Knowledge

Noncommutative harmonic analysis

Source đź“ť

188:
cannot be written in terms of irreducible representations, even though it is unitary and completely reducible. An example where this happens is the infinite symmetric group, where the von Neumann group algebra is the hyperfinite type
184:, the only issue therefore being its normalization.) For general locally compact groups, or even countable discrete groups, the von Neumann group algebra need not be of type I and the regular representation of 17: 275: 242:"Noncommutative harmonic analysis: in honor of Jacques Carmona", Jacques Carmona, Patrick Delorme, Michèle Vergne; Publisher Springer, 2004 176:, with respect to which the direct integral is taken. (For Pontryagin duality the Plancherel measure is some Haar measure on the 342: 317: 327: 247: 225: 51: 362: 193:
factor. The further theory divides up the Plancherel measure into a discrete and a continuous part. For
367: 122: 372: 133: 230: 256:. Translated from the 1985 Russian-language edition (Kharkov, Ukraine). Birkhäuser Verlag. 1988. 101:
that is locally compact, not compact and not commutative. The interesting examples include many
149: 83: 220: 210: 165: 114: 8: 295: 198: 177: 169: 55: 323: 313: 243: 215: 67: 63: 43: 287: 194: 129: 91: 39: 157: 106: 75: 59: 356: 164:, the set of isomorphism classes of such representations, which is given the 118: 79: 161: 110: 87: 47: 31: 299: 172:
is abstractly given by identifying a measure on the unitary dual, the
102: 291: 160:
of irreducible representations. It is parametrized therefore by the
70:
is usually taken to be the extension of the theory to all groups
27:
Application of Fourier analysis to non-abelian topological groups
254:
Introduction to the Theory of Banach Representations of Groups
344:
Noncommutaive Harmonic Analysis: In Honor of Jacques Carmona
113:. These examples are of interest and frequently applied in 86:
from the 1920s, as being generally analogous to that of
128:
What to expect is known as the result of basic work of
276:"On the evolution of noncommutative harmonic analysis" 312: 273: 354: 82:is understood, qualitatively and after the 58:, which includes the basic structures of 66:, the major business of non-commutative 201:, a very detailed theory is available. 97:The main task is therefore the case of 14: 355: 38:is the field in which results from 24: 25: 384: 322:. American Mathematical Society. 18:Non-commutative harmonic analysis 319:Noncommutative Harmonic Analysis 36:noncommutative harmonic analysis 54:have a well-understood theory, 336: 306: 267: 226:Discrete series representation 52:locally compact abelian groups 13: 1: 236: 7: 204: 123:automorphic representations 10: 389: 274:Gross, Kenneth I. (1978). 134:von Neumann group algebra 260: 231:Zonal spherical function 132:. He showed that if the 168:. The analogue of the 150:unitary representation 221:Kirillov orbit theory 211:Selberg trace formula 166:hull-kernel topology 115:mathematical physics 280:Amer. Math. Monthly 199:solvable Lie groups 140:is of type I, then 117:, and contemporary 363:Topological groups 314:Taylor, Michael E. 252:Yurii I. Lyubich. 174:Plancherel measure 170:Plancherel theorem 84:Peter–Weyl theorem 64:Fourier transforms 56:Pontryagin duality 44:topological groups 368:Harmonic analysis 216:Langlands program 197:, and classes of 195:semisimple groups 68:harmonic analysis 16:(Redirected from 380: 373:Duality theories 347: 340: 334: 333: 310: 304: 303: 271: 130:John von Neumann 107:algebraic groups 92:character theory 42:are extended to 40:Fourier analysis 21: 388: 387: 383: 382: 381: 379: 378: 377: 353: 352: 351: 350: 341: 337: 330: 316:(August 1986). 311: 307: 292:10.2307/2320861 272: 268: 263: 239: 207: 192: 158:direct integral 121:, particularly 76:locally compact 28: 23: 22: 15: 12: 11: 5: 386: 376: 375: 370: 365: 349: 348: 335: 328: 305: 286:(7): 525–548. 265: 264: 262: 259: 258: 257: 250: 238: 235: 234: 233: 228: 223: 218: 213: 206: 203: 190: 80:compact groups 78:. The case of 60:Fourier series 26: 9: 6: 4: 3: 2: 385: 374: 371: 369: 366: 364: 361: 360: 358: 346: 345: 339: 331: 329:9780821873823 325: 321: 320: 315: 309: 301: 297: 293: 289: 285: 281: 277: 270: 266: 255: 251: 249: 248:0-8176-3207-7 245: 241: 240: 232: 229: 227: 224: 222: 219: 217: 214: 212: 209: 208: 202: 200: 196: 187: 183: 179: 175: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 126: 124: 120: 119:number theory 116: 112: 111:p-adic fields 108: 104: 100: 95: 93: 89: 88:finite groups 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 46:that are not 45: 41: 37: 33: 19: 343: 338: 318: 308: 283: 279: 269: 253: 185: 181: 173: 162:unitary dual 153: 145: 141: 137: 127: 98: 96: 71: 35: 29: 105:, and also 48:commutative 32:mathematics 357:Categories 237:References 178:dual group 103:Lie groups 90:and their 74:that are 205:See also 50:. Since 300:2320861 148:) as a 326:  298:  246:  296:JSTOR 261:Notes 156:is a 109:over 324:ISBN 244:ISBN 62:and 288:doi 180:to 152:of 136:of 30:In 359:: 294:. 284:85 282:. 278:. 189:II 125:. 94:. 34:, 332:. 302:. 290:: 191:1 186:G 182:G 154:G 146:G 144:( 142:L 138:G 99:G 72:G 20:)

Index

Non-commutative harmonic analysis
mathematics
Fourier analysis
topological groups
commutative
locally compact abelian groups
Pontryagin duality
Fourier series
Fourier transforms
harmonic analysis
locally compact
compact groups
Peter–Weyl theorem
finite groups
character theory
Lie groups
algebraic groups
p-adic fields
mathematical physics
number theory
automorphic representations
John von Neumann
von Neumann group algebra
unitary representation
direct integral
unitary dual
hull-kernel topology
Plancherel theorem
dual group
semisimple groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑