Knowledge

Nonlinear dimensionality reduction

Source đź“ť

1292:). However, in the GPLVM the mapping is from the embedded(latent) space to the data space (like density networks and GTM) whereas in kernel PCA it is in the opposite direction. It was originally proposed for visualization of high dimensional data but has been extended to construct a shared manifold model between two observation spaces. GPLVM and its many variants have been proposed specially for human motion modeling, e.g., back constrained GPLVM, GP dynamic model (GPDM), balanced GPDM (B-GPDM) and topologically constrained GPDM. To capture the coupling effect of the pose and gait manifolds in the gait analysis, a multi-layer joint gait-pose manifolds was proposed. 3199:-nearest neighbors and tries to seek an embedding that preserves relationships in local neighborhoods. It slowly scales variance out of higher dimensions, while simultaneously adjusting points in lower dimensions to preserve those relationships. If the rate of scaling is small, it can find very precise embeddings. It boasts higher empirical accuracy than other algorithms with several problems. It can also be used to refine the results from other manifold learning algorithms. It struggles to unfold some manifolds, however, unless a very slow scaling rate is used. It has no model. 3219:(TCIE) is an algorithm based on approximating geodesic distances after filtering geodesics inconsistent with the Euclidean metric. Aimed at correcting the distortions caused when Isomap is used to map intrinsically non-convex data, TCIE uses weight least-squares MDS in order to obtain a more accurate mapping. The TCIE algorithm first detects possible boundary points in the data, and during computation of the geodesic length marks inconsistent geodesics, to be given a small weight in the weighted 1240:-nearest neighbors of every point. It then seeks to solve the problem of maximizing the distance between all non-neighboring points, constrained such that the distances between neighboring points are preserved. The primary contribution of this algorithm is a technique for casting this problem as a semidefinite programming problem. Unfortunately, semidefinite programming solvers have a high computational cost. Like Locally Linear Embedding, it has no internal model. 1288:(GPLVM) are probabilistic dimensionality reduction methods that use Gaussian Processes (GPs) to find a lower dimensional non-linear embedding of high dimensional data. They are an extension of the Probabilistic formulation of PCA. The model is defined probabilistically and the latent variables are then marginalized and parameters are obtained by maximizing the likelihood. Like kernel PCA they use a kernel function to form a non linear mapping (in the form of a 20: 555: 78: 1257:
learn to encode the vector into a small number of dimensions and then decode it back into the original space. Thus, the first half of the network is a model which maps from high to low-dimensional space, and the second half maps from low to high-dimensional space. Although the idea of autoencoders is quite old, training of deep autoencoders has only recently become possible through the use of
156: 95:(the letter 'A') and recover only the varying information (rotation and scale). The image to the right shows sample images from this dataset (to save space, not all input images are shown), and a plot of the two-dimensional points that results from using a NLDR algorithm (in this case, Manifold Sculpting was used) to reduce the data into just two dimensions. 629:). The graph thus generated can be considered as a discrete approximation of the low-dimensional manifold in the high-dimensional space. Minimization of a cost function based on the graph ensures that points close to each other on the manifold are mapped close to each other in the low-dimensional space, preserving local distances. The eigenfunctions of the 657:(MDS). Classic MDS takes a matrix of pair-wise distances between all points and computes a position for each point. Isomap assumes that the pair-wise distances are only known between neighboring points, and uses the Floyd–Warshall algorithm to compute the pair-wise distances between all other points. This effectively estimates the full matrix of pair-wise 686:
technique to find the low-dimensional embedding of points, such that each point is still described with the same linear combination of its neighbors. LLE tends to handle non-uniform sample densities poorly because there is no fixed unit to prevent the weights from drifting as various regions differ in sample densities. LLE has no internal model.
124:. In particular, if there is an attracting invariant manifold in the phase space, nearby trajectories will converge onto it and stay on it indefinitely, rendering it a candidate for dimensionality reduction of the dynamical system. While such manifolds are not guaranteed to exist in general, the theory of 50:, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for 3207:
RankVisu is designed to preserve rank of neighborhood rather than distance. RankVisu is especially useful on difficult tasks (when the preservation of distance cannot be achieved satisfyingly). Indeed, the rank of neighborhood is less informative than distance (ranks can be deduced from distances but
1199:
of the original weights produced by LLE. The creators of this regularised variant are also the authors of Local Tangent Space Alignment (LTSA), which is implicit in the MLLE formulation when realising that the global optimisation of the orthogonal projections of each weight vector, in-essence, aligns
2796:
defines a random walk on the data set which means that the kernel captures some local geometry of data set. The Markov chain defines fast and slow directions of propagation through the kernel values. As the walk propagates forward in time, the local geometry information aggregates in the same way as
1256:
which is trained to approximate the identity function. That is, it is trained to map from a vector of values to the same vector. When used for dimensionality reduction purposes, one of the hidden layers in the network is limited to contain only a small number of network units. Thus, the network must
110:, which is a linear dimensionality reduction algorithm, is used to reduce this same dataset into two dimensions, the resulting values are not so well organized. This demonstrates that the high-dimensional vectors (each representing a letter 'A') that sample this manifold vary in a non-linear manner. 94:
is two, because two variables (rotation and scale) were varied in order to produce the data. Information about the shape or look of a letter 'A' is not part of the intrinsic variables because it is the same in every instance. Nonlinear dimensionality reduction will discard the correlated information
1320:
algorithm. The algorithm finds a configuration of data points on a manifold by simulating a multi-particle dynamic system on a closed manifold, where data points are mapped to particles and distances (or dissimilarity) between data points represent a repulsive force. As the manifold gradually grows
624:
Traditional techniques like principal component analysis do not consider the intrinsic geometry of the data. Laplacian eigenmaps builds a graph from neighborhood information of the data set. Each data point serves as a node on the graph and connectivity between nodes is governed by the proximity of
70:
High dimensional data can be hard for machines to work with, requiring significant time and space for analysis. It also presents a challenge for humans, since it's hard to visualize or understand data in more than three dimensions. Reducing the dimensionality of a data set, while keep its essential
1452:
It should be noticed that CCA, as an iterative learning algorithm, actually starts with focus on large distances (like the Sammon algorithm), then gradually change focus to small distances. The small distance information will overwrite the large distance information, if compromises between the two
637:
on the unit circle manifold). Attempts to place Laplacian eigenmaps on solid theoretical ground have met with some success, as under certain nonrestrictive assumptions, the graph Laplacian matrix has been shown to converge to the Laplace–Beltrami operator as the number of points goes to infinity.
1483:
learns a smooth diffeomorphic mapping which transports the data onto a lower-dimensional linear subspace. The methods solves for a smooth time indexed vector field such that flows along the field which start at the data points will end at a lower-dimensional linear subspace, thereby attempting to
1495:
takes advantage of the assumption that disparate data sets produced by similar generating processes will share a similar underlying manifold representation. By learning projections from each original space to the shared manifold, correspondences are recovered and knowledge from one domain can be
601:
in his 1984 thesis, which he formally introduced in 1989. This idea has been explored further by many authors. How to define the "simplicity" of the manifold is problem-dependent, however, it is commonly measured by the intrinsic dimensionality and/or the smoothness of the manifold. Usually, the
685:
algorithms, and better results with many problems. LLE also begins by finding a set of the nearest neighbors of each point. It then computes a set of weights for each point that best describes the point as a linear combination of its neighbors. Finally, it uses an eigenvector-based optimization
113:
It should be apparent, therefore, that NLDR has several applications in the field of computer-vision. For example, consider a robot that uses a camera to navigate in a closed static environment. The images obtained by that camera can be considered to be samples on a manifold in high-dimensional
85:
The reduced-dimensional representations of data are often referred to as "intrinsic variables". This description implies that these are the values from which the data was produced. For example, consider a dataset that contains images of a letter 'A', which has been scaled and rotated by varying
3165:
to train a multi-layer perceptron (MLP) to fit to a manifold. Unlike typical MLP training, which only updates the weights, NLPCA updates both the weights and the inputs. That is, both the weights and inputs are treated as latent values. After training, the latent inputs are a low-dimensional
538:
must be chosen such that it has a known corresponding kernel. Unfortunately, it is not trivial to find a good kernel for a given problem, so KPCA does not yield good results with some problems when using standard kernels. For example, it is known to perform poorly with these kernels on the
2025: 596:
give the natural geometric framework for nonlinear dimensionality reduction and extend the geometric interpretation of PCA by explicitly constructing an embedded manifold, and by encoding using standard geometric projection onto the manifold. This approach was originally proposed by
616:
Laplacian eigenmaps uses spectral techniques to perform dimensionality reduction. This technique relies on the basic assumption that the data lies in a low-dimensional manifold in a high-dimensional space. This algorithm cannot embed out-of-sample points, but techniques based on
1303:(t-SNE) is widely used. It is one of a family of stochastic neighbor embedding methods. The algorithm computes the probability that pairs of datapoints in the high-dimensional space are related, and then chooses low-dimensional embeddings which produce a similar distribution. 602:
principal manifold is defined as a solution to an optimization problem. The objective function includes a quality of data approximation and some penalty terms for the bending of the manifold. The popular initial approximations are generated by linear PCA and Kohonen's SOM.
474: 1129: 838: 1185:
is also based on sparse matrix techniques. It tends to yield results of a much higher quality than LLE. Unfortunately, it has a very costly computational complexity, so it is not well-suited for heavily sampled manifolds. It has no internal model.
128:
gives conditions for the existence of unique attracting invariant objects in a broad class of dynamical systems. Active research in NLDR seeks to unfold the observation manifolds associated with dynamical systems to develop modeling techniques.
1236:, Isomap and Locally Linear Embedding share a common intuition relying on the notion that if a manifold is properly unfolded, then variance over the points is maximized. Its initial step, like Isomap and Locally Linear Embedding, is finding the 1194:
Modified LLE (MLLE) is another LLE variant which uses multiple weights in each neighborhood to address the local weight matrix conditioning problem which leads to distortions in LLE maps. Loosely speaking the multiple weights are the local
669:
that is embedded inside of a higher-dimensional vector space. The main intuition behind MVU is to exploit the local linearity of manifolds and create a mapping that preserves local neighbourhoods at every point of the underlying manifold.
354: 661:
between all of the points. Isomap then uses classic MDS to compute the reduced-dimensional positions of all the points. Landmark-Isomap is a variant of this algorithm that uses landmarks to increase speed, at the cost of some accuracy.
1519:); an analogy is drawn between the diffusion operator on a manifold and a Markov transition matrix operating on functions defined on the graph whose nodes were sampled from the manifold. In particular, let a data set be represented by 1872: 2959: 3216: 1611: 3178:
and curvilinear component analysis except that (1) it simultaneously penalizes false neighborhoods and tears by focusing on small distances in both original and output space, and that (2) it accounts for
543:
manifold. However, one can view certain other methods that perform well in such settings (e.g., Laplacian Eigenmaps, LLE) as special cases of kernel PCA by constructing a data-dependent kernel matrix.
1285: 633:
on the manifold serve as the embedding dimensions, since under mild conditions this operator has a countable spectrum that is a basis for square integrable functions on the manifold (compare to
1824: 2304: 2209: 957: 1445:(CCA) looks for the configuration of points in the output space that preserves original distances as much as possible while focusing on small distances in the output space (conversely to 27:) with a rectangular hole in the middle. Top-right: the original 2D manifold used to generate the 3D dataset. Bottom left and right: 2D recoveries of the manifold respectively using the 4717:
S. Lespinats, M. Verleysen, A. Giron, B. Fertil, DD-HDS: a tool for visualization and exploration of high-dimensional data, IEEE Transactions on Neural Networks 18 (5) (2007) 1265–1279.
81:
Plot of the two-dimensional points that results from using a NLDR algorithm. In this case, Manifold Sculpting is used to reduce the data into just two dimensions (rotation and scale).
86:
amounts. Each image has 32Ă—32 pixels. Each image can be represented as a vector of 1024 pixel values. Each row is a sample on a two-dimensional manifold in 1024-dimensional space (a
369: 1442: 1021: 730: 516: 2841: 2690: 99: 2068: 2522: 1755: 1693: 1633: 262: 3081: 3031: 2451: 681:(LLE) was presented at approximately the same time as Isomap. It has several advantages over Isomap, including faster optimization when implemented to take advantage of 4732:, In Platt, J.C. and Koller, D. and Singer, Y. and Roweis, S., editor, Advances in Neural Information Processing Systems 20, pp. 513–520, MIT Press, Cambridge, MA, 2008 240: 2340: 2245: 678: 2360: 2150: 1217:
is based on the intuition that when a manifold is correctly unfolded, all of the tangent hyperplanes to the manifold will become aligned. It begins by computing the
269: 2342:. The former means that very little diffusion has taken place while the latter implies that the diffusion process is nearly complete. Different strategies to choose 3135: 3108: 2989: 2717: 2630: 2603: 2576: 2549: 2122: 2095: 1402: 536: 2797:
local transitions (defined by differential equations) of the dynamical system. The metaphor of diffusion arises from the definition of a family diffusion distance
1839:
as defining some sort of affinity on that graph. The graph is symmetric by construction since the kernel is symmetric. It is easy to see here that from the tuple (
1657: 1428: 2794: 2764: 2737: 2473: 2406: 2383: 2132:. Since the exact structure of the manifold is not available, for the nearest neighbors the geodesic distance is approximated by euclidean distance. The choice 363:
eigenvectors of that matrix. By comparison, KPCA begins by computing the covariance matrix of the data after being transformed into a higher-dimensional space,
1200:
the local tangent spaces of every data point. The theoretical and empirical implications from the correct application of this algorithm are far-reaching.
102:
PCA (a linear dimensionality reduction algorithm) is used to reduce this same dataset into two dimensions, the resulting values are not so well organized.
1496:
transferred to another. Most manifold alignment techniques consider only two data sets, but the concept extends to arbitrarily many initial data sets.
1324:
Relational perspective map was inspired by a physical model in which positively charged particles move freely on the surface of a ball. Guided by the
201: 3880: 591: 2020:{\displaystyle K_{ij}={\begin{cases}e^{-\|x_{i}-x_{j}\|_{2}^{2}/\sigma ^{2}}&{\text{if }}x_{i}\sim x_{j}\\0&{\text{otherwise}}\end{cases}}} 1321:
in size the multi-particle system cools down gradually and converges to a configuration that reflects the distance information of the data points.
3750: 621:
regularization exist for adding this capability. Such techniques can be applied to other nonlinear dimensionality reduction algorithms as well.
3137:
takes into account all the relation between points x and y while calculating the distance and serves as a better notion of proximity than just
3463:
Haller, George; Ponsioen, Sten (2016). "Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction".
3166:
representation of the observed vectors, and the MLP maps from that low-dimensional representation to the high-dimensional observation space.
1182: 2848: 1262: 1331:
between particles, the minimal energy configuration of the particles will reflect the strength of repulsive forces between the particles.
1300: 1468:
in its embedding. It is based on Curvilinear Component Analysis (which extended Sammon's mapping), but uses geodesic distances instead.
1522: 4797:
McInnes, Leland; Healy, John; Melville, James (2018-12-07). "Uniform manifold approximation and projection for dimension reduction".
3721: 3231:
Uniform manifold approximation and projection (UMAP) is a nonlinear dimensionality reduction technique. Visually, it is similar to
2774:
is that only local features of the data are considered in diffusion maps as opposed to taking correlations of the entire data set.
1273:(see above) to learn a non-linear mapping from the high-dimensional to the embedded space. The mappings in NeuroScale are based on 3641: 3294:
is an open source C++ library containing implementations of LLE, Manifold Sculpting, and some other manifold learning algorithms.
4165:
Zhang, Zhenyue; Hongyuan Zha (2005). "Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment".
3616:
Ham, Jihun; Lee, Daniel D.; Mika, Sebastian; Schölkopf, Bernhard. "A kernel view of the dimensionality reduction of manifolds".
1225:-first principal components in each local neighborhood. It then optimizes to find an embedding that aligns the tangent spaces. 3639:
Gorban, A. N.; Zinovyev, A. (2010). "Principal manifolds and graphs in practice: from molecular biology to dynamical systems".
1613:. The underlying assumption of diffusion map is that the high-dimensional data lies on a low-dimensional manifold of dimension 4915: 4859: 3791: 3557: 3447: 200:
based on a non-linear mapping from the embedded space to the high-dimensional space. These techniques are related to work on
4910: 3401: 4905: 546:
KPCA has an internal model, so it can be used to map points onto its embedding that were not available at training time.
213: 4756: 3879:
Bengio, Yoshua; Paiement, Jean-Francois; Vincent, Pascal; Delalleau, Olivier; Le Roux, Nicolas; Ouimet, Marie (2004).
1769: 3895: 3831: 4890: 2250: 2155: 912: 71:
features relatively intact, can make algorithms more efficient and allow analysts to visualize trends and patterns.
618: 172: 1161:
nonzero eigen vectors provide an orthogonal set of coordinates. Generally the data points are reconstructed from
578:
incidence. Different forms and colors correspond to various geographical locations. Red bold line represents the
487:
to factor away much of the computation, such that the entire process can be performed without actually computing
4508: 4211: 1150: 193: 77: 4880: 3912: 469:{\displaystyle C={\frac {1}{m}}\sum _{i=1}^{m}{\Phi (\mathbf {x} _{i})\Phi (\mathbf {x} _{i})^{\mathsf {T}}}.} 3312: 1274: 1214: 1209: 630: 4444: 1124:{\displaystyle C(Y)=\sum _{i}\left|\mathbf {Y} _{i}-\sum _{j}{\mathbf {W} _{ij}\mathbf {Y} _{j}}\right|^{2}} 833:{\displaystyle E(W)=\sum _{i}\left|\mathbf {X} _{i}-\sum _{j}{\mathbf {W} _{ij}\mathbf {X} _{j}}\right|^{2}} 4935: 3777: 3301: 2771: 1258: 650: 626: 484: 168: 107: 59: 55: 4373:
Taylor, D.; Klimm, F.; Harrington, H. A.; Kramár, M.; Mischaikow, K.; Porter, M. A.; Mucha, P. J. (2015).
3254:
A method based on proximity matrices is one where the data is presented to the algorithm in the form of a
1362:
Contagion maps use multiple contagions on a network to map the nodes as a point cloud. In the case of the
4875: 3368: 3263: 1325: 490: 114:
space, and the intrinsic variables of that manifold will represent the robot's position and orientation.
4574: 2800: 2639: 46:, is any of various related techniques that aim to project high-dimensional data onto lower-dimensional 3275: 1233: 4819:"UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction — umap 0.3 documentation" 4742: 4486: 4332: 3530: 4616: 4445:"Curvilinear Component Analysis: A Self-Organizing Neural Network for Nonlinear Mapping of Data Sets" 4306: 3969:
Roweis, S. T.; Saul, L. K. (2000). "Nonlinear Dimensionality Reduction by Locally Linear Embedding".
3867: 3859: 3397:"A unifying probabilistic perspective for spectral dimensionality reduction: insights and new models" 3348: 3271: 2033: 4237:"Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models" 4179: 2478: 1897: 1701: 3180: 3150: 2991:
defines a distance between any two points of the data set based on path connectivity: the value of
1674: 1317: 1266: 654: 51: 4085:
NIPS'06: Proceedings of the 19th International Conference on Neural Information Processing Systems
3517:. Proceedings of the International Joint Conference on Neural Networks IJCNN'11. pp. 1959–66. 1616: 1221:-nearest neighbors of every point. It computes the tangent space at every point by computing the 245: 3698: 611: 3812: 3044: 2994: 2414: 349:{\displaystyle C={\frac {1}{m}}\sum _{i=1}^{m}{\mathbf {x} _{i}\mathbf {x} _{i}^{\mathsf {T}}}.} 4174: 3742: 3308: 3279: 3192: 563: 558:
Application of principal curves: Nonlinear quality of life index. Points represent data of the
219: 4847: 3574: 2309: 2214: 3552:. Lecture Notes in Computer Science and Engineering. Vol. 58. Springer. pp. 68–95. 3353: 2345: 2135: 1363: 1196: 197: 4900: 3266:. The variations tend to be differences in how the proximity data is computed; for example, 999:
dimensional space. A neighborhood preserving map is created based on this idea. Each point X
4396: 4375:"Topological data analysis of contagion maps for examining spreading processes on networks" 4033: 3978: 3927: 3420: 3338: 3113: 3086: 2967: 2695: 2608: 2581: 2554: 2527: 2100: 2073: 1369: 521: 171:
is presented by a blue straight line. Data points are the small grey circles. For PCA, the
125: 4695: 4530: 3282:(which is not in fact a mapping) are examples of metric multidimensional scaling methods. 1642: 707:. The original point is reconstructed by a linear combination, given by the weight matrix 8: 3618:
Proceedings of the 21st International Conference on Machine Learning, Banff, Canada, 2004
3374: 3343: 3333: 3239: 3220: 3175: 1446: 1407: 1142:
to optimize the coordinates. This minimization problem can be solved by solving a sparse
185: 160: 149: 91: 4400: 4037: 3982: 3931: 3712: 3424: 1835:
Thus one can think of the individual data points as the nodes of a graph and the kernel
4798: 4779: 4597: 4417: 4386: 4374: 4355: 4287: 4236: 4147: 4134: 4111: 4099: 4002: 3951: 3676: 3650: 3598: 3490: 3472: 3410: 3138: 2779: 2749: 2722: 2458: 2391: 2368: 1851:. This technique is common to a variety of fields and is known as the graph Laplacian. 1492: 1166: 117: 4056: 4021: 3509: 1464:
CDA trains a self-organizing neural network to fit the manifold and seeks to preserve
1334:
The Relational perspective map was introduced in. The algorithm firstly used the flat
4855: 4757:"Nonlinear Dimensionality Reduction by Topologically Constrained Isometric Embedding" 4700: 4649: 4467: 4422: 4279: 4217: 4207: 4151: 4139: 4080: 4061: 3994: 3955: 3943: 3891: 3837: 3827: 3787: 3786:. Lecture Notes in Computer Science and Engineering (LNCSE). Vol. 58. Springer. 3781: 3668: 3553: 3443: 3255: 3243: 3236: 1465: 665:
In manifold learning, the input data is assumed to be sampled from a low dimensional
658: 121: 4728: 4685: 4668: 4601: 4291: 3494: 3153:
in local regions, and then uses convex optimization to fit all the pieces together.
4783: 4771: 4690: 4680: 4641: 4589: 4459: 4412: 4404: 4359: 4347: 4271: 4184: 4129: 4121: 4100:"Locally Linear Embedding and fMRI feature selection in psychiatric classification" 4051: 4041: 4006: 3986: 3935: 3881:"Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering" 3763: 3759: 3694: 3680: 3660: 3621: 3602: 3590: 3482: 3363: 1347: 1328: 1289: 966:
dimensional space and the goal of the algorithm is to reduce the dimensionality to
571: 4022:"Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data" 3990: 3939: 3396: 4645: 4556: 4550: 4351: 3259: 3162: 567: 47: 582:, approximating the dataset. This principal curve was produced by the method of 4818: 4593: 4259: 4125: 3594: 3297: 1270: 1253: 634: 559: 4775: 4275: 4188: 3664: 3486: 4929: 4221: 3808: 3738: 3208:
distances cannot be deduced from ranks) and its preservation is thus easier.
2386: 1504: 1476: 1456:
The stress function of CCA is related to a sum of right Bregman divergences.
682: 598: 87: 4046: 3841: 3625: 3183:
phenomenon by adapting the weighting function to the distance distribution.
870:. The cost function is minimized under two constraints: (a) Each data point 4704: 4653: 4471: 4426: 4283: 4143: 4065: 3998: 3947: 3672: 1848: 1516: 1351: 716:, of its neighbors. The reconstruction error is given by the cost function 575: 562:
171 countries in 4-dimensional space formed by the values of 4 indicators:
4202:
DeMers, D.; Cottrell, G.W. (1993). "Non-linear dimensionality reduction".
3813:"Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering" 1484:
preserve pairwise differences under both the forward and inverse mapping.
995:
dimensional space will be used to reconstruct the same point in the lower
4895: 4538:. The 25th International Conference on Machine Learning. pp. 1120–7. 3358: 1512: 1249: 583: 164: 4885: 4408: 3577:(1998). "Nonlinear Component Analysis as a Kernel Eigenvalue Problem". 3545: 1169:. For such an implementation the algorithm has only one free parameter 540: 24: 4463: 2954:{\displaystyle D_{t}^{2}(x,y)=\|p_{t}(x,\cdot )-p_{t}(y,\cdot )\|^{2}} 23:
Top-left: a 3D dataset of 1000 points in a spiraling band (a.k.a. the
4729:
Iterative Non-linear Dimensionality Reduction with Manifold Sculpting
4260:"Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling" 3913:"A Global Geometric Framework for Nonlinear Dimensionality Reduction" 3586: 1508: 1366:
the speed of the spread can be adjusted with the threshold parameter
19: 3174:
Data-driven high-dimensional scaling (DD-HDS) is closely related to
212:
Perhaps the most widely used algorithm for dimensional reduction is
4803: 4333:"Visualizing high-dimensional data with relational perspective map" 4116: 3546:"3. Learning Nonlinear Principal Manifolds by Self-Organising Maps" 3477: 3316: 2129: 2125: 1261:
and stacked denoising autoencoders. Related to autoencoders is the
666: 554: 32: 4667:
Scholz, M.; Kaplan, F.; Guy, C. L.; Kopka, J.; Selbig, J. (2005).
4391: 3866:
Matlab code for Laplacian Eigenmaps can be found in algorithms at
3783:
Principal Manifolds for Data Visualisation and Dimension Reduction
3655: 3550:
Principal Manifolds for Data Visualization and Dimension Reduction
3415: 3291: 2578:
in one time step. Similarly the probability of transitioning from
1338:
as the image manifold, then it has been extended (in the software
4755:
Rosman, G.; Bronstein, M.M.; Bronstein, A.M.; Kimmel, R. (2010).
3110:
is much more robust to noise in the data than geodesic distance.
1176: 196:(GTM) use a point representation in the embedded space to form a 35:
algorithms as implemented by the Modular Data Processing toolkit.
4104:
IEEE Journal of Translational Engineering in Health and Medicine
4081:"MLLE: Modified Locally Linear Embedding Using Multiple Weights" 3720:(PhD). Stanford Linear Accelerator Center, Stanford University. 3548:. In Gorban, A.N.; KĂ©gl, B.; Wunsch, D.C.; Zinovyev, A. (eds.). 3232: 3226: 3211: 1606:{\displaystyle \mathbf {X} =\in \Omega \subset \mathbf {R^{D}} } 4632:
Venna, J.; Kaski, S. (2006). "Local multidimensional scaling".
3531:"Principal Component Analysis and Self-Organizing Maps: applet" 3320: 3267: 1431: 1343: 646: 4754: 3878: 1295: 98: 3235:, but it assumes that the data is uniformly distributed on a 3195:
to find an embedding. Like other algorithms, it computes the
2128:
distance should be used to actually measure distances on the
1335: 1134:
In this cost function, unlike the previous one, the weights W
906:
and (b) The sum of every row of the weight matrix equals 1.
3864:(PhD). Department of Mathematics, The University of Chicago. 204:, which also are based around the same probabilistic model. 4372: 2013: 1189: 1138:
are kept fixed and the minimization is done on the points Y
2766:
constitutes some notion of local geometry of the data set
1667:
which represents some notion of affinity of the points in
1280: 155: 3910: 1471: 1339: 879:
is reconstructed only from its neighbors, thus enforcing
4920: 4494:
European Symposium on Artificial Neural Networks (Esann)
4487:"Curvilinear component analysis and Bregman divergences" 3776: 483:
eigenvectors of that matrix, just like PCA. It uses the
4745:, Neurocomputing, vol. 72 (13–15), pp. 2964–2978, 2009. 3246:
is locally constant or approximately locally constant.
3169: 2152:
modulates our notion of proximity in the sense that if
216:. PCA begins by computing the covariance matrix of the 4741:
Lespinats S., Fertil B., Villemain P. and Herault J.,
4528: 3911:
Tenenbaum, J B.; de Silva, V.; Langford, J.C. (2000).
3780:; KĂ©gl, B.; Wunsch, D. C.; Zinovyev, A., eds. (2007). 3249: 207: 159:
Approximation of a principal curve by one-dimensional
152:
is one of the first and most popular NLDR techniques.
3116: 3089: 3047: 2997: 2970: 2851: 2803: 2782: 2752: 2725: 2698: 2642: 2611: 2584: 2557: 2530: 2481: 2461: 2417: 2394: 2371: 2348: 2312: 2253: 2217: 2158: 2138: 2103: 2076: 2036: 1875: 1772: 1704: 1677: 1645: 1619: 1525: 1410: 1372: 1024: 915: 733: 524: 493: 479:
It then projects the transformed data onto the first
372: 272: 248: 222: 120:
are of general interest for model order reduction in
4796: 4666: 4304: 3572: 3262:. These methods all fall under the broader class of 689:
LLE computes the barycentric coordinates of a point
3300:implements the method for the programming language 1449:which focus on small distances in original space). 1265:algorithm, which uses stress functions inspired by 16:
Projection of data onto lower-dimensional manifolds
3527:The illustration is prepared using free software: 3129: 3102: 3075: 3025: 2983: 2953: 2835: 2788: 2770:. The major difference between diffusion maps and 2758: 2731: 2711: 2684: 2624: 2597: 2570: 2543: 2516: 2467: 2445: 2400: 2377: 2365:In order to faithfully represent a Markov matrix, 2354: 2334: 2298: 2239: 2203: 2144: 2116: 2089: 2062: 2019: 1818: 1749: 1687: 1651: 1627: 1605: 1422: 1396: 1123: 1015:dimensional space by minimizing the cost function 951: 832: 530: 510: 468: 348: 256: 234: 4573:Coifman, Ronald R.; Lafon, Stephane (July 2006). 4516:Advances in Neural Information Processing Systems 4485:Sun, Jigang; Crowe, Malcolm; Fyfe, Colin (2010). 4442: 4204:Advances in neural information processing systems 4164: 3888:Advances in Neural Information Processing Systems 3820:Advances in Neural Information Processing Systems 3144: 1659:represent the distribution of the data points on 1437: 1342:to use other types of closed manifolds, like the 549: 4927: 4743:Rankvisu: Mapping from the neighbourhood network 1819:{\displaystyle k(x,y)\geq 0\qquad \forall x,y,k} 1459: 1203: 4507:Walder, Christian; Schölkopf, Bernhard (2009). 4506: 4307:"Visualizing High-Dimensional Data Using t-SNE" 3751:Journal of the American Statistical Association 3615: 3507: 1157:being the number of data points), whose bottom 175:in this example is 23.23%, for SOM it is 6.86%. 4726:Gashler, M. and Ventura, D. and Martinez, T., 4201: 3737: 3638: 3462: 3083:involves a sum over of all paths of length t, 2299:{\displaystyle \|x_{i}-x_{j}\|_{2}\ll \sigma } 2204:{\displaystyle \|x_{i}-x_{j}\|_{2}\gg \sigma } 1866:) can be constructed using a Gaussian kernel. 1177:Hessian locally-linear embedding (Hessian LLE) 952:{\displaystyle \sum _{j}{\mathbf {W} _{ij}}=1} 852:refer to the amount of contribution the point 4568: 4566: 4529:Wang, Chang; Mahadevan, Sridhar (July 2008). 4305:van der Maaten, L.J.P.; Hinton, G.E. (2008). 3227:Uniform manifold approximation and projection 3217:Topologically constrained isometric embedding 3212:Topologically constrained isometric embedding 1311: 1228: 28: 4921:Nonlinear PCA by autoencoder neural networks 4572: 4532:Manifold Alignment using Procrustes Analysis 4518:. Vol. 22. MIT Press. pp. 1713–20. 4484: 4019: 3806: 3437: 3033:will be smaller the more paths that connect 2942: 2885: 2818: 2804: 2281: 2254: 2186: 2159: 1935: 1908: 962:The original data points are collected in a 4582:Applied and Computational Harmonic Analysis 3697:- Multidimensional Data Visualization Tool 3511:Temporal Nonlinear Dimensionality Reduction 1301:t-distributed stochastic neighbor embedding 1296:t-distributed stochastic neighbor embedding 673: 4631: 4563: 4091: 3968: 1007:dimensional space is mapped onto a point Y 4802: 4694: 4684: 4669:"Non-linear PCA: a missing data approach" 4618:Diffusion Maps: Applications and Analysis 4438: 4436: 4416: 4390: 4178: 4133: 4115: 4078: 4055: 4045: 3853: 3851: 3654: 3476: 3414: 2524:is the probability of transitioning from 1173:which can be chosen by cross validation. 359:It then projects the data onto the first 4764:International Journal of Computer Vision 4679:(20). Oxford University Press: 3887–95. 4509:"Diffeomorphic Dimensionality Reduction" 4234: 3438:Lee, John A.; Verleysen, Michel (2007). 3394: 3149:Local Multidimensional Scaling performs 2385:must be normalized by the corresponding 1507:leverages the relationship between heat 1190:Modified Locally-Linear Embedding (MLLE) 553: 154: 97: 76: 18: 4257: 3642:International Journal of Neural Systems 1430:the contagion map is equivalent to the 1286:Gaussian process latent variable models 1281:Gaussian process latent variable models 167:with red squares, 20 nodes). The first 65: 4928: 4891:Gaussian Process Latent Variable Model 4845: 4552:Diffusion Maps and Geometric Harmonics 4496:. d-side publications. pp. 81–86. 4478: 4433: 3857: 3848: 3710: 3528: 1472:Diffeomorphic dimensionality reduction 605: 456: 336: 179: 4548: 4097: 3186: 3041:and vice versa. Because the quantity 1487: 139: 4452:IEEE Transactions on Neural Networks 4443:Demartines, P.; HĂ©rault, J. (1997). 4314:Journal of Machine Learning Research 4241:Journal of Machine Learning Research 4167:SIAM Journal on Scientific Computing 3727:from the original on August 2, 2019. 3402:Journal of Machine Learning Research 3170:Data-driven high-dimensional scaling 4614: 3543: 3250:Methods based on proximity matrices 1306: 861:has while reconstructing the point 625:neighboring points (using e.g. the 511:{\displaystyle \Phi (\mathbf {x} )} 208:Kernel principal component analysis 144: 13: 4839: 4330: 3508:Gashler, M.; Martinez, T. (2011). 3440:Nonlinear Dimensionality Reduction 2836:{\displaystyle \{D_{t}\}_{t\in N}} 2685:{\displaystyle P^{t}(x_{i},x_{j})} 1798: 1680: 1585: 1165:nearest neighbors, as measured by 525: 494: 432: 411: 134:nonlinear dimensionality reduction 40:Nonlinear dimensionality reduction 14: 4947: 4869: 3861:Problems of Learning on Manifolds 1847:) one can construct a reversible 1499: 1357: 4621:(Masters). University of Oxford. 4264:IEEE Transactions on Cybernetics 3156: 1621: 1597: 1593: 1527: 1316:Relational perspective map is a 1099: 1084: 1058: 929: 808: 793: 767: 619:Reproducing kernel Hilbert space 501: 440: 419: 325: 313: 250: 192:) and its probabilistic variant 173:Fraction of variance unexplained 4854:. MIT Press. pp. 682–699. 4811: 4790: 4748: 4735: 4720: 4711: 4660: 4625: 4608: 4542: 4522: 4500: 4366: 4324: 4298: 4251: 4228: 4206:. Vol. 5. pp. 580–7. 4195: 4158: 4072: 4020:Donoho, D.; Grimes, C. (2003). 4013: 3962: 3904: 3872: 3858:Belkin, Mikhail (August 2003). 3800: 3770: 3731: 3704: 3687: 3264:metric multidimensional scaling 2475:now represents a Markov chain. 2063:{\displaystyle x_{i}\sim x_{j}} 1797: 1243: 897:is not a neighbor of the point 4916:Short review of Diffusion Maps 4881:Generative Topographic Mapping 4852:Probabilistic Machine Learning 4696:11858/00-001M-0000-0014-2B1F-2 3764:10.1080/01621459.1989.10478797 3632: 3609: 3566: 3537: 3521: 3501: 3456: 3431: 3388: 3145:Local multidimensional scaling 3070: 3058: 3020: 3008: 2938: 2926: 2910: 2898: 2879: 2867: 2679: 2653: 2517:{\displaystyle P(x_{i},x_{j})} 2511: 2485: 1788: 1776: 1750:{\displaystyle k(x,y)=k(y,x),} 1741: 1729: 1720: 1708: 1579: 1534: 1443:Curvilinear component analysis 1438:Curvilinear component analysis 1391: 1379: 1275:radial basis function networks 1034: 1028: 743: 737: 550:Principal curves and manifolds 505: 497: 451: 435: 429: 414: 194:generative topographic mapping 1: 4686:10.1093/bioinformatics/bti634 3991:10.1126/science.290.5500.2323 3940:10.1126/science.290.5500.2319 3714:Principal Curves and Surfaces 3381: 1695:has the following properties 1688:{\displaystyle {\mathit {k}}} 1460:Curvilinear distance analysis 1259:restricted Boltzmann machines 1210:Local tangent space alignment 1204:Local tangent space alignment 136:techniques are listed below. 4646:10.1016/j.neunet.2006.05.014 4549:Lafon, Stephane (May 2004). 4352:10.1057/palgrave.ivs.9500051 4079:Zhang, Z.; Wang, J. (2006). 3741:; Stuetzle, W. (June 1989). 3711:Hastie, T. (November 1984). 2772:principal component analysis 1628:{\displaystyle \mathbf {d} } 1479:Dimensionality Reduction or 627:k-nearest neighbor algorithm 257:{\displaystyle \mathbf {X} } 108:principal component analysis 60:principal component analysis 56:singular value decomposition 7: 3890:. Vol. 16. MIT Press. 3369:Growing self-organizing map 3327: 3285: 3202: 3161:Nonlinear PCA (NLPCA) uses 3141:or even geodesic distance. 1639:represent the data set and 132:Some of the more prominent 126:spectral submanifolds (SSM) 10: 4952: 4901:Relational Perspective Map 4594:10.1016/j.acha.2006.04.006 4258:Ding, M.; Fan, G. (2015). 4126:10.1109/JTEHM.2019.2936348 3595:10.1162/089976698300017467 3573:Schölkopf, B.; Smola, A.; 3533:. University of Leicester. 3276:maximum variance unfolding 3076:{\displaystyle D_{t}(x,y)} 3026:{\displaystyle D_{t}(x,y)} 2446:{\displaystyle P=D^{-1}K.} 1312:Relational perspective map 1234:Maximum Variance Unfolding 1229:Maximum variance unfolding 1207: 609: 4846:Murphy, Kevin P. (2022). 4823:umap-learn.readthedocs.io 4776:10.1007/s11263-010-0322-1 4340:Information Visualization 4276:10.1109/TCYB.2014.2373393 4189:10.1137/s1064827502419154 3665:10.1142/S0129065710002383 3487:10.1007/s11071-016-2974-z 3395:Lawrence, Neil D (2012). 3349:Whitney embedding theorem 3272:locally linear embeddings 2097:is a nearest neighbor of 1832:is positivity preserving 641: 631:Laplace–Beltrami operator 235:{\displaystyle m\times n} 4896:Locally Linear Embedding 4026:Proc Natl Acad Sci U S A 3191:Manifold Sculpting uses 3181:concentration of measure 3151:multidimensional scaling 2335:{\displaystyle K_{ij}=1} 2240:{\displaystyle K_{ij}=0} 1318:multidimensional scaling 1267:multidimensional scaling 679:Locally-linear Embedding 674:Locally-linear embedding 655:Multidimensional Scaling 651:Floyd–Warshall algorithm 649:is a combination of the 564:gross product per capita 92:intrinsic dimensionality 52:dimensionality reduction 4047:10.1073/pnas.1031596100 3626:10.1145/1015330.1015417 2636:time steps is given by 2355:{\displaystyle \sigma } 2145:{\displaystyle \sigma } 2030:In the above equation, 1854:For example, the graph 698:based on its neighbors 612:Manifold regularization 3826:. MIT Press: 586–691. 3193:graduated optimization 3131: 3104: 3077: 3027: 2985: 2955: 2837: 2790: 2760: 2733: 2713: 2686: 2626: 2599: 2572: 2545: 2518: 2469: 2447: 2402: 2379: 2356: 2336: 2300: 2241: 2205: 2146: 2118: 2091: 2064: 2021: 1820: 1751: 1689: 1653: 1629: 1607: 1424: 1398: 1354:, as image manifolds. 1125: 987:that reconstructs the 953: 834: 587: 532: 512: 470: 409: 350: 309: 258: 236: 176: 103: 82: 36: 4886:Mike Tipping's Thesis 4379:Nature Communications 4331:Li, James X. (2004). 4235:Lawrence, N. (2005). 4098:Sidhu, Gagan (2019). 3529:Mirkes, E.M. (2011). 3354:Discriminant analysis 3132: 3130:{\displaystyle D_{t}} 3105: 3103:{\displaystyle D_{t}} 3078: 3028: 2986: 2984:{\displaystyle D_{t}} 2956: 2838: 2791: 2761: 2739:multiplied by itself 2734: 2714: 2712:{\displaystyle P^{t}} 2687: 2627: 2625:{\displaystyle x_{j}} 2600: 2598:{\displaystyle x_{i}} 2573: 2571:{\displaystyle x_{j}} 2546: 2544:{\displaystyle x_{i}} 2519: 2470: 2448: 2403: 2380: 2357: 2337: 2301: 2242: 2206: 2147: 2119: 2117:{\displaystyle x_{j}} 2092: 2090:{\displaystyle x_{i}} 2065: 2022: 1821: 1752: 1690: 1654: 1630: 1608: 1425: 1399: 1397:{\displaystyle t\in } 1364:Global cascades model 1197:orthogonal projection 1126: 991:th data point in the 954: 835: 557: 533: 531:{\displaystyle \Phi } 513: 471: 389: 351: 289: 259: 237: 198:latent variable model 158: 101: 80: 22: 3339:Spectral submanifold 3307:The method has also 3114: 3087: 3045: 2995: 2968: 2849: 2801: 2780: 2750: 2723: 2696: 2640: 2609: 2582: 2555: 2528: 2479: 2459: 2415: 2392: 2369: 2346: 2310: 2251: 2215: 2156: 2136: 2101: 2074: 2034: 1873: 1770: 1702: 1675: 1663:. Further, define a 1652:{\displaystyle \mu } 1643: 1617: 1523: 1408: 1370: 1022: 913: 888:to be zero if point 731: 522: 491: 370: 270: 246: 220: 66:Applications of NLDR 4936:Dimension reduction 4848:"Manifold Learning" 4401:2015NatCo...6.7723T 4038:2003PNAS..100.5591D 3983:2000Sci...290.2323R 3932:2000Sci...290.2319T 3544:Yin, Hujun (2007). 3425:2010arXiv1010.4830L 3375:Self-organizing map 3334:Manifold hypothesis 3240:Riemannian manifold 3221:stress majorization 2866: 1948: 1423:{\displaystyle t=0} 1151:eigen value problem 978:. The same weights 606:Laplacian eigenmaps 341: 186:self-organizing map 180:Self-organizing map 169:principal component 118:Invariant manifolds 4409:10.1038/ncomms8723 3743:"Principal Curves" 3579:Neural Computation 3465:Nonlinear Dynamics 3187:Manifold sculpting 3139:Euclidean distance 3127: 3100: 3073: 3023: 2981: 2951: 2852: 2833: 2786: 2756: 2746:The Markov matrix 2729: 2709: 2682: 2622: 2595: 2568: 2541: 2514: 2465: 2443: 2398: 2375: 2352: 2332: 2296: 2237: 2201: 2142: 2114: 2087: 2060: 2017: 2012: 1934: 1816: 1747: 1685: 1649: 1625: 1603: 1493:Manifold alignment 1488:Manifold alignment 1466:geodesic distances 1420: 1394: 1252:is a feed-forward 1167:Euclidean distance 1121: 1080: 1049: 949: 925: 830: 789: 758: 659:geodesic distances 588: 528: 508: 466: 346: 323: 254: 232: 188:(SOM, also called 177: 140:Important concepts 106:By comparison, if 104: 83: 37: 4911:RankVisu homepage 4861:978-0-262-04682-4 4464:10.1109/72.554199 3926:(5500): 2319–23. 3807:Belkin, Mikhail; 3793:978-3-540-73749-0 3559:978-3-540-73749-0 3449:978-0-387-39350-6 3256:similarity matrix 3244:Riemannian metric 3237:locally connected 2789:{\displaystyle K} 2759:{\displaystyle P} 2732:{\displaystyle P} 2468:{\displaystyle P} 2401:{\displaystyle D} 2378:{\displaystyle K} 2362:can be found in. 2008: 1971: 1453:have to be made. 1071: 1040: 916: 780: 749: 387: 287: 122:dynamical systems 44:manifold learning 4943: 4865: 4833: 4832: 4830: 4829: 4815: 4809: 4808: 4806: 4794: 4788: 4787: 4761: 4752: 4746: 4739: 4733: 4724: 4718: 4715: 4709: 4708: 4698: 4688: 4664: 4658: 4657: 4640:(6–7): 889–899. 4629: 4623: 4622: 4615:Bah, B. (2008). 4612: 4606: 4605: 4579: 4575:"Diffusion Maps" 4570: 4561: 4560: 4546: 4540: 4539: 4537: 4526: 4520: 4519: 4513: 4504: 4498: 4497: 4491: 4482: 4476: 4475: 4449: 4440: 4431: 4430: 4420: 4394: 4370: 4364: 4363: 4337: 4328: 4322: 4321: 4311: 4302: 4296: 4295: 4255: 4249: 4248: 4232: 4226: 4225: 4199: 4193: 4192: 4182: 4162: 4156: 4155: 4137: 4119: 4095: 4089: 4088: 4076: 4070: 4069: 4059: 4049: 4017: 4011: 4010: 3977:(5500): 2323–6. 3966: 3960: 3959: 3917: 3908: 3902: 3901: 3885: 3876: 3870: 3865: 3855: 3846: 3845: 3817: 3804: 3798: 3797: 3774: 3768: 3767: 3747: 3735: 3729: 3728: 3726: 3719: 3708: 3702: 3691: 3685: 3684: 3658: 3636: 3630: 3629: 3613: 3607: 3606: 3570: 3564: 3563: 3541: 3535: 3534: 3525: 3519: 3518: 3516: 3505: 3499: 3498: 3480: 3471:(3): 1493–1534. 3460: 3454: 3453: 3435: 3429: 3428: 3418: 3409:(May): 1609–38. 3392: 3364:Feature learning 3309:been implemented 3176:Sammon's mapping 3136: 3134: 3133: 3128: 3126: 3125: 3109: 3107: 3106: 3101: 3099: 3098: 3082: 3080: 3079: 3074: 3057: 3056: 3032: 3030: 3029: 3024: 3007: 3006: 2990: 2988: 2987: 2982: 2980: 2979: 2960: 2958: 2957: 2952: 2950: 2949: 2925: 2924: 2897: 2896: 2865: 2860: 2842: 2840: 2839: 2834: 2832: 2831: 2816: 2815: 2795: 2793: 2792: 2787: 2765: 2763: 2762: 2757: 2738: 2736: 2735: 2730: 2718: 2716: 2715: 2710: 2708: 2707: 2691: 2689: 2688: 2683: 2678: 2677: 2665: 2664: 2652: 2651: 2631: 2629: 2628: 2623: 2621: 2620: 2604: 2602: 2601: 2596: 2594: 2593: 2577: 2575: 2574: 2569: 2567: 2566: 2550: 2548: 2547: 2542: 2540: 2539: 2523: 2521: 2520: 2515: 2510: 2509: 2497: 2496: 2474: 2472: 2471: 2466: 2452: 2450: 2449: 2444: 2436: 2435: 2407: 2405: 2404: 2399: 2384: 2382: 2381: 2376: 2361: 2359: 2358: 2353: 2341: 2339: 2338: 2333: 2325: 2324: 2305: 2303: 2302: 2297: 2289: 2288: 2279: 2278: 2266: 2265: 2246: 2244: 2243: 2238: 2230: 2229: 2210: 2208: 2207: 2202: 2194: 2193: 2184: 2183: 2171: 2170: 2151: 2149: 2148: 2143: 2123: 2121: 2120: 2115: 2113: 2112: 2096: 2094: 2093: 2088: 2086: 2085: 2069: 2067: 2066: 2061: 2059: 2058: 2046: 2045: 2026: 2024: 2023: 2018: 2016: 2015: 2009: 2006: 1995: 1994: 1982: 1981: 1972: 1969: 1965: 1964: 1963: 1962: 1953: 1947: 1942: 1933: 1932: 1920: 1919: 1888: 1887: 1825: 1823: 1822: 1817: 1756: 1754: 1753: 1748: 1694: 1692: 1691: 1686: 1684: 1683: 1658: 1656: 1655: 1650: 1634: 1632: 1631: 1626: 1624: 1612: 1610: 1609: 1604: 1602: 1601: 1600: 1578: 1577: 1559: 1558: 1546: 1545: 1530: 1447:Sammon's mapping 1429: 1427: 1426: 1421: 1403: 1401: 1400: 1395: 1348:projective space 1307:Other algorithms 1290:Gaussian process 1130: 1128: 1127: 1122: 1120: 1119: 1114: 1110: 1109: 1108: 1107: 1102: 1096: 1095: 1087: 1079: 1067: 1066: 1061: 1048: 958: 956: 955: 950: 942: 941: 940: 932: 924: 839: 837: 836: 831: 829: 828: 823: 819: 818: 817: 816: 811: 805: 804: 796: 788: 776: 775: 770: 757: 592:Principal curves 572:infant mortality 537: 535: 534: 529: 517: 515: 514: 509: 504: 475: 473: 472: 467: 462: 461: 460: 459: 449: 448: 443: 428: 427: 422: 408: 403: 388: 380: 355: 353: 352: 347: 342: 340: 339: 333: 328: 322: 321: 316: 308: 303: 288: 280: 263: 261: 260: 255: 253: 241: 239: 238: 233: 202:density networks 150:Sammon's mapping 145:Sammon's mapping 48:latent manifolds 42:, also known as 4951: 4950: 4946: 4945: 4944: 4942: 4941: 4940: 4926: 4925: 4906:DD-HDS homepage 4872: 4862: 4842: 4840:Further reading 4837: 4836: 4827: 4825: 4817: 4816: 4812: 4795: 4791: 4759: 4753: 4749: 4740: 4736: 4725: 4721: 4716: 4712: 4665: 4661: 4634:Neural Networks 4630: 4626: 4613: 4609: 4577: 4571: 4564: 4557:Yale University 4547: 4543: 4535: 4527: 4523: 4511: 4505: 4501: 4489: 4483: 4479: 4447: 4441: 4434: 4371: 4367: 4335: 4329: 4325: 4309: 4303: 4299: 4270:(11): 2413–24. 4256: 4252: 4233: 4229: 4214: 4200: 4196: 4180:10.1.1.211.9957 4163: 4159: 4096: 4092: 4077: 4073: 4018: 4014: 3967: 3963: 3915: 3909: 3905: 3898: 3883: 3877: 3873: 3856: 3849: 3834: 3815: 3805: 3801: 3794: 3775: 3771: 3745: 3736: 3732: 3724: 3717: 3709: 3705: 3692: 3688: 3637: 3633: 3614: 3610: 3571: 3567: 3560: 3542: 3538: 3526: 3522: 3514: 3506: 3502: 3461: 3457: 3450: 3436: 3432: 3393: 3389: 3384: 3344:Taken's theorem 3330: 3288: 3260:distance matrix 3252: 3229: 3214: 3205: 3189: 3172: 3163:backpropagation 3159: 3147: 3121: 3117: 3115: 3112: 3111: 3094: 3090: 3088: 3085: 3084: 3052: 3048: 3046: 3043: 3042: 3002: 2998: 2996: 2993: 2992: 2975: 2971: 2969: 2966: 2965: 2945: 2941: 2920: 2916: 2892: 2888: 2861: 2856: 2850: 2847: 2846: 2821: 2817: 2811: 2807: 2802: 2799: 2798: 2781: 2778: 2777: 2751: 2748: 2747: 2724: 2721: 2720: 2703: 2699: 2697: 2694: 2693: 2673: 2669: 2660: 2656: 2647: 2643: 2641: 2638: 2637: 2616: 2612: 2610: 2607: 2606: 2589: 2585: 2583: 2580: 2579: 2562: 2558: 2556: 2553: 2552: 2535: 2531: 2529: 2526: 2525: 2505: 2501: 2492: 2488: 2480: 2477: 2476: 2460: 2457: 2456: 2428: 2424: 2416: 2413: 2412: 2393: 2390: 2389: 2370: 2367: 2366: 2347: 2344: 2343: 2317: 2313: 2311: 2308: 2307: 2284: 2280: 2274: 2270: 2261: 2257: 2252: 2249: 2248: 2222: 2218: 2216: 2213: 2212: 2189: 2185: 2179: 2175: 2166: 2162: 2157: 2154: 2153: 2137: 2134: 2133: 2108: 2104: 2102: 2099: 2098: 2081: 2077: 2075: 2072: 2071: 2054: 2050: 2041: 2037: 2035: 2032: 2031: 2011: 2010: 2005: 2003: 1997: 1996: 1990: 1986: 1977: 1973: 1968: 1966: 1958: 1954: 1949: 1943: 1938: 1928: 1924: 1915: 1911: 1904: 1900: 1893: 1892: 1880: 1876: 1874: 1871: 1870: 1771: 1768: 1767: 1703: 1700: 1699: 1679: 1678: 1676: 1673: 1672: 1644: 1641: 1640: 1620: 1618: 1615: 1614: 1596: 1592: 1591: 1573: 1569: 1554: 1550: 1541: 1537: 1526: 1524: 1521: 1520: 1502: 1490: 1474: 1462: 1440: 1409: 1406: 1405: 1371: 1368: 1367: 1360: 1314: 1309: 1298: 1283: 1271:Sammon mappings 1246: 1231: 1212: 1206: 1192: 1179: 1141: 1137: 1115: 1103: 1098: 1097: 1088: 1083: 1082: 1081: 1075: 1062: 1057: 1056: 1055: 1051: 1050: 1044: 1023: 1020: 1019: 1010: 1002: 986: 933: 928: 927: 926: 920: 914: 911: 910: 905: 896: 887: 878: 869: 860: 851: 824: 812: 807: 806: 797: 792: 791: 790: 784: 771: 766: 765: 764: 760: 759: 753: 732: 729: 728: 715: 706: 697: 676: 644: 614: 608: 580:principal curve 568:life expectancy 552: 523: 520: 519: 500: 492: 489: 488: 455: 454: 450: 444: 439: 438: 423: 418: 417: 410: 404: 393: 379: 371: 368: 367: 335: 334: 329: 324: 317: 312: 311: 310: 304: 293: 279: 271: 268: 267: 249: 247: 244: 243: 221: 218: 217: 210: 182: 147: 142: 74: 68: 17: 12: 11: 5: 4949: 4939: 4938: 4924: 4923: 4918: 4913: 4908: 4903: 4898: 4893: 4888: 4883: 4878: 4871: 4870:External links 4868: 4867: 4866: 4860: 4841: 4838: 4835: 4834: 4810: 4789: 4747: 4734: 4719: 4710: 4673:Bioinformatics 4659: 4624: 4607: 4562: 4541: 4521: 4499: 4477: 4458:(1): 148–154. 4432: 4365: 4323: 4297: 4250: 4227: 4212: 4194: 4173:(1): 313–338. 4157: 4090: 4071: 4032:(10): 5591–6. 4012: 3961: 3903: 3896: 3871: 3868:Ohio-state.edu 3847: 3832: 3809:Niyogi, Partha 3799: 3792: 3769: 3758:(406): 502–6. 3730: 3703: 3699:Institut Curie 3686: 3649:(3): 219–232. 3631: 3608: 3565: 3558: 3536: 3520: 3500: 3455: 3448: 3430: 3386: 3385: 3383: 3380: 3379: 3378: 3372: 3366: 3361: 3356: 3351: 3346: 3341: 3336: 3329: 3326: 3325: 3324: 3305: 3295: 3287: 3284: 3280:Sammon mapping 3251: 3248: 3228: 3225: 3223:that follows. 3213: 3210: 3204: 3201: 3188: 3185: 3171: 3168: 3158: 3155: 3146: 3143: 3124: 3120: 3097: 3093: 3072: 3069: 3066: 3063: 3060: 3055: 3051: 3022: 3019: 3016: 3013: 3010: 3005: 3001: 2978: 2974: 2962: 2961: 2948: 2944: 2940: 2937: 2934: 2931: 2928: 2923: 2919: 2915: 2912: 2909: 2906: 2903: 2900: 2895: 2891: 2887: 2884: 2881: 2878: 2875: 2872: 2869: 2864: 2859: 2855: 2830: 2827: 2824: 2820: 2814: 2810: 2806: 2785: 2755: 2728: 2719:is the matrix 2706: 2702: 2681: 2676: 2672: 2668: 2663: 2659: 2655: 2650: 2646: 2619: 2615: 2592: 2588: 2565: 2561: 2538: 2534: 2513: 2508: 2504: 2500: 2495: 2491: 2487: 2484: 2464: 2454: 2453: 2442: 2439: 2434: 2431: 2427: 2423: 2420: 2397: 2374: 2351: 2331: 2328: 2323: 2320: 2316: 2295: 2292: 2287: 2283: 2277: 2273: 2269: 2264: 2260: 2256: 2236: 2233: 2228: 2225: 2221: 2200: 2197: 2192: 2188: 2182: 2178: 2174: 2169: 2165: 2161: 2141: 2111: 2107: 2084: 2080: 2057: 2053: 2049: 2044: 2040: 2028: 2027: 2014: 2004: 2002: 1999: 1998: 1993: 1989: 1985: 1980: 1976: 1967: 1961: 1957: 1952: 1946: 1941: 1937: 1931: 1927: 1923: 1918: 1914: 1910: 1907: 1903: 1899: 1898: 1896: 1891: 1886: 1883: 1879: 1827: 1826: 1815: 1812: 1809: 1806: 1803: 1800: 1796: 1793: 1790: 1787: 1784: 1781: 1778: 1775: 1758: 1757: 1746: 1743: 1740: 1737: 1734: 1731: 1728: 1725: 1722: 1719: 1716: 1713: 1710: 1707: 1682: 1648: 1623: 1599: 1595: 1590: 1587: 1584: 1581: 1576: 1572: 1568: 1565: 1562: 1557: 1553: 1549: 1544: 1540: 1536: 1533: 1529: 1505:Diffusion maps 1501: 1500:Diffusion maps 1498: 1489: 1486: 1473: 1470: 1461: 1458: 1439: 1436: 1419: 1416: 1413: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1359: 1358:Contagion maps 1356: 1313: 1310: 1308: 1305: 1297: 1294: 1282: 1279: 1254:neural network 1245: 1242: 1230: 1227: 1208:Main article: 1205: 1202: 1191: 1188: 1178: 1175: 1139: 1135: 1132: 1131: 1118: 1113: 1106: 1101: 1094: 1091: 1086: 1078: 1074: 1070: 1065: 1060: 1054: 1047: 1043: 1039: 1036: 1033: 1030: 1027: 1008: 1000: 982: 960: 959: 948: 945: 939: 936: 931: 923: 919: 901: 892: 883: 874: 865: 856: 847: 841: 840: 827: 822: 815: 810: 803: 800: 795: 787: 783: 779: 774: 769: 763: 756: 752: 748: 745: 742: 739: 736: 711: 702: 693: 675: 672: 643: 640: 635:Fourier series 607: 604: 551: 548: 527: 507: 503: 499: 496: 477: 476: 465: 458: 453: 447: 442: 437: 434: 431: 426: 421: 416: 413: 407: 402: 399: 396: 392: 386: 383: 378: 375: 357: 356: 345: 338: 332: 327: 320: 315: 307: 302: 299: 296: 292: 286: 283: 278: 275: 252: 231: 228: 225: 209: 206: 181: 178: 146: 143: 141: 138: 67: 64: 15: 9: 6: 4: 3: 2: 4948: 4937: 4934: 4933: 4931: 4922: 4919: 4917: 4914: 4912: 4909: 4907: 4904: 4902: 4899: 4897: 4894: 4892: 4889: 4887: 4884: 4882: 4879: 4877: 4874: 4873: 4863: 4857: 4853: 4849: 4844: 4843: 4824: 4820: 4814: 4805: 4800: 4793: 4785: 4781: 4777: 4773: 4769: 4765: 4758: 4751: 4744: 4738: 4731: 4730: 4723: 4714: 4706: 4702: 4697: 4692: 4687: 4682: 4678: 4674: 4670: 4663: 4655: 4651: 4647: 4643: 4639: 4635: 4628: 4620: 4619: 4611: 4603: 4599: 4595: 4591: 4587: 4583: 4576: 4569: 4567: 4558: 4554: 4553: 4545: 4534: 4533: 4525: 4517: 4510: 4503: 4495: 4488: 4481: 4473: 4469: 4465: 4461: 4457: 4453: 4446: 4439: 4437: 4428: 4424: 4419: 4414: 4410: 4406: 4402: 4398: 4393: 4388: 4384: 4380: 4376: 4369: 4361: 4357: 4353: 4349: 4345: 4341: 4334: 4327: 4319: 4315: 4308: 4301: 4293: 4289: 4285: 4281: 4277: 4273: 4269: 4265: 4261: 4254: 4246: 4242: 4238: 4231: 4223: 4219: 4215: 4209: 4205: 4198: 4190: 4186: 4181: 4176: 4172: 4168: 4161: 4153: 4149: 4145: 4141: 4136: 4131: 4127: 4123: 4118: 4113: 4109: 4105: 4101: 4094: 4086: 4082: 4075: 4067: 4063: 4058: 4053: 4048: 4043: 4039: 4035: 4031: 4027: 4023: 4016: 4008: 4004: 4000: 3996: 3992: 3988: 3984: 3980: 3976: 3972: 3965: 3957: 3953: 3949: 3945: 3941: 3937: 3933: 3929: 3925: 3921: 3914: 3907: 3899: 3897:0-262-20152-6 3893: 3889: 3882: 3875: 3869: 3863: 3862: 3854: 3852: 3843: 3839: 3835: 3833:0-262-27173-7 3829: 3825: 3821: 3814: 3810: 3803: 3795: 3789: 3785: 3784: 3779: 3778:Gorban, A. N. 3773: 3765: 3761: 3757: 3753: 3752: 3744: 3740: 3734: 3723: 3716: 3715: 3707: 3700: 3696: 3693:A. Zinovyev, 3690: 3682: 3678: 3674: 3670: 3666: 3662: 3657: 3652: 3648: 3644: 3643: 3635: 3627: 3623: 3619: 3612: 3604: 3600: 3596: 3592: 3589:: 1299–1319. 3588: 3584: 3580: 3576: 3575:MĂĽller, K.-R. 3569: 3561: 3555: 3551: 3547: 3540: 3532: 3524: 3513: 3512: 3504: 3496: 3492: 3488: 3484: 3479: 3474: 3470: 3466: 3459: 3451: 3445: 3441: 3434: 3426: 3422: 3417: 3412: 3408: 3404: 3403: 3398: 3391: 3387: 3376: 3373: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3331: 3322: 3318: 3314: 3310: 3306: 3303: 3299: 3296: 3293: 3290: 3289: 3283: 3281: 3277: 3273: 3269: 3265: 3261: 3257: 3247: 3245: 3242:and that the 3241: 3238: 3234: 3224: 3222: 3218: 3209: 3200: 3198: 3194: 3184: 3182: 3177: 3167: 3164: 3157:Nonlinear PCA 3154: 3152: 3142: 3140: 3122: 3118: 3095: 3091: 3067: 3064: 3061: 3053: 3049: 3040: 3036: 3017: 3014: 3011: 3003: 2999: 2976: 2972: 2964:For fixed t, 2946: 2935: 2932: 2929: 2921: 2917: 2913: 2907: 2904: 2901: 2893: 2889: 2882: 2876: 2873: 2870: 2862: 2857: 2853: 2845: 2844: 2843: 2828: 2825: 2822: 2812: 2808: 2783: 2775: 2773: 2769: 2753: 2744: 2742: 2726: 2704: 2700: 2674: 2670: 2666: 2661: 2657: 2648: 2644: 2635: 2617: 2613: 2590: 2586: 2563: 2559: 2536: 2532: 2506: 2502: 2498: 2493: 2489: 2482: 2462: 2440: 2437: 2432: 2429: 2425: 2421: 2418: 2411: 2410: 2409: 2395: 2388: 2387:degree matrix 2372: 2363: 2349: 2329: 2326: 2321: 2318: 2314: 2293: 2290: 2285: 2275: 2271: 2267: 2262: 2258: 2234: 2231: 2226: 2223: 2219: 2198: 2195: 2190: 2180: 2176: 2172: 2167: 2163: 2139: 2131: 2127: 2109: 2105: 2082: 2078: 2070:denotes that 2055: 2051: 2047: 2042: 2038: 2000: 1991: 1987: 1983: 1978: 1974: 1959: 1955: 1950: 1944: 1939: 1929: 1925: 1921: 1916: 1912: 1905: 1901: 1894: 1889: 1884: 1881: 1877: 1869: 1868: 1867: 1865: 1861: 1857: 1852: 1850: 1846: 1842: 1838: 1833: 1831: 1813: 1810: 1807: 1804: 1801: 1794: 1791: 1785: 1782: 1779: 1773: 1766: 1765: 1764: 1763:is symmetric 1762: 1744: 1738: 1735: 1732: 1726: 1723: 1717: 1714: 1711: 1705: 1698: 1697: 1696: 1671:. The kernel 1670: 1666: 1662: 1646: 1638: 1588: 1582: 1574: 1570: 1566: 1563: 1560: 1555: 1551: 1547: 1542: 1538: 1531: 1518: 1514: 1510: 1506: 1497: 1494: 1485: 1482: 1478: 1477:Diffeomorphic 1469: 1467: 1457: 1454: 1450: 1448: 1444: 1435: 1433: 1417: 1414: 1411: 1388: 1385: 1382: 1376: 1373: 1365: 1355: 1353: 1349: 1345: 1341: 1337: 1332: 1330: 1327: 1322: 1319: 1304: 1302: 1293: 1291: 1287: 1278: 1276: 1272: 1268: 1264: 1260: 1255: 1251: 1241: 1239: 1235: 1226: 1224: 1220: 1216: 1211: 1201: 1198: 1187: 1184: 1174: 1172: 1168: 1164: 1160: 1156: 1152: 1149: 1145: 1116: 1111: 1104: 1092: 1089: 1076: 1072: 1068: 1063: 1052: 1045: 1041: 1037: 1031: 1025: 1018: 1017: 1016: 1014: 1006: 998: 994: 990: 985: 981: 977: 973: 969: 965: 946: 943: 937: 934: 921: 917: 909: 908: 907: 904: 900: 895: 891: 886: 882: 877: 873: 868: 864: 859: 855: 850: 846: 825: 820: 813: 801: 798: 785: 781: 777: 772: 761: 754: 750: 746: 740: 734: 727: 726: 725: 723: 719: 714: 710: 705: 701: 696: 692: 687: 684: 683:sparse matrix 680: 671: 668: 663: 660: 656: 653:with classic 652: 648: 639: 636: 632: 628: 622: 620: 613: 603: 600: 599:Trevor Hastie 595: 594:and manifolds 593: 585: 581: 577: 573: 569: 565: 561: 556: 547: 544: 542: 486: 482: 463: 445: 424: 405: 400: 397: 394: 390: 384: 381: 376: 373: 366: 365: 364: 362: 343: 330: 318: 305: 300: 297: 294: 290: 284: 281: 276: 273: 266: 265: 264: 229: 226: 223: 215: 205: 203: 199: 195: 191: 187: 174: 170: 166: 162: 157: 153: 151: 137: 135: 130: 127: 123: 119: 115: 111: 109: 100: 96: 93: 89: 88:Hamming space 79: 75: 72: 63: 61: 57: 53: 49: 45: 41: 34: 30: 26: 21: 4851: 4826:. Retrieved 4822: 4813: 4792: 4770:(1): 56–68. 4767: 4763: 4750: 4737: 4727: 4722: 4713: 4676: 4672: 4662: 4637: 4633: 4627: 4617: 4610: 4585: 4581: 4551: 4544: 4531: 4524: 4515: 4502: 4493: 4480: 4455: 4451: 4382: 4378: 4368: 4343: 4339: 4326: 4320:: 2579–2605. 4317: 4313: 4300: 4267: 4263: 4253: 4247:: 1783–1816. 4244: 4240: 4230: 4203: 4197: 4170: 4166: 4160: 4107: 4103: 4093: 4087:: 1593–1600. 4084: 4074: 4029: 4025: 4015: 3974: 3970: 3964: 3923: 3919: 3906: 3887: 3874: 3860: 3823: 3819: 3802: 3782: 3772: 3755: 3749: 3733: 3713: 3706: 3689: 3646: 3640: 3634: 3617: 3611: 3582: 3578: 3568: 3549: 3539: 3523: 3510: 3503: 3468: 3464: 3458: 3442:. Springer. 3439: 3433: 3406: 3400: 3390: 3253: 3230: 3215: 3206: 3196: 3190: 3173: 3160: 3148: 3038: 3034: 2963: 2776: 2767: 2745: 2740: 2633: 2455: 2364: 2124:. Properly, 2029: 1863: 1859: 1855: 1853: 1849:Markov Chain 1844: 1840: 1836: 1834: 1829: 1828: 1760: 1759: 1668: 1664: 1660: 1636: 1517:Markov Chain 1503: 1491: 1480: 1475: 1463: 1455: 1451: 1441: 1361: 1352:Klein bottle 1333: 1323: 1315: 1299: 1284: 1247: 1244:Autoencoders 1237: 1232: 1222: 1218: 1213: 1193: 1180: 1170: 1162: 1158: 1154: 1147: 1143: 1133: 1012: 1004: 996: 992: 988: 983: 979: 975: 971: 967: 963: 961: 902: 898: 893: 889: 884: 880: 875: 871: 866: 862: 857: 853: 848: 844: 843:The weights 842: 721: 717: 712: 708: 703: 699: 694: 690: 688: 677: 664: 645: 623: 615: 590: 589: 579: 576:tuberculosis 545: 518:. Of course 485:kernel trick 480: 478: 360: 358: 211: 189: 183: 148: 133: 131: 116: 112: 105: 84: 73: 69: 43: 39: 38: 4588:(1): 5–30. 3359:Elastic map 1513:random walk 1434:algorithm. 1250:autoencoder 1183:Hessian LLE 584:elastic map 190:Kohonen map 165:broken line 33:Hessian LLE 4828:2019-05-04 4804:1802.03426 4213:1558600159 4117:1908.06319 3739:Hastie, T. 3695:ViDaExpert 3478:1602.00560 3382:References 1263:NeuroScale 1181:Like LLE, 970:such that 610:See also: 541:Swiss roll 214:kernel PCA 54:, such as 25:Swiss roll 4392:1408.1168 4346:: 49–59. 4222:928936290 4175:CiteSeerX 4152:201832756 3956:221338160 3656:1001.1122 3587:MIT Press 3416:1010.4830 3317:available 2943:‖ 2936:⋅ 2914:− 2908:⋅ 2886:‖ 2826:∈ 2430:− 2350:σ 2294:σ 2291:≪ 2282:‖ 2268:− 2255:‖ 2199:σ 2196:≫ 2187:‖ 2173:− 2160:‖ 2140:σ 2048:∼ 2007:otherwise 1984:∼ 1956:σ 1936:‖ 1922:− 1909:‖ 1906:− 1799:∀ 1792:≥ 1647:μ 1589:⊂ 1586:Ω 1583:∈ 1564:… 1509:diffusion 1481:Diffeomap 1377:∈ 1073:∑ 1069:− 1042:∑ 974:>> 918:∑ 782:∑ 778:− 751:∑ 526:Φ 495:Φ 433:Φ 412:Φ 391:∑ 291:∑ 227:× 4930:Category 4705:16109748 4654:16787737 4602:17160669 4472:18255618 4427:26194875 4385:: 7723. 4292:15591304 4284:25532201 4144:31497410 4110:: 1–11. 4066:16576753 3999:11125150 3948:11125149 3842:52710683 3811:(2001). 3722:Archived 3701:, Paris. 3673:20556849 3495:44074026 3328:See also 3286:Software 3203:RankVisu 2130:manifold 2126:Geodesic 1970:if  667:manifold 4784:1365750 4555:(PhD). 4418:4566922 4397:Bibcode 4360:7566939 4135:6726465 4034:Bibcode 4007:5987139 3979:Bibcode 3971:Science 3928:Bibcode 3920:Science 3681:2170982 3603:6674407 3421:Bibcode 3298:UMAP.jl 3292:Waffles 2743:times. 2692:. Here 2247:and if 1340:VisuMap 1326:Coulomb 1011:in the 1003:in the 242:matrix 90:). The 4876:Isomap 4858:  4782:  4703:  4652:  4600:  4470:  4425:  4415:  4358:  4290:  4282:  4220:  4210:  4177:  4150:  4142:  4132:  4064:  4057:156245 4054:  4005:  3997:  3954:  3946:  3894:  3840:  3830:  3790:  3679:  3671:  3601:  3556:  3493:  3446:  3371:(GSOM) 3321:GitHub 3315:(code 3313:Python 3278:, and 3268:isomap 1665:kernel 1635:. Let 1511:and a 1432:Isomap 1404:. For 1350:, and 1344:sphere 647:Isomap 642:Isomap 4799:arXiv 4780:S2CID 4760:(PDF) 4598:S2CID 4578:(PDF) 4536:(PDF) 4512:(PDF) 4490:(PDF) 4448:(PDF) 4387:arXiv 4356:S2CID 4336:(PDF) 4310:(PDF) 4288:S2CID 4148:S2CID 4112:arXiv 4003:S2CID 3952:S2CID 3916:(PDF) 3884:(PDF) 3816:(PDF) 3746:(PDF) 3725:(PDF) 3718:(PDF) 3677:S2CID 3651:arXiv 3599:S2CID 3585:(5). 3515:(PDF) 3491:S2CID 3473:arXiv 3411:arXiv 3377:(SOM) 3302:Julia 3258:or a 3233:t-SNE 2306:then 2211:then 1336:torus 1329:force 4856:ISBN 4701:PMID 4650:PMID 4468:PMID 4423:PMID 4280:PMID 4218:OCLC 4208:ISBN 4140:PMID 4062:PMID 3995:PMID 3944:PMID 3892:ISBN 3838:OCLC 3828:ISBN 3788:ISBN 3669:PMID 3554:ISBN 3444:ISBN 1269:and 1215:LTSA 184:The 58:and 31:and 4772:doi 4691:hdl 4681:doi 4642:doi 4590:doi 4460:doi 4413:PMC 4405:doi 4348:doi 4272:doi 4185:doi 4130:PMC 4122:doi 4052:PMC 4042:doi 4030:100 3987:doi 3975:290 3936:doi 3924:290 3760:doi 3661:doi 3622:doi 3591:doi 3483:doi 3319:on 3311:in 3037:to 2632:in 2605:to 2551:to 1858:= ( 1248:An 724:). 163:(a 161:SOM 29:LLE 4932:: 4850:. 4821:. 4778:. 4768:89 4766:. 4762:. 4699:. 4689:. 4677:21 4675:. 4671:. 4648:. 4638:19 4636:. 4596:. 4586:21 4584:. 4580:. 4565:^ 4514:. 4492:. 4466:. 4454:. 4450:. 4435:^ 4421:. 4411:. 4403:. 4395:. 4381:. 4377:. 4354:. 4342:. 4338:. 4316:. 4312:. 4286:. 4278:. 4268:45 4266:. 4262:. 4243:. 4239:. 4216:. 4183:. 4171:26 4169:. 4146:. 4138:. 4128:. 4120:. 4106:. 4102:. 4083:. 4060:. 4050:. 4040:. 4028:. 4024:. 4001:. 3993:. 3985:. 3973:. 3950:. 3942:. 3934:. 3922:. 3918:. 3886:. 3850:^ 3836:. 3824:14 3822:. 3818:. 3756:84 3754:. 3748:. 3675:. 3667:. 3659:. 3647:20 3645:. 3620:. 3597:. 3583:10 3581:. 3489:. 3481:. 3469:86 3467:. 3419:. 3407:13 3405:. 3399:. 3274:, 3270:, 2408:: 1346:, 1277:. 1171:K, 1146:X 1136:ij 984:ij 885:ij 849:ij 713:ij 586:. 574:, 570:, 566:, 560:UN 62:. 4864:. 4831:. 4807:. 4801:: 4786:. 4774:: 4707:. 4693:: 4683:: 4656:. 4644:: 4604:. 4592:: 4559:. 4474:. 4462:: 4456:8 4429:. 4407:: 4399:: 4389:: 4383:6 4362:. 4350:: 4344:3 4318:9 4294:. 4274:: 4245:6 4224:. 4191:. 4187:: 4154:. 4124:: 4114:: 4108:7 4068:. 4044:: 4036:: 4009:. 3989:: 3981:: 3958:. 3938:: 3930:: 3900:. 3844:. 3796:. 3766:. 3762:: 3683:. 3663:: 3653:: 3628:. 3624:: 3605:. 3593:: 3562:. 3497:. 3485:: 3475:: 3452:. 3427:. 3423:: 3413:: 3323:) 3304:. 3197:k 3123:t 3119:D 3096:t 3092:D 3071:) 3068:y 3065:, 3062:x 3059:( 3054:t 3050:D 3039:y 3035:x 3021:) 3018:y 3015:, 3012:x 3009:( 3004:t 3000:D 2977:t 2973:D 2947:2 2939:) 2933:, 2930:y 2927:( 2922:t 2918:p 2911:) 2905:, 2902:x 2899:( 2894:t 2890:p 2883:= 2880:) 2877:y 2874:, 2871:x 2868:( 2863:2 2858:t 2854:D 2829:N 2823:t 2819:} 2813:t 2809:D 2805:{ 2784:K 2768:X 2754:P 2741:t 2727:P 2705:t 2701:P 2680:) 2675:j 2671:x 2667:, 2662:i 2658:x 2654:( 2649:t 2645:P 2634:t 2618:j 2614:x 2591:i 2587:x 2564:j 2560:x 2537:i 2533:x 2512:) 2507:j 2503:x 2499:, 2494:i 2490:x 2486:( 2483:P 2463:P 2441:. 2438:K 2433:1 2426:D 2422:= 2419:P 2396:D 2373:K 2330:1 2327:= 2322:j 2319:i 2315:K 2286:2 2276:j 2272:x 2263:i 2259:x 2235:0 2232:= 2227:j 2224:i 2220:K 2191:2 2181:j 2177:x 2168:i 2164:x 2110:j 2106:x 2083:i 2079:x 2056:j 2052:x 2043:i 2039:x 2001:0 1992:j 1988:x 1979:i 1975:x 1960:2 1951:/ 1945:2 1940:2 1930:j 1926:x 1917:i 1913:x 1902:e 1895:{ 1890:= 1885:j 1882:i 1878:K 1864:E 1862:, 1860:X 1856:K 1845:k 1843:, 1841:X 1837:k 1830:k 1814:k 1811:, 1808:y 1805:, 1802:x 1795:0 1789:) 1786:y 1783:, 1780:x 1777:( 1774:k 1761:k 1745:, 1742:) 1739:x 1736:, 1733:y 1730:( 1727:k 1724:= 1721:) 1718:y 1715:, 1712:x 1709:( 1706:k 1681:k 1669:X 1661:X 1637:X 1622:d 1598:D 1594:R 1580:] 1575:n 1571:x 1567:, 1561:, 1556:2 1552:x 1548:, 1543:1 1539:x 1535:[ 1532:= 1528:X 1515:( 1418:0 1415:= 1412:t 1392:] 1389:1 1386:, 1383:0 1380:[ 1374:t 1238:k 1223:d 1219:k 1163:K 1159:d 1155:N 1153:( 1148:N 1144:N 1140:i 1117:2 1112:| 1105:j 1100:Y 1093:j 1090:i 1085:W 1077:j 1064:i 1059:Y 1053:| 1046:i 1038:= 1035:) 1032:Y 1029:( 1026:C 1013:d 1009:i 1005:D 1001:i 997:d 993:D 989:i 980:W 976:d 972:D 968:d 964:D 947:1 944:= 938:j 935:i 930:W 922:j 903:i 899:X 894:j 890:X 881:W 876:i 872:X 867:i 863:X 858:j 854:X 845:W 826:2 821:| 814:j 809:X 802:j 799:i 794:W 786:j 773:i 768:X 762:| 755:i 747:= 744:) 741:W 738:( 735:E 722:W 720:( 718:E 709:W 704:j 700:X 695:i 691:X 506:) 502:x 498:( 481:k 464:. 457:T 452:) 446:i 441:x 436:( 430:) 425:i 420:x 415:( 406:m 401:1 398:= 395:i 385:m 382:1 377:= 374:C 361:k 344:. 337:T 331:i 326:x 319:i 314:x 306:m 301:1 298:= 295:i 285:m 282:1 277:= 274:C 251:X 230:n 224:m

Index


Swiss roll
LLE
Hessian LLE
latent manifolds
dimensionality reduction
singular value decomposition
principal component analysis

Hamming space
intrinsic dimensionality

principal component analysis
Invariant manifolds
dynamical systems
spectral submanifolds (SSM)
Sammon's mapping

SOM
broken line
principal component
Fraction of variance unexplained
self-organizing map
generative topographic mapping
latent variable model
density networks
kernel PCA
kernel trick
Swiss roll

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑