Knowledge

Numerical cognition

Source đź“ť

509:
stimuli were presented with 20 deviant numerosities of a 2.0 ratio both larger and smaller. For example, out of the 232 trials, 16 dots were presented in varying size and distance but 10 of those trials had 8 dots, and 10 of those trials had 32 dots, making up the 20 deviant stimuli. The same applied to the blocks with 32 as the base numerosity. To ensure the adults and children were attending to the stimuli, they put 3 fixation points throughout the trial where the participant had to move a joystick to move forward. Their findings indicated that the adults in the experiment had significant activation of the IPS when viewing the deviant number stimuli, aligning with what was previously found in the aforementioned paragraph. In the 4 year olds, they found significant activation of the IPS to the deviant number stimuli, resembling the activation found in adults. There were some differences in the activations, with adults displaying more robust bilateral activation, where the 4 year olds primarily showed activation in their right IPS and activated 112 less voxels than the adults. This suggests that at age 4, children have an established mechanism of neurons in the IPS tuned for processing non-symbolic numerosities. Other studies have gone deeper into this mechanism in children and discovered that children do also represent approximate numbers on a
520:
were 4vs.12, 8vs.16, and 4vs.8. The auditory stimuli consisted of tones in different frequencies with a set number of tones, with some deviant trials where the tones were shorter but more numerous or longer and less numerous to account for duration and its potential confounds. After the auditory stimuli was presented with 2 minutes of familiarization, the visual stimuli was presented with a congruent or incongruent array of colorful dots with facial features. they remained on the screen until the infant looked away. They found that infants looked longer at the stimuli that matched the auditory tones, suggesting that the system for approximating non-symbolic number, even across modalities, is present in infancy. What is important to note across these three particular human studies on nonsymbolic numerosities is that it is present in infancy and develops over the lifetime. The honing of their approximation and number sense abilities as indicated by the improving Weber fractions across time, and usage of the left IPS to provide a wider berth for processing of computations and enumerations lend support for the claims that are made for a nonsymbolic number processing mechanism in human brains.
572:
anchoring effect, the precision effect, and the ease of computation effect respectively. The left-digit effect refers to the observation that people tend to incorrectly judge the difference between $ 4.00 and $ 2.99 to be larger than that between $ 4.01 and $ 3.00 because of anchoring on left-most digits. The precision effect reflects the influence of the representativeness of digit patterns on magnitude judgments. Larger magnitudes are usually rounded and therefore have many zeros, whereas smaller magnitudes are usually expressed as precise numbers; so relying on the representativeness of digit patterns can make people incorrectly judge a price of $ 391,534 to be more attractive than a price of $ 390,000. The ease of computation effect shows that magnitude judgments are based not only on the output of a mental computation, but also on its experienced ease or difficulty. Usually it is easier to compare two dissimilar magnitudes than two similar magnitudes; overuse of this heuristic can make people incorrectly judge the difference to be larger for pairs with easier computations, e.g. $ 5.00 minus $ 4.00, than for pairs with difficult computations, e.g. $ 4.97 minus $ 3.96.
471:
the display is taken away. Then, after a delay period of several seconds, a second display is presented. If the number on the second display match that from the first, the monkey has to release a lever. If it is different, the monkey has to hold the lever. Neural activity recorded during the delay period showed that neurons in the intraparietal sulcus and the frontal cortex had a "preferred numerosity", exactly as predicted by behavioral studies. That is, a certain number might fire strongly for four, but less strongly for three or five, and even less for two or six. Thus, we say that these neurons were "tuned" for specific quantities. Note that these neuronal responses followed
463:. Additionally, the inferotemporal cortex is implicated in processing the numerical shapes and symbols, necessary for calculations with Arabic digits. More current research has highlighted the networks involved with multiplication and subtraction tasks. Multiplication is often learned through rote memorization and verbal repetitions, and neuroimaging studies have shown that multiplication uses a left lateralized network of the inferior frontal cortex and the superior-middle temporal gyri in addition to the IPL and IPS. Subtraction is taught more with quantity manipulation and strategy use, more reliant upon the right IPS and the posterior parietal lobule. 479:
However, in the realm of number, they share many similarities. As identified in monkeys, neurons selectively tuned to number were identified in the bilateral intraparietal sulci and prefrontal cortex in humans. Piazza and colleagues investigated this using fMRI, presenting participants with sets of dots where they either had to make same-different judgments or larger-smaller judgments. The sets of dots consisted of base numbers 16 and 32 dots with ratios in 1.25, 1.5, and 2. Deviant numbers were included in some trials in larger or smaller amounts than the base numbers. Participants displayed similar activation patterns as Neider found in the monkeys. The
447:, Stanislas Dehaene and colleagues have suggested that these two parietal structures play complementary roles. The IPS is thought to house the circuitry that is fundamentally involved in numerical estimation, number comparison, and on-line calculation, or quantity processing (often tested with subtraction) while the IPL is thought to be involved in rote memorization, such as multiplication. Thus, a patient with a lesion to the IPL may be able to subtract, but not multiply, and vice versa for a patient with a lesion to the IPS. In addition to these parietal regions, regions of the 1014: 1026: 703: 532:. Such individuals report that numbers are mentally represented with a particular spatial layout; others experience numbers as perceivable objects that can be visually manipulated to facilitate calculation. Behavioral studies further reinforce the connection between numerical and spatial cognition. For instance, participants respond quicker to larger numbers if they are responding on the right side of space, and quicker to smaller numbers when on the left—the so-called "Spatial-Numerical Association of Response Codes" or 44: 380:
another. If, when the screen was lowered, infants were presented with only one Mickey (the "impossible event") they looked longer than if they were shown two Mickeys (the "possible" event). Further studies by Karen Wynn and Koleen McCrink found that although infants' ability to compute exact outcomes only holds over small numbers, infants can compute approximate outcomes of larger addition and subtraction events (e.g., "5+5" and "10-5" events).
487:, also implicated in number, communicate in approximating number and it was found in both species that the parietal neurons of the IPS had short firing latencies, whereas the frontal neurons had longer firing latencies. This supports the notion that number is first processed in the IPS and, if needed, is then transferred to the associated frontal neurons in the 540:. Moreover, neuroimaging studies reveal that the association between number and space also shows up in brain activity. Regions of the parietal cortex, for instance, show shared activation for both spatial and numerical processing. These various lines of research suggest a strong, but flexible, connection between numerical and spatial cognition. 470:
in monkeys has also found neurons in the frontal cortex and in the intraparietal sulcus that respond to numbers. Andreas Nieder trained monkeys to perform a "delayed match-to-sample" task. For example, a monkey might be presented with a field of four dots, and is required to keep that in memory after
363:
Developmental psychology studies have shown that human infants, like non-human animals, have an approximate sense of number. For example, in one study, infants were repeatedly presented with arrays of (in one block) 16 dots. Careful controls were in place to eliminate information from "non-numerical"
491:
for further numerations and applications. Humans displayed Gaussian curves in the tuning curves of approximate magnitude. This aligned with monkeys, displaying a similarly structured mechanism in both species with classic Gaussian curves relative to the increasingly deviant numbers with 16 and 32 as
519:
investigated abstract number representations in infants using a different paradigm than the previous researchers because of the nature and developmental stage of the infants. For infants, they examined abstract number with both auditory and visual stimuli with a looking-time paradigm. The sets used
503:
With an established mechanism for approximating non-symbolic number in both humans and primates, a necessary further investigation is needed to determine if this mechanism is innate and present in children, which would suggest an inborn ability to process numerical stimuli much like humans are born
478:
It is important to note that while primates have remarkably similar brains to humans, there are differences in function, ability, and sophistication. They make for good preliminary test subjects, but do not show small differences that are the result of different evolutionary tracks and environment.
354:
Similarly, researchers have set up hidden speakers in the African savannah to test natural (untrained) behavior in lions. These speakers can play a number of lion calls, from 1 to 5. If a single lioness hears, for example, three calls from unknown lions, she will leave, while if she is with four of
571:
reviewed several studies showing that the three heuristics that manifest in many everyday judgments and decisions – anchoring, representativeness, and availability – also influence numerical cognition. They identify the manifestations of these heuristics in numerical cognition as: the left-digit
508:
set out to investigate this in 4 year old healthy, normally developing children in parallel with adults. A similar task to Piazza's was used in this experiment, without the judgment tasks. Dot arrays of varying size and number were used, with 16 and 32 as the base numerosities. in each block, 232
379:
showed that infants as young as five months are able to do very simple additions (e.g., 1 + 1 = 2) and subtractions (3 - 1 = 2). To demonstrate this, Wynn used a "violation of expectation" paradigm, in which infants were shown (for example) one Mickey Mouse doll going behind a screen, followed by
596:
in the field. He concluded that they have no need for counting in their everyday lives. Their hunters keep track of individual arrows with the same mental faculties that they use to recognize their family members. There are no known hunter-gatherer cultures that have a counting system in their
371:
Because of the numerous controls that were in place to rule out non-numerical factors, the experimenters infer that six-month-old infants are sensitive to differences between 8 and 16. Subsequent experiments, using similar methodologies showed that 6-month-old infants can discriminate numbers
342:
or Normal distribution with peak around 8 or 16 bar presses. When rats are more hungry, their bar-pressing behavior is more rapid, so by showing that the peak number of bar presses is the same for either well-fed or hungry rats, it is possible to disentangle time and number of bar presses. In
536:. This effect varies across culture and context, however, and some research has even begun to question whether the SNARC reflects an inherent number-space association, instead invoking strategic problem solving or a more general cognitive mechanism like 355:
her sisters, they will go and explore. This suggests that not only can lions tell when they are "outnumbered" but that they can do this on the basis of signals from different sensory modalities, suggesting that numerosity is a multisensory concept.
372:
differing by a 2:1 ratio (8 vs. 16 or 16 vs. 32) but not by a 3:2 ratio (8 vs. 12 or 16 vs. 24). However, 10-month-old infants succeed both at the 2:1 and the 3:2 ratio, suggesting an increased sensitivity to numerosity differences with age.
528:
There is evidence that numerical cognition is intimately related to other aspects of thought – particularly spatial cognition. One line of evidence comes from studies performed on number-form
496:, with accuracy decreasing as the ratio between numbers became smaller. This supports the findings made by Neider in macaque monkeys and shows definitive evidence for an 588:
who only have number words up to five. PirahĂŁ adults are unable to mark an exact number of tallies for a pile of nuts containing fewer than ten items. Anthropologist
475:, as has been demonstrated for other sensory dimensions, and consistent with the ratio dependence observed for non-human animals' and infants' numerical behavior. 364:
parameters such as total surface area, luminance, circumference, and so on. After the infants had been presented with many displays containing 16 items, they
597:
language. The mental and lingual capabilities for numeracy are tied to the development of agriculture and with it large numbers of indistinguishable items.
368:, or stopped looking as long at the display. Infants were then presented with a display containing 8 items, and they looked longer at the novel display. 1555:
Fischer, M. H.; Mills, R. A.; Shaki, S. (April 2010). "How to cook a SNARC: Number placement in text rapidly changes spatial–numerical associations".
403:, where language-based natural numbers can be exact. Without language, only numbers 1 to 4 are believed to have an exact representation, through the 533: 391:
suggested that a child innately has the concept of natural number, and only has to map this onto the words used in her language. Carey (
580:
The numeracy of indigenous peoples is studied to identify universal aspects of numerical cognition in humans. Notable examples include the
338:"). For example, when a rat is trained to press a bar 8 or 16 times to receive a food reward, the number of bar presses will approximate a 2066:
Núñez, R.; Doan, D.; Nikoulina, A. (August 2011). "Squeezing, striking, and vocalizing: Is number representation fundamentally spatial?".
407:. One promising approach is to see if cultures that lack number words can deal with natural numbers. The results so far are mixed (e.g., 1886:
Nieder, A.; Freedman, D. J.; Miller, E. K. (2002). "Representation of the quantity of visual items in the primate prefrontal cortex".
306:
What metaphorical capacities and processes allow us to extend our numerical understanding into complex domains such as the concept of
2381:
Thomas, Manoj; Morwitz, Vicki (2009). "Heuristics in Numerical Cognition: Implications for Pricing". In Rao, Vithala R. (ed.).
609:
is an open-access, free-to-publish, online-only Journal outlet specifically for research in the domain of numerical cognition.
2473: 1483: 330:
A variety of research has demonstrated that non-human animals, including rats, lions and various species of primates have an
1657:
Hubbard, E. M.; Piazza, M.; Pinel, P.; Dehaene, S. (June 2005). "Interactions between number and space in parietal cortex".
1175:; Reeve, R. (2008). "Verbal Counting and Spatial Strategies in Numerical Tasks : Evidence From Indigenous Australia". 383:
There is debate about how much these infant systems actually contain in terms of number concepts, harkening to the classic
2253:; Riviere, D.; Le Bihan, D. (2001). "Modulation of parietal activation by semantic distance in a number comparison task". 228: 17: 1816:
McComb, K.; Packer, C.; Pusey, A. (1994). "Roaring and numerical assessment in contests between groups of female lions,
654: â€“ ability to count objects in order and to understand the greater than and less than relationships between numbers 2365: 2512: 2390: 1647: 663: â€“ non-symbolic cognitive system that supports the representation of numerical values from zero to three or four 567:
Several consumer psychologists have also studied the heuristics that people use in numerical cognition. For example,
451:
are also active in calculation tasks. These activations overlap with regions involved in language processing such as
1493:
Dehaene, S.; Bossini, S.; Giraux, P. (September 1993). "The mental representation of parity and number magnitude".
2306:"Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments" 1135:
Berteletti, I.; Lucangeli, D.; Piazza, M.; Dehaene, S.; Zorzi, M. (2010). "Numerical estimation in preschoolers".
256:. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in 2502: 675: 2497: 2507: 1933:"Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex" 660: 404: 344: 202: 1757:"Effects of Non-Symbolic Approximate Number Practice on Symbolic Numerical Abilities in Pakistani Children" 651: 645: 192: 2408:
Walsh, V. (November 2003). "A theory of magnitude: common cortical metrics of time, space and quantity".
556: 2103:
Piazza, M.; Eger, E. (2016). "Neural foundations and functional specificity of number representations".
2351: 627: 497: 400: 331: 273: 197: 65: 2041: 687: â€“ Assessing the quantity of objects in a visual scene without individually counting each item 436: 261: 2267: 552: 335: 288: 221: 2262: 2036: 544: 439:(IPL) are activated when subjects are asked to perform calculation tasks. Based on both human 384: 339: 269: 2457: 2213: 2116: 1987: 1895: 1768: 1707: 1605: 1220: 1062: 480: 432: 257: 35: 8: 537: 315: 75: 2217: 1991: 1899: 1772: 1711: 1609: 1261: 1224: 1209:"Numerical thought with and without words: Evidence from indigenous Australian children" 1066: 2492: 2433: 2335: 2288: 2237: 2185: 2138: 2091: 2054: 1962: 1919: 1874: 1837: 1799: 1756: 1738: 1695: 1682: 1623: 1580: 1543: 1472: 1455: 1413: 1388: 1375: 1335: 1300: 1296: 1243: 1208: 1192: 1160: 1085: 1050: 214: 105: 2322: 2305: 2010: 1975: 1949: 1932: 2517: 2469: 2462: 2425: 2396: 2386: 2361: 2327: 2301: 2280: 2250: 2229: 2177: 2151: 2130: 2083: 2015: 1954: 1911: 1866: 1804: 1786: 1755:
Khanum, S.; Hanif, R.; Spelke, E. S.; Berteletti, I.; Hyde, D. C. (20 October 2016).
1743: 1725: 1674: 1643: 1572: 1535: 1515: 1479: 1467: 1447: 1443: 1418: 1353: 1340: 1322: 1284: 1248: 1204: 1172: 1152: 1123: 1090: 510: 488: 484: 472: 245: 60: 2292: 2241: 2142: 2095: 2079: 1923: 1878: 1849:
Nieder, A. (2005). "Counting on neurons: The neurobiology of numerical competence".
1841: 1584: 1547: 1459: 1379: 2437: 2417: 2339: 2317: 2272: 2221: 2189: 2167: 2120: 2112: 2075: 2058: 2046: 2005: 1995: 1966: 1944: 1903: 1858: 1829: 1794: 1776: 1733: 1715: 1686: 1666: 1627: 1613: 1564: 1527: 1502: 1439: 1408: 1400: 1365: 1330: 1312: 1276: 1238: 1228: 1196: 1184: 1164: 1144: 1115: 1080: 1070: 669: 589: 585: 115: 100: 581: 2172: 2155: 1781: 1317: 1075: 467: 452: 444: 174: 169: 70: 2201: 1568: 1506: 1280: 2421: 1531: 1370: 1119: 1103: 493: 456: 303:
What are the neural bases of these abilities, both in humans and in non-humans?
1188: 43: 2486: 2453: 2400: 2357: 2347: 2050: 2027:
Núñez, R. (2009). "Numbers and Arithmetic: Neither Hardwired Nor Out There".
1790: 1729: 1635: 1326: 428: 311: 300:
How do these capacities underlie our ability to perform complex calculations?
124: 2225: 2156:"Tuning curves for approximate numerosity in the human intraparietal sulcus" 2000: 1907: 1720: 1404: 1233: 894: 294:
How do infants acquire an understanding of numbers (and how much is inborn)?
2429: 2331: 2284: 2276: 2233: 2181: 2134: 2087: 2019: 1958: 1915: 1870: 1833: 1808: 1747: 1678: 1576: 1539: 1422: 1344: 1301:"Functional Imaging of Numerical Processing in Adults and 4-y-Old Children" 1288: 1252: 1156: 1127: 1094: 1051:"Evidence for Two Numerical Systems That Are Similar in Humans and Guppies" 529: 448: 440: 399:) disagreed, saying that these systems can only encode large numbers in an 265: 138: 1976:"A parieto-frontal network for visual numerical information in the monkey" 1451: 630: â€“ Innate ability to detect differences in magnitude without counting 2197: 690: 548: 523: 365: 253: 2125: 1203: 416: 1295: 906: 684: 639: 505: 376: 51: 768: 758: 756: 754: 1618: 1148: 918: 828: 780: 460: 297:
How do humans associate linguistic symbols with numerical quantities?
277: 154: 84: 1862: 1670: 1593: 351:
which successfully discriminated between 1 and 4 other individuals.
751: 633: 621: 593: 307: 131: 110: 1299:; Brannon, E. M.; Carter, E. J.; Pelphrey, K. A. (11 April 2006). 272:. This discipline, although it may interact with questions in the 739: 427:
Human neuroimaging studies have demonstrated that regions of the
159: 145: 2202:"Exact an Approximate Arithmetic in an Amazonian Indigene Group" 1693: 1134: 942: 900: 852: 516: 1694:
Izard, V.; Sann, C.; Spelke, E. S.; Streri, A. (23 June 2009).
1430:
Dehaene, Stanislas (1992). "Varieties of numerical abilities".
249: 164: 91: 966: 422: 283:
Topics included in the domain of numerical cognition include:
248:
that studies the cognitive, developmental and neural bases of
954: 348: 2353:
The Stuff of Thought: Language as a Window Into Human Nature
727: 2248: 1754: 912: 884: 882: 869: 867: 774: 2299: 786: 610: 1656: 1101: 924: 834: 2149: 879: 864: 762: 1104:"Strategies in subtraction problem solving in children" 816: 680:
Pages displaying short descriptions of redirect targets
555:, missing in the usual decimal system, is expressed by 1513: 745: 636: â€“ Finding the number of elements of a finite set 524:
Relations between number and other cognitive processes
2196: 804: 513:, aligning with the claims made by Piazza in adults. 408: 1885: 1492: 948: 858: 665:
Pages displaying wikidata descriptions as a fallback
656:
Pages displaying wikidata descriptions as a fallback
562: 1002: 693: â€“ One of the four basic arithmetic operations 2461: 2065: 1474:The number sense: How the mind creates mathematics 1471: 1102:Barrouillet, P.; Mignon, M.; Thevenot, C. (2008). 972: 930: 840: 792: 715: 1815: 1554: 990: 978: 960: 733: 2484: 2150:Piazza, M.; Izard, V.; Pinel, P.; Le Bihan, D.; 1171: 412: 1980:Proceedings of the National Academy of Sciences 1700:Proceedings of the National Academy of Sciences 1634: 1518:; Spelke, E. (2004). "Core systems of number". 1213:Proceedings of the National Academy of Sciences 584:who have no words for specific numbers and the 417:Butterworth, Reeve, Reynolds & Lloyd (2008) 388: 506:Cantlon, Brannon, Carter & Pelphrey (2006) 2380: 1207:; Reeve, R.; Reynolds, F.; Lloyd, D. (2008). 1020: 568: 222: 27:Study of numerical and mathematical abilities 2200:; Lemer, C.; Izard, V.; Dehaene, S. (2004). 1973: 1930: 1642:. Cambridge Mass: Harvard University Press. 888: 873: 2452: 1696:"Newborn infants perceive abstract numbers" 1354:"Bootstrapping and the origins of Concepts" 1269:Journal of Experimental Psychology: General 1259: 822: 642: â€“ Process of finding an approximation 575: 423:Neuroimaging and neurophysiological studies 347:has been shown, for example in the case of 2102: 810: 492:well as habituation. The results followed 229: 215: 2383:Handbook of Pricing Research in Marketing 2321: 2266: 2171: 2124: 2040: 2009: 1999: 1948: 1798: 1780: 1737: 1719: 1617: 1412: 1369: 1334: 1316: 1242: 1232: 1084: 1074: 835:Barrouillet, Mignon & Thevenot (2008) 648: â€“ Phenomenon in numerical cognition 1108:Journal of Experimental Child Psychology 358: 1466: 1429: 1048: 1008: 798: 721: 709: 678: â€“ Type of epistemological problem 517:Izard, Sann, Spelke & Streri (2009) 14: 2485: 2346: 2117:10.1016/j.neuropsychologia.2015.09.025 1848: 1591: 1262:"Cognitive Arithmetic Across Cultures" 1032: 936: 846: 746:Feigenson, Dehaene & Spelke (2004) 325: 2407: 2300:Pinel, P.; Piazza, M.; Le Bihan, D.; 2026: 1478:. New York: Oxford University Press. 1389:"Where our number concepts come from" 1386: 1351: 996: 984: 396: 392: 949:Dehaene, Bossini & Giraux (1993) 859:Nieder, Freedman & Miller (2002) 498:approximate number logarithmic scale 289:non-human animals process numerosity 1640:The Child's Understanding of Number 592:spent several decades studying the 24: 2446: 1974:Nieder, A.; Miller, E. K. (2004). 1931:Nieder, A.; Miller, E. K. (2003). 1495:Journal of Experimental Psychology 1260:Campbell, J.I.D.; Xue, Q. (2001). 973:Núñez, Doan & Nikoulina (2011) 600: 25: 2529: 1592:Galton, Francis (25 March 1880). 961:Fischer, Mills & Shaki (2010) 734:McComb, Packer & Pusey (1994) 563:Heuristics in numerical cognition 321:Heuristics in numerical cognition 1638:; Gallistel, Charles R. (1978). 42: 2385:. Edward Elgar. pp. 132–. 2080:10.1016/j.cognition.2011.05.001 676:The problem of the speckled hen 672: â€“ Form of plant cognition 343:addition, in a few species the 607:Journal of Numerical Cognition 413:Butterworth & Reeve (2008) 375:In another series of studies, 276:, is primarily concerned with 13: 1: 2323:10.1016/s0896-6273(04)00107-2 1950:10.1016/s0896-6273(02)01144-3 1041: 661:Parallel individuation system 405:parallel individuation system 389:Gelman & Gallistel (1978) 345:parallel individuation system 203:Parallel individuation system 2464:Where mathematics comes from 2410:Trends in Cognitive Sciences 2173:10.1016/j.neuron.2004.10.014 1782:10.1371/journal.pone.0164436 1520:Trends in Cognitive Sciences 1444:10.1016/0010-0277(92)90049-N 1318:10.1371/journal.pbio.0040125 1076:10.1371/journal.pone.0031923 652:Ordinal numerical competence 646:Numerosity adaptation effect 624: â€“ Arithmetic operation 193:Numerosity adaptation effect 7: 1851:Nature Reviews Neuroscience 1659:Nature Reviews Neuroscience 1569:10.1016/j.bandc.2009.10.010 1507:10.1037/0096-3445.122.3.371 1281:10.1037/0096-3445.130.2.299 1021:Thomas & Morwitz (2009) 615: 569:Thomas & Morwitz (2009) 557:signed-digit representation 504:ready to process language. 332:approximate sense of number 10: 2534: 2422:10.1016/j.tics.2003.09.002 1532:10.1016/j.tics.2004.05.002 1371:10.1162/001152604772746701 1120:10.1016/j.jecp.2007.12.001 889:Nieder & Miller (2003) 874:Nieder & Miller (2004) 543:Modification of the usual 2468:. New York: Basic Books. 1189:10.1080/09515080802284597 823:Campbell & Xue (2001) 628:Approximate number system 274:philosophy of mathematics 198:Approximate number system 2513:Developmental psychology 2051:10.1162/biot.2009.4.1.68 1177:Philosophical Psychology 1137:Developmental Psychology 901:Berteletti et al. (2010) 811:Piazza & Eger (2016) 697: 576:Ethnolinguistic variance 455:and regions involved in 437:inferior parietal lobule 262:developmental psychology 2226:10.1126/science.1102085 2001:10.1073/pnas.0402239101 1908:10.1126/science.1072493 1721:10.1073/pnas.0812142106 1405:10.5840/jphil2009106418 1234:10.1073/pnas.0806045105 2503:Cognitive neuroscience 2277:10.1006/nimg.2001.0913 1834:10.1006/anbe.1994.1052 545:decimal representation 314:or the concept of the 244:is a subdiscipline of 2498:Cognitive linguistics 1594:"Visualised Numerals" 1393:Journal of Philosophy 925:Hubbard et al. (2005) 385:nature versus nurture 359:Developmental studies 270:cognitive linguistics 2508:Cognitive psychology 1049:Agrillo, C. (2012). 913:Khanum et al. (2016) 763:Piazza et al. (2004) 481:intraparietal sulcus 433:intraparietal sulcus 258:cognitive psychology 36:Cognitive psychology 2218:2004Sci...306..499P 1992:2004PNAS..101.7457N 1900:2002Sci...297.1708N 1894:(5587): 1708–1711. 1773:2016PLoSO..1164436K 1712:2009PNAS..10610382I 1706:(25): 10382–10385. 1610:1880Natur..21..494G 1557:Brain and Cognition 1225:2008PNAS..10513179B 1219:(35): 13179–13184. 1067:2012PLoSO...731923A 787:Pinel et al. (2004) 775:Pinel et al. (2001) 538:conceptual metaphor 326:Comparative studies 242:Numerical cognition 184:Numerical cognition 76:Pattern recognition 18:Numerical Cognition 1468:Dehaene, Stanislas 1387:Carey, S. (2009). 1352:Carey, S. (2004). 409:Pica et al. (2004) 66:Object recognition 2475:978-0-465-03770-4 2212:(5695): 499–503. 2029:Biological Theory 1986:(19): 7457–7462. 1485:978-0-19-513240-3 547:was advocated by 511:logarithmic scale 489:prefrontal cortex 485:prefrontal cortex 334:(referred to as " 246:cognitive science 239: 238: 16:(Redirected from 2525: 2479: 2467: 2458:Nuñez, Rafael E. 2441: 2404: 2377: 2375: 2374: 2343: 2325: 2296: 2270: 2261:(5): 1013–1026. 2245: 2193: 2175: 2146: 2128: 2105:Neuropsychologia 2099: 2062: 2044: 2023: 2013: 2003: 1970: 1952: 1927: 1882: 1845: 1822:Animal Behaviour 1812: 1802: 1784: 1767:(10): e0164436. 1751: 1741: 1723: 1690: 1665:(1–2): 435–448. 1653: 1631: 1621: 1619:10.1038/021494e0 1604:(543): 494–495. 1588: 1551: 1510: 1489: 1477: 1463: 1426: 1416: 1383: 1373: 1348: 1338: 1320: 1292: 1266: 1256: 1246: 1236: 1200: 1168: 1149:10.1037/a0017887 1131: 1098: 1088: 1078: 1036: 1030: 1024: 1018: 1012: 1006: 1000: 994: 988: 982: 976: 970: 964: 958: 952: 946: 940: 934: 928: 922: 916: 910: 904: 898: 892: 886: 877: 871: 862: 856: 850: 844: 838: 832: 826: 820: 814: 808: 802: 796: 790: 784: 778: 772: 766: 760: 749: 743: 737: 731: 725: 719: 713: 707: 681: 670:Plant arithmetic 666: 657: 590:Napoleon Chagnon 586:Munduruku people 431:, including the 231: 224: 217: 71:Face recognition 46: 32: 31: 21: 2533: 2532: 2528: 2527: 2526: 2524: 2523: 2522: 2483: 2482: 2476: 2449: 2447:Further reading 2444: 2416:(11): 483–488. 2393: 2372: 2370: 2368: 2042:10.1.1.610.6016 1863:10.1038/nrn1626 1671:10.1038/nrn1684 1650: 1514:Feigenson, L.; 1486: 1264: 1205:Butterworth, B. 1183:(21): 443–457. 1173:Butterworth, B. 1044: 1039: 1031: 1027: 1019: 1015: 1007: 1003: 995: 991: 983: 979: 971: 967: 959: 955: 947: 943: 935: 931: 923: 919: 911: 907: 899: 895: 887: 880: 872: 865: 857: 853: 845: 841: 833: 829: 821: 817: 809: 805: 797: 793: 785: 781: 773: 769: 761: 752: 744: 740: 732: 728: 720: 716: 708: 704: 700: 679: 664: 655: 618: 603: 601:Research outlet 578: 565: 553:complementation 551:. The sense of 526: 468:neurophysiology 445:neuropsychology 425: 401:approximate way 361: 328: 235: 175:Problem solving 170:Decision making 28: 23: 22: 15: 12: 11: 5: 2531: 2521: 2520: 2515: 2510: 2505: 2500: 2495: 2481: 2480: 2474: 2454:Lakoff, George 2448: 2445: 2443: 2442: 2405: 2391: 2378: 2367:978-0143114246 2366: 2348:Pinker, Steven 2344: 2316:(6): 983–993. 2297: 2246: 2194: 2166:(3): 547–555. 2147: 2100: 2074:(2): 225–235. 2063: 2024: 1971: 1943:(1): 149–157. 1928: 1883: 1857:(3): 177–190. 1846: 1828:(2): 379–387. 1813: 1752: 1691: 1654: 1648: 1636:Gelman, Rochel 1632: 1589: 1563:(3): 333–336. 1552: 1526:(7): 307–314. 1511: 1501:(3): 371–396. 1490: 1484: 1464: 1427: 1399:(4): 220–254. 1384: 1349: 1297:Cantlon, J. F. 1293: 1275:(2): 299–315. 1257: 1201: 1169: 1143:(2): 545–551. 1132: 1114:(4): 233–251. 1099: 1045: 1043: 1040: 1038: 1037: 1025: 1013: 1009:Dehaene (1992) 1001: 989: 977: 965: 953: 941: 929: 917: 905: 893: 878: 863: 851: 839: 827: 815: 803: 799:Dehaene (1997) 791: 779: 767: 750: 738: 726: 722:Agrillo (2012) 714: 710:Dehaene (1997) 701: 699: 696: 695: 694: 688: 682: 673: 667: 658: 649: 643: 637: 631: 625: 617: 614: 602: 599: 577: 574: 564: 561: 525: 522: 457:working memory 435:(IPS) and the 424: 421: 360: 357: 327: 324: 323: 322: 319: 304: 301: 298: 295: 292: 237: 236: 234: 233: 226: 219: 211: 208: 207: 206: 205: 200: 195: 187: 186: 180: 179: 178: 177: 172: 167: 162: 157: 149: 148: 142: 141: 135: 134: 128: 127: 121: 120: 119: 118: 113: 108: 103: 95: 94: 88: 87: 81: 80: 79: 78: 73: 68: 63: 55: 54: 48: 47: 39: 38: 26: 9: 6: 4: 3: 2: 2530: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2490: 2488: 2477: 2471: 2466: 2465: 2459: 2455: 2451: 2450: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2406: 2402: 2398: 2394: 2392:9781847202406 2388: 2384: 2379: 2369: 2363: 2359: 2358:Penguin Books 2355: 2354: 2349: 2345: 2341: 2337: 2333: 2329: 2324: 2319: 2315: 2311: 2307: 2303: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2269: 2268:10.1.1.5.6247 2264: 2260: 2256: 2252: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2195: 2191: 2187: 2183: 2179: 2174: 2169: 2165: 2161: 2157: 2153: 2148: 2144: 2140: 2136: 2132: 2127: 2122: 2118: 2114: 2110: 2106: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2064: 2060: 2056: 2052: 2048: 2043: 2038: 2034: 2030: 2025: 2021: 2017: 2012: 2007: 2002: 1997: 1993: 1989: 1985: 1981: 1977: 1972: 1968: 1964: 1960: 1956: 1951: 1946: 1942: 1938: 1934: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1814: 1810: 1806: 1801: 1796: 1792: 1788: 1783: 1778: 1774: 1770: 1766: 1762: 1758: 1753: 1749: 1745: 1740: 1735: 1731: 1727: 1722: 1717: 1713: 1709: 1705: 1701: 1697: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1655: 1651: 1649:9780674116368 1645: 1641: 1637: 1633: 1629: 1625: 1620: 1615: 1611: 1607: 1603: 1599: 1595: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1512: 1508: 1504: 1500: 1496: 1491: 1487: 1481: 1476: 1475: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1438:(1–2): 1–42. 1437: 1433: 1428: 1424: 1420: 1415: 1410: 1406: 1402: 1398: 1394: 1390: 1385: 1381: 1377: 1372: 1367: 1363: 1359: 1355: 1350: 1346: 1342: 1337: 1332: 1328: 1324: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1263: 1258: 1254: 1250: 1245: 1240: 1235: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1100: 1096: 1092: 1087: 1082: 1077: 1072: 1068: 1064: 1061:(2). e31923. 1060: 1056: 1052: 1047: 1046: 1034: 1033:Pinker (2008) 1029: 1022: 1017: 1010: 1005: 998: 993: 986: 981: 974: 969: 962: 957: 950: 945: 938: 937:Galton (1880) 933: 926: 921: 914: 909: 902: 897: 890: 885: 883: 875: 870: 868: 860: 855: 848: 847:Nieder (2005) 843: 836: 831: 824: 819: 812: 807: 800: 795: 788: 783: 776: 771: 764: 759: 757: 755: 747: 742: 735: 730: 723: 718: 711: 706: 702: 692: 689: 686: 683: 677: 674: 671: 668: 662: 659: 653: 650: 647: 644: 641: 638: 635: 632: 629: 626: 623: 620: 619: 613: 612: 608: 598: 595: 591: 587: 583: 582:PirahĂŁ people 573: 570: 560: 558: 554: 550: 546: 541: 539: 535: 531: 521: 518: 514: 512: 507: 501: 499: 495: 490: 486: 482: 476: 474: 469: 464: 462: 458: 454: 450: 446: 442: 438: 434: 430: 429:parietal lobe 420: 418: 414: 410: 406: 402: 398: 394: 390: 386: 381: 378: 373: 369: 367: 356: 352: 350: 346: 341: 337: 333: 320: 317: 313: 312:infinitesimal 309: 305: 302: 299: 296: 293: 290: 286: 285: 284: 281: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 232: 227: 225: 220: 218: 213: 212: 210: 209: 204: 201: 199: 196: 194: 191: 190: 189: 188: 185: 182: 181: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 152: 151: 150: 147: 144: 143: 140: 137: 136: 133: 130: 129: 126: 125:Metacognition 123: 122: 117: 114: 112: 109: 107: 104: 102: 99: 98: 97: 96: 93: 90: 89: 86: 83: 82: 77: 74: 72: 69: 67: 64: 62: 59: 58: 57: 56: 53: 50: 49: 45: 41: 40: 37: 34: 33: 30: 19: 2463: 2413: 2409: 2382: 2371:. Retrieved 2352: 2313: 2309: 2258: 2254: 2209: 2205: 2163: 2159: 2126:11572/114302 2108: 2104: 2071: 2067: 2035:(1): 68–83. 2032: 2028: 1983: 1979: 1940: 1936: 1891: 1887: 1854: 1850: 1825: 1821: 1818:Panthera leo 1817: 1764: 1760: 1703: 1699: 1662: 1658: 1639: 1601: 1597: 1560: 1556: 1523: 1519: 1498: 1494: 1473: 1435: 1431: 1396: 1392: 1361: 1357: 1308: 1305:PLOS Biology 1304: 1272: 1268: 1216: 1212: 1180: 1176: 1140: 1136: 1111: 1107: 1058: 1054: 1028: 1016: 1004: 997:Núñez (2009) 992: 985:Walsh (2003) 980: 968: 956: 944: 932: 920: 908: 896: 854: 842: 830: 818: 806: 794: 782: 770: 741: 729: 717: 705: 611:Journal link 606: 604: 579: 566: 542: 534:SNARC effect 530:synaesthetes 527: 515: 502: 477: 466:Single-unit 465: 453:Broca's area 449:frontal lobe 441:neuroimaging 426: 382: 374: 370: 362: 353: 329: 318:in calculus? 282: 266:neuroscience 241: 240: 183: 139:Metalanguage 29: 2302:Dehaene, S. 2251:Dehaene, S. 2249:Pinel, P.; 2152:Dehaene, S. 2111:: 257–273. 1516:Dehaene, S. 1311:(5). e125. 1035:, p. . 1023:, p. . 712:, p. . 691:Subtraction 549:John Colson 500:in humans. 494:Weber's Law 473:Weber's law 280:questions. 254:mathematics 2487:Categories 2373:2012-11-08 2255:NeuroImage 1042:References 685:Subitizing 640:Estimation 377:Karen Wynn 366:habituated 336:numerosity 52:Perception 2493:Cognition 2401:807401627 2263:CiteSeerX 2068:Cognition 2037:CiteSeerX 1791:1932-6203 1730:0027-8424 1432:Cognition 1364:: 59–68. 1327:1545-7885 461:attention 278:empirical 165:Reasoning 155:Cognition 116:Long-term 106:Emotional 85:Attention 2518:Quantity 2460:(2000). 2430:14585444 2350:(2008). 2332:15046729 2304:(2004). 2293:17633857 2285:11697933 2242:10653745 2234:15486303 2198:Pica, P. 2182:15504333 2154:(2004). 2143:22957569 2135:26403660 2096:16362508 2088:21640338 2020:15123797 1959:12526780 1924:20871267 1916:12215649 1879:14578049 1871:15711599 1842:53183852 1809:27764117 1761:PLOS ONE 1748:19520833 1679:15928716 1585:19626981 1577:19917517 1548:17313189 1540:15242690 1470:(1997). 1460:24382907 1423:23136450 1380:54493789 1358:Daedalus 1345:16594732 1289:11409105 1253:18757729 1157:20210512 1128:18241880 1095:22355405 1055:PLOS ONE 634:Counting 622:Addition 616:See also 594:Yanomami 483:and the 387:debate. 340:Gaussian 308:infinity 146:Thinking 132:Language 111:Learning 2438:1761795 2340:9372570 2214:Bibcode 2206:Science 2190:6288232 2059:1707771 1988:Bibcode 1967:5704850 1896:Bibcode 1888:Science 1800:5072670 1769:Bibcode 1739:2700913 1708:Bibcode 1687:1465072 1628:4074444 1606:Bibcode 1452:1511583 1414:3489488 1336:1431577 1244:2527348 1221:Bibcode 1197:2662436 1165:8496112 1086:3280231 1063:Bibcode 349:guppies 287:How do 250:numbers 160:Concept 2472:  2436:  2428:  2399:  2389:  2364:  2338:  2330:  2310:Neuron 2291:  2283:  2265:  2240:  2232:  2188:  2180:  2160:Neuron 2141:  2133:  2094:  2086:  2057:  2039:  2018:  2011:409940 2008:  1965:  1957:  1937:Neuron 1922:  1914:  1877:  1869:  1840:  1807:  1797:  1789:  1746:  1736:  1728:  1685:  1677:  1646:  1626:  1598:Nature 1583:  1575:  1546:  1538:  1482:  1458:  1450:  1421:  1411:  1378:  1343:  1333:  1325:  1287:  1251:  1241:  1195:  1163:  1155:  1126:  1093:  1083:  310:, the 92:Memory 61:Visual 2434:S2CID 2336:S2CID 2289:S2CID 2238:S2CID 2186:S2CID 2139:S2CID 2092:S2CID 2055:S2CID 1963:S2CID 1920:S2CID 1875:S2CID 1838:S2CID 1683:S2CID 1624:S2CID 1581:S2CID 1544:S2CID 1456:S2CID 1376:S2CID 1265:(PDF) 1193:S2CID 1161:S2CID 698:Notes 316:limit 101:Aging 2470:ISBN 2426:PMID 2397:OCLC 2387:ISBN 2362:ISBN 2328:PMID 2281:PMID 2230:PMID 2178:PMID 2131:PMID 2084:PMID 2016:PMID 1955:PMID 1912:PMID 1867:PMID 1805:PMID 1787:ISSN 1744:PMID 1726:ISSN 1675:PMID 1644:ISBN 1573:PMID 1536:PMID 1480:ISBN 1448:PMID 1419:PMID 1341:PMID 1323:ISSN 1285:PMID 1249:PMID 1153:PMID 1124:PMID 1091:PMID 605:The 459:and 443:and 397:2009 393:2004 268:and 252:and 2418:doi 2318:doi 2273:doi 2222:doi 2210:306 2168:doi 2121:hdl 2113:doi 2076:doi 2072:120 2047:doi 2006:PMC 1996:doi 1984:101 1945:doi 1904:doi 1892:297 1859:doi 1830:doi 1820:". 1795:PMC 1777:doi 1734:PMC 1716:doi 1704:106 1667:doi 1614:doi 1565:doi 1528:doi 1503:doi 1499:122 1440:doi 1409:PMC 1401:doi 1397:106 1366:doi 1362:133 1331:PMC 1313:doi 1277:doi 1273:130 1239:PMC 1229:doi 1217:105 1185:doi 1145:doi 1116:doi 1081:PMC 1071:doi 419:). 411:); 2489:: 2456:; 2432:. 2424:. 2412:. 2395:. 2360:. 2356:. 2334:. 2326:. 2314:41 2312:. 2308:. 2287:. 2279:. 2271:. 2259:14 2257:. 2236:. 2228:. 2220:. 2208:. 2204:. 2184:. 2176:. 2164:44 2162:. 2158:. 2137:. 2129:. 2119:. 2109:83 2107:. 2090:. 2082:. 2070:. 2053:. 2045:. 2031:. 2014:. 2004:. 1994:. 1982:. 1978:. 1961:. 1953:. 1941:37 1939:. 1935:. 1918:. 1910:. 1902:. 1890:. 1873:. 1865:. 1853:. 1836:. 1826:47 1824:. 1803:. 1793:. 1785:. 1775:. 1765:11 1763:. 1759:. 1742:. 1732:. 1724:. 1714:. 1702:. 1698:. 1681:. 1673:. 1661:. 1622:. 1612:. 1602:21 1600:. 1596:. 1579:. 1571:. 1561:72 1559:. 1542:. 1534:. 1522:. 1497:. 1454:. 1446:. 1436:44 1434:. 1417:. 1407:. 1395:. 1391:. 1374:. 1360:. 1356:. 1339:. 1329:. 1321:. 1307:. 1303:. 1283:. 1271:. 1267:. 1247:. 1237:. 1227:. 1215:. 1211:. 1191:. 1179:. 1159:. 1151:. 1141:46 1139:. 1122:. 1112:99 1110:. 1106:. 1089:. 1079:. 1069:. 1057:. 1053:. 881:^ 866:^ 753:^ 559:. 415:, 395:, 264:, 260:, 2478:. 2440:. 2420:: 2414:7 2403:. 2376:. 2342:. 2320:: 2295:. 2275:: 2244:. 2224:: 2216:: 2192:. 2170:: 2145:. 2123:: 2115:: 2098:. 2078:: 2061:. 2049:: 2033:4 2022:. 1998:: 1990:: 1969:. 1947:: 1926:. 1906:: 1898:: 1881:. 1861:: 1855:6 1844:. 1832:: 1811:. 1779:: 1771:: 1750:. 1718:: 1710:: 1689:. 1669:: 1663:6 1652:. 1630:. 1616:: 1608:: 1587:. 1567:: 1550:. 1530:: 1524:8 1509:. 1505:: 1488:. 1462:. 1442:: 1425:. 1403:: 1382:. 1368:: 1347:. 1315:: 1309:4 1291:. 1279:: 1255:. 1231:: 1223:: 1199:. 1187:: 1181:4 1167:. 1147:: 1130:. 1118:: 1097:. 1073:: 1065:: 1059:7 1011:. 999:. 987:. 975:. 963:. 951:. 939:. 927:. 915:. 903:. 891:. 876:. 861:. 849:. 837:. 825:. 813:. 801:. 789:. 777:. 765:. 748:. 736:. 724:. 291:? 230:e 223:t 216:v 20:)

Index

Numerical Cognition
Cognitive psychology

Perception
Visual
Object recognition
Face recognition
Pattern recognition
Attention
Memory
Aging
Emotional
Learning
Long-term
Metacognition
Language
Metalanguage
Thinking
Cognition
Concept
Reasoning
Decision making
Problem solving
Numerical cognition
Numerosity adaptation effect
Approximate number system
Parallel individuation system
v
t
e

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑