-Methyl-4-Piperidone as the Hydride Acceptor".
310: 1172: 1078:
Milas, N. A.; Grossi, F. X.; Penner, S. E.; Kahn, S. (1948). "The Synthesis of 1--3-Methyl-1,3,5-Octatrien-7-One (C
1049:
Eignerova, L.; Kasal, A. (1976). "Intramolecular hydride shift in Oppenauer oxidation of some dihydroxy steroids".
685: 424: 495: 390: 588: 256:
mixtures. Another advantage of the Oppenauer oxidation which makes it unique to other oxidation methods such as
1111:
Reich, R.; Keana, J. F. W. (1972). "Oppenauer Oxidations Using 1-Methyl-4-Piperidone as the Hydride Acceptor".
996: 650: 51: 655: 232:
alcohol are bound to the aluminium. The acetone is coordinated to the aluminium which activates it for the
236:
transfer from the alkoxide. The aluminium-catalyzed hydride shift from the α-carbon of the alcohol to the
139:
is highly selective for secondary alcohols and does not oxidize other sensitive functional groups such as
675: 522: 261: 468: 714: 660: 88: 59: 640: 305:
acceptor. This reaction is useful in that it affords a one-step preparation of Δ 4,6-3-ketosteroids.
257: 172: 160: 614:
solvents. Another general side reaction is the migration of the double bond during the oxidation of
509:
derivatives. For example, an efficient catalytic version of the Oppenauer oxidation which employs a
354: 1113: 329:
for the aluminium alkoxide. The Woodward modification of the Oppenauer oxidation, also called the
1182: 670: 545: 444: 334: 326: 121: 35: 603: 229: 225: 950: 129: 8: 408: 98: 565: 401: 213: 164: 148: 744:(1944). "Reduction with Aluminum Alkoxides (The Meerwein-Ponndorf-Verley Reduction)". 1031: 992: 969: 933: 896: 851: 823: 801: 635: 599: 293:
In the Wettstein-Oppenauer reaction, discovered by Wettstein in 1945, Δ 5–3β-hydroxy
94: 1149: 1122: 1093: 1060: 1023: 961: 925: 888: 859: 831: 754: 723: 561: 265: 241: 879: 741: 665: 645: 615: 277: 273: 168: 758: 264:
is that secondary alcohols are oxidized much faster than primary alcohols, thus
220:
to form a complex (3), which then, in the second step, gets deprotonated by an
1153: 1126: 1166: 1015: 727: 681: 1051: 1035: 973: 937: 900: 487: 483: 338: 298: 156: 821:
Mandell, L. (1955). "The Mechanism of the Wettstein-Oppenauer Oxidation".
513:
catalyst has been developed for the oxidation of 5-unsaturated 3β-hydroxy
1064: 746: 505:
A slight variation of the Oppenauer oxidation is also used to synthesize
1097: 863: 835: 953: 849:
Woodward, R. B.; Wendler, N. L.; Brutschy, F. J. (1945). "Quininone1".
412: 1027: 965: 929: 892: 771: 611: 510: 456: 440: 382: 217: 136: 607: 580: 573: 569: 533: 479: 448: 405: 370: 346: 302: 269: 237: 221: 185: 152: 244:(8). The desired ketone (9) is formed after the hydride transfer. 610:
products with no α-hydrogen, but this can be prevented by use of
514: 506: 460: 452: 416: 378: 374: 342: 294: 253: 233: 189: 181: 177: 144: 125: 102: 798:
Strategic Applications of Named Reactions in Organic Synthesis
691: 228:(5). In the third step, both the oxidant acetone (7) and the 140: 268:
can be achieved. Furthermore, there is no over oxidation of
537: 765: 572:
product, which have α-hydrogens to form either β-hydroxy
560:
A common side-reaction of the Oppenauer oxidation is the
532:
The Oppenauer oxidation is also used in the synthesis of
411:
is used as the oxidant, for example, in the oxidation of
1104: 1011: 848: 876: 1077: 1005: 1042: 989:
Medicinal Natural Products: A Biosynthetic Approach
795: 478:The Oppenauer oxidation is also used to synthesize 325:In the Woodward modification, Woodward substituted 1071: 814: 276:as opposed to another oxidation methods such the 1164: 913: 991:(2nd ed.). Wiley & Sons. p. 243. 288: 240:carbon of acetone proceeds over a six-membered 1048: 791: 789: 787: 625:Oppenauer oxidation of a steroid derivative. 517:to the corresponding 4-en-3-one derivative. 820: 439:The Oppenauer oxidation is used to prepare 1139: 1110: 486:is prepared by the Oppenauer oxidation of 459:is prepared by the Oppenauer oxidation of 381:(a member of a family of chemicals called 297:are oxidized to Δ 4,6-3-ketosteroids with 784: 734: 710: 434: 1085:Journal of the American Chemical Society 917:Journal of the American Chemical Society 400:In another modification the catalyst is 320: 842: 1165: 986: 944: 870: 526:An Oppenauer oxidation of pregnenolone 499:An Oppenauer oxidation of pregnenolone 364: 740: 216:, the alcohol (1) coordinates to the 93:, is a gentle method for selectively 369:Several modified aluminium alkoxide 796:Corey, E.J; Nicolaou, K.C. (2005). 428:An Oppenauer oxidation modification 112:Oppenauer oxidation reaction scheme 13: 620: 592:An Oppenauer oxidation of aldehyde 587: 544: 521: 494: 467: 423: 389: 353: 309: 201: 118:Meerwein–Ponndorf–Verley reduction 107: 14: 1194: 555: 472:An Oppenauer oxidation of codeine 394:An Oppenauer oxidation modication 283: 224:ion (4) to generate an alkoxide 1133: 980: 120:. The alcohol is oxidized with 907: 704: 549:An Oppenauer oxidation of diol 1: 698: 247: 206:Oppenauer oxidation mechanism 116:The reaction is the opposite 385:) in excellent yield (94%). 331:Oppenauer–Woodward oxidation 314:Wettstein-Oppenauer reaction 289:Wettstein-Oppenauer reaction 195: 7: 1178:Organic oxidation reactions 759:10.1002/0471264180.or002.05 629: 10: 1199: 774:Acta Chim. Acad. Sci. Hung 715:Recl. Trav. Chim. Pays-Bas 661:Albright-Goldman oxidation 651:Pfitzner–Moffatt oxidation 212:In the first step of this 1154:10.1080/00397917208061988 1127:10.1080/00397917208061988 641:Pyridinium chlorochromate 349:to the aluminium centre. 258:pyridinium chlorochromate 161:pyridinium chlorochromate 132:toward the product side. 73: 47:Organic Chemistry Portal 41: 18: 1142:Synthetic Communications 1114:Synthetic Communications 728:10.1002/recl.19370560206 656:Parikh–Doering oxidation 27:Rupert Viktor Oppenauer 1173:Organic redox reactions 676:Dess–Martin periodinane 445:pharmaceutical industry 335:potassium tert-butoxide 327:potassium tert-butoxide 262:Dess–Martin periodinane 84:Rupert Viktor Oppenauer 626: 593: 550: 527: 500: 473: 435:Synthetic applications 429: 395: 359: 315: 207: 122:aluminium isopropoxide 113: 36:Organic redox reaction 624: 591: 548: 525: 498: 471: 427: 393: 357: 341:for the oxidation of 321:Woodward modification 313: 205: 173:Dess–Martin oxidation 111: 1065:10.1135/cccc19761056 19:Oppenauer oxidation 1098:10.1021/ja01183a522 864:10.1021/ja01225a001 836:10.1021/ja01594a061 671:Corey–Kim oxidation 409:3-nitrobenzaldehyde 365:Other modifications 358:Woodward modication 80:Oppenauer oxidation 52:oppenauer-oxidation 987:Dewick, P (2001). 627: 594: 566:aldol condensation 551: 528: 501: 474: 430: 402:trimethylaluminium 396: 360: 316: 208: 165:dimethyl sulfoxide 149:aldol condensation 128:. This shifts the 114: 1028:10.1021/jo960361q 1022:(19): 6587–6590. 966:10.1021/cr040679f 930:10.1021/ja063842s 893:10.1021/ol020094c 852:J. Am. Chem. Soc. 830:(13): 3199–3201. 824:J. Am. Chem. Soc. 807:978-7-03-019190-8 636:Alcohol oxidation 536:from 1,4 and 1,5 77: 76: 1190: 1158: 1157: 1137: 1131: 1130: 1108: 1102: 1101: 1075: 1069: 1068: 1059:(4): 1056–1065. 1046: 1040: 1039: 1009: 1003: 1002: 984: 978: 977: 948: 942: 941: 911: 905: 904: 874: 868: 867: 846: 840: 839: 818: 812: 811: 793: 782: 781: 769: 763: 762: 738: 732: 731: 708: 455:. For instance, 274:carboxylic acids 266:chemoselectivity 242:transition state 92: 69: 54: 16: 15: 1198: 1197: 1193: 1192: 1191: 1189: 1188: 1187: 1163: 1162: 1161: 1138: 1134: 1109: 1105: 1081: 1076: 1072: 1047: 1043: 1010: 1006: 999: 985: 981: 949: 945: 924:(39): 12596–7. 912: 908: 887:(16): 2669–72. 880:Organic Letters 875: 871: 847: 843: 819: 815: 808: 794: 785: 770: 766: 739: 735: 709: 705: 701: 666:Swern oxidation 646:Jones oxidation 632: 616:allylic alcohol 558: 437: 367: 323: 291: 286: 278:Jones oxidation 250: 198: 169:Swern oxidation 86: 65: 50: 12: 11: 5: 1196: 1186: 1185: 1183:Name reactions 1180: 1175: 1160: 1159: 1148:(5): 323–325. 1132: 1103: 1079: 1070: 1041: 1004: 997: 979: 960:(7): 2943–89. 943: 906: 869: 841: 813: 806: 783: 764: 753:(5): 178–223. 733: 722:(2): 137–144. 702: 700: 697: 696: 695: 689: 679: 673: 668: 663: 658: 653: 648: 643: 638: 631: 628: 596: 595: 557: 556:Side reactions 554: 553: 552: 530: 529: 503: 502: 476: 475: 436: 433: 432: 431: 398: 397: 366: 363: 362: 361: 322: 319: 318: 317: 290: 287: 285: 282: 249: 246: 210: 209: 197: 194: 82:, named after 75: 74: 71: 70: 63: 56: 55: 48: 44: 43: 39: 38: 33: 32:Reaction type 29: 28: 25: 21: 20: 9: 6: 4: 3: 2: 1195: 1184: 1181: 1179: 1176: 1174: 1171: 1170: 1168: 1155: 1151: 1147: 1143: 1136: 1128: 1124: 1120: 1116: 1115: 1107: 1099: 1095: 1091: 1087: 1086: 1074: 1066: 1062: 1058: 1054: 1053: 1045: 1037: 1033: 1029: 1025: 1021: 1018: 1017: 1016:J. Org. Chem. 1008: 1000: 994: 990: 983: 975: 971: 967: 963: 959: 956: 955: 947: 939: 935: 931: 927: 923: 919: 918: 910: 902: 898: 894: 890: 886: 882: 881: 873: 865: 861: 857: 854: 853: 845: 837: 833: 829: 826: 825: 817: 809: 803: 799: 792: 790: 788: 779: 775: 768: 760: 756: 752: 749: 748: 743: 737: 729: 725: 721: 718:(in German). 717: 716: 707: 703: 693: 690: 687: 683: 682:Ley oxidation 680: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 633: 623: 619: 617: 613: 609: 605: 601: 598:Another side 590: 586: 585: 584: 582: 579: 575: 571: 567: 563: 547: 543: 542: 541: 539: 535: 524: 520: 519: 518: 516: 512: 508: 497: 493: 492: 491: 489: 485: 481: 470: 466: 465: 464: 462: 458: 454: 450: 446: 442: 426: 422: 421: 420: 418: 414: 410: 407: 403: 392: 388: 387: 386: 384: 380: 376: 372: 356: 352: 351: 350: 348: 344: 340: 336: 332: 328: 312: 308: 307: 306: 304: 300: 296: 284:Modifications 281: 279: 275: 271: 267: 263: 259: 255: 245: 243: 239: 235: 231: 227: 223: 219: 215: 204: 200: 199: 193: 191: 187: 183: 179: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 133: 131: 127: 123: 119: 110: 106: 104: 100: 96: 90: 85: 81: 72: 68: 64: 61: 58: 57: 53: 49: 46: 45: 40: 37: 34: 31: 30: 26: 23: 22: 17: 1145: 1141: 1135: 1118: 1112: 1106: 1089: 1083: 1073: 1056: 1052:ChemPlusChem 1050: 1044: 1019: 1014: 1007: 988: 982: 957: 952: 946: 921: 915: 909: 884: 878: 872: 855: 850: 844: 827: 822: 816: 800:. Elsevier. 797: 777: 773: 767: 750: 745: 742:Wilds, A. L. 736: 719: 713: 706: 618:substrates. 606:reaction of 597: 559: 531: 504: 488:pregnenolone 484:Progesterone 477: 438: 399: 368: 339:benzophenone 330: 324: 299:benzoquinone 292: 251: 226:intermediate 211: 134: 115: 79: 78: 67:RXNO:0000047 62:ontology ID 42:Identifiers 24:Named after 1092:(3): 1292. 858:(9): 1425. 747:Org. React. 578:unsaturated 564:-catalyzed 130:equilibrium 87: [ 1167:Categories 1121:(5): 323. 1082:Ketone)". 998:0471496405 954:Chem. Rev. 780:: 149–153. 699:References 688:oxidation) 441:analgesics 413:isoborneol 383:terpenoids 260:(PCC) and 248:Advantages 124:in excess 97:secondary 694:oxidation 678:oxidation 612:anhydrous 604:Tischenko 581:aldehydes 574:aldehydes 511:ruthenium 457:codeinone 371:catalysts 270:aldehydes 230:substrate 218:aluminium 214:mechanism 196:Mechanism 186:alkaloids 157:chromates 137:oxidation 95:oxidizing 1036:11667525 974:16836305 938:17002323 901:12153205 630:See also 608:aldehyde 600:reaction 576:or α, Ăź- 570:aldehyde 534:lactones 515:steroids 480:hormones 449:morphine 447:such as 406:aldehyde 404:and the 347:nitrogen 303:hydrogen 295:steroids 238:carbonyl 222:alkoxide 190:terpenes 182:hormones 178:steroids 153:aldehyde 145:sulfides 99:alcohols 602:is the 507:steroid 461:codeine 453:codeine 443:in the 417:camphor 379:carvone 375:carveol 343:quinine 301:as the 254:benzene 234:hydride 192:, etc. 126:acetone 103:ketones 1034:  995:  972:  936:  899:  804:  167:(e.g. 159:(e.g. 141:amines 692:TEMPO 538:diols 171:) or 163:) or 91:] 1032:PMID 993:ISBN 970:PMID 934:PMID 897:PMID 802:ISBN 686:TPAP 562:base 451:and 337:and 143:and 135:The 1150:doi 1123:doi 1094:doi 1061:doi 1024:doi 962:doi 958:106 926:doi 922:128 889:doi 860:doi 832:doi 755:doi 724:doi 583:. 568:of 415:to 377:to 272:to 151:of 101:to 60:RSC 1169:: 1144:. 1117:. 1090:70 1088:. 1080:15 1057:41 1055:. 1030:. 1020:61 968:. 932:. 920:. 895:. 883:. 856:67 828:78 786:^ 778:43 776:. 720:56 540:. 490:. 482:. 463:. 419:. 280:. 188:, 184:, 180:, 105:. 89:de 1156:. 1152:: 1146:2 1129:. 1125:: 1119:2 1100:. 1096:: 1067:. 1063:: 1038:. 1026:: 1001:. 976:. 964:: 940:. 928:: 903:. 891:: 885:4 866:. 862:: 838:. 834:: 810:. 761:. 757:: 751:2 730:. 726:: 684:(

Index

Organic redox reaction
oppenauer-oxidation
RSC
RXNO:0000047
Rupert Viktor Oppenauer
de
oxidizing
alcohols
ketones
Oppenauer oxidation reaction scheme
Meerwein–Ponndorf–Verley reduction
aluminium isopropoxide
acetone
equilibrium
oxidation
amines
sulfides
aldol condensation
aldehyde
chromates
pyridinium chlorochromate
dimethyl sulfoxide
Swern oxidation
Dess–Martin oxidation
steroids
hormones
alkaloids
terpenes
Oppenauer oxidation mechanism
mechanism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑