Knowledge

Nitrogenase

Source đź“ť

996: 1004: 1433:. Residue 16, serine, has been shown to bind MgATP. Site-specific mutagenesis was used to demonstrate this fact. This has led to a model in which the serine remains coordinated to the Mg ion after phosphate hydrolysis in order to facilitate its association with a different phosphate of the now ADP molecule. MgATP binding also induces significant conformational changes within the Fe protein. Site-directed mutagenesis was employed to create mutants in which MgATP binds but does not induce a conformational change. Comparing 1017: 972:) type. Both form an assembly of two α subunits, two β subunits, and two δ (sometimes γ) subunits. The delta subunits are homologous to each other, and the alpha and beta subunits themselves are homologous to the ones found in MoFe nitrogenase. The gene clusters are also homologous, and these subunits are interchangeable to some degree. All nitrogenases use a similar Fe-S core cluster, and the variations come in the cofactor metal. 1225: 1335: 4864: 832: 1347:
metal is hydrogenated. In the alternating pathway, one hydrogen is added to the terminal nitrogen, then one hydrogen is added to the nitrogen directly bound to the metal. This alternating pattern continues until ammonia is released. Because each pathway favors a unique set of intermediates, attempts to determine which path is correct have generally focused on the isolation of said intermediates, such as the
4244: 29: 1052:, is the nitrogenase that has been studied the most extensively and thus is the most well characterized. Vanadium nitrogenase and iron-only nitrogenase can both be found in select species of Azotobacter as an alternative nitrogenase. Equations 1 and 2 show the balanced reactions of nitrogen fixation in molybdenum nitrogenase and vanadium nitrogenase respectively. 1130:(FeMo-co). Mo is replaced by V or Fe in vanadium nitrogenase and iron-only nitrogenase respectively. During catalysis, 2 equivalents of MgATP are hydrolysed which helps to decrease the potential of the to the Fe-S cluster and drive reduction of the P-cluster, and finally to the FeMo-co, where reduction of N 1917:
cells, ARA has been applied to a wide range of test systems, including field studies where other techniques are difficult to deploy. For example, ARA was used successfully to demonstrate that bacteria associated with rice roots undergo seasonal and diurnal rhythms in nitrogenase activity, which were
1367:
Specific support for the distal pathway has mainly stemmed from the work of Schrock and Chatt, who successfully isolated the nitrido complex using Mo as the metal center in a model complex. Specific support for the alternating pathway stems from a few studies. Iron only model clusters have been shown
1933:
but not acetylene for nitrogenase (leading to overestimates of nitrogenase by ARA). Bottle or chamber-based assays may produce negative impacts on microbial systems as a result of containment or disruption of the microenvironment through handling, leading to underestimation of nitrogenase. Despite
1910:
is involved in other reactions in the cell, it is often desirable to label the substrate with N to provide accounting or "mass balance" of the added substrate. A more common assay, the acetylene reduction assay or ARA, estimates the activity of nitrogenase by taking advantage of the ability of the
1272:
or proceed with nitrogen binding and finish the catalytic cycle. This intermediate is proposed to contain the FeMo-co in its resting oxidation state with two bridging hydrides and two sulfur bonded protons. This intermediate was first observed using freeze quench techniques with a mutated protein in
1376:
clusters have also been shown to follow an alternating pathway for nitrogen fixation. The vanadium nitrogenase releases hydrazine, an intermediate specific to the alternating mechanism. However, the lack of characterized intermediates in the native enzyme itself means that neither pathway has been
1346:
complex is generally agreed upon, there are currently two hypotheses for the exact pathway in the second half of the mechanism: the "distal" and the "alternating" pathway. In the distal pathway, the terminal nitrogen is hydrogenated first, releases ammonia, then the nitrogen directly bound to the
1186:
Spectroscopic characterization of these intermediates has allowed for greater understanding of nitrogen reduction by nitrogenase, however, the mechanism remains an active area of research and debate. Briefly listed below are spectroscopic experiments for the intermediates before the addition of
1321:
The above intermediates suggest that the metal cluster is cycled between its original oxidation state and a singly reduced state with additional electrons being stored in hydrides. It has alternatively been proposed that each step involves the formation of a hydride and that the metal cluster
1125:
All nitrogenases are two-component systems made up of Component I (also known as dinitrogenase) and Component II (also known as dinitrogenase reductase). Component I is a MoFe protein in molybdenum nitrogenase, a VFe protein in vanadium nitrogenase, and an Fe protein in iron-only nitrogenase.
1154:
kinetics measurements carried out in the 70's and 80's by Lowe, Thorneley, and others provided a kinetic basis for this process. The Lowe-Thorneley (LT) kinetic model was developed from these experiments and documents the eight correlated proton and electron transfers required throughout the
1404:
residues of the Fe protein are well understood by comparing to similar enzymes, while the interactions with the rest of the molecule are more elusive due to the lack of a Fe protein crystal structure with MgATP bound (as of 1996). Three protein residues have been shown to have significant
1452:
Nitrogenase is able to reduce acetylene, but is inhibited by carbon monoxide, which binds to the enzyme and thereby prevents binding of dinitrogen. Dinitrogen prevent acetylene binding, but acetylene does not inhibit binding of dinitrogen and requires only one electron for reduction to
1387: 1359:
in the alternating pathway. Attempts to isolate the intermediates in nitrogenase itself have so far been unsuccessful, but the use of model complexes has allowed for the isolation of intermediates that support both sides depending on the metal center used. Studies with
1285:
show that the hydrides bridge between two iron centers. Cryoannealing of the trapped intermediate at -20 Â°C results in the successive loss of two hydrogen equivalents upon relaxation, proving that the isolated intermediate is consistent with the
709: 3768:
Physiological analysis of nodules from LbRNAi plants revealed the crucial contribution of leghemoglobins to establishing low free-oxygen concentrations but high energy status in nodules, conditions that are necessary for effective
2878:
Igarashi RY, Laryukhin M, Dos Santos PC, Lee HI, Dean DR, Seefeldt LC, Hoffman BM (May 2005). "Trapping H- bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy".
848:
The Fe protein, the dinitrogenase reductase or NifH, is a dimer of identical subunits which contains one cluster and has a mass of approximately 60-64kDa. The function of the Fe protein is to transfer electrons from a
787: 1377:
definitively proven. Furthermore, computational studies have been found to support both sides, depending on whether the reaction site is assumed to be at Mo (distal) or at Fe (alternating) in the MoFe cofactor.
3738:
Ott, Thomas; van Dongen, Joost T.; Gu¨nther, Catrin; Krusell, Lene; Desbrosses, Guilhem; Vigeolas, Helene; Bock, Vivien; Czechowski, Tomasz; Geigenberger, Peter; Udvardi, Michael K. (March 29, 2005).
2789:
Yoo SJ, Angove HC, Papaefthymiou V, Burgess BK, Münck E (May 2000). "Mössbauer Study of the MoFe Protein of Nitrogenase from Azotobacter vinelandii Using Selective 57Fe Enrichment of the M-Centers".
1911:
enzyme to reduce acetylene gas to ethylene gas. These gases are easily quantified using gas chromatography. Though first used in a laboratory setting to measure nitrogenase activity in extracts of
1429:, MgATP cannot bind due to the salt bridge being too strong. The necessity of specifically aspartic acid at site 125 has been shown through noting altered reactivity upon mutation of this residue to 2680:
Wilson PE, Nyborg AC, Watt GD (July 2001). "Duplication and extension of the Thorneley and Lowe kinetic model for Klebsiella pneumoniae nitrogenase catalysis using a MATHEMATICA software platform".
909:, within the α subunits. The oxidation state of Mo in these nitrogenases was formerly thought Mo(V), but more recent evidence is for Mo(III). (Molybdenum in other enzymes is generally bound to 948:
Electrons from the Fe protein enter the MoFe protein at the P-clusters, which then transfer the electrons to the FeMo cofactors. Each FeMo cofactor then acts as a site for nitrogen fixation, with N
1171:
is also possible. Notably, nitrogen reduction has been shown to require 8 equivalents of protons and electrons as opposed to the 6 equivalents predicted by the balanced chemical reaction.
1146:
The reduction of nitrogen to two molecules of ammonia is carried out at the FeMo-co of Component I after the sequential addition of proton and electron equivalents from Component II.
893:. The hydrolysis of ATP also causes a conformational change within the nitrogenase complex, bringing the Fe protein and MoFe protein closer together for easier electron transfer. 1437:
data in the mutants versus in the wild-type protein led to the conclusion that the entire protein contracts upon MgATP binding, with a decrease in radius of approximately 2.0 Ă….
2916:"57Fe ENDOR spectroscopy and 'electron inventory' analysis of the nitrogenase E4 intermediate suggest the metal-ion core of FeMo-cofactor cycles through only one redox couple" 3414:
Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC (September 1992). "Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii".
936:
C) consists of two non-identical clusters: and , which are linked by three sulfide ions. Each FeMo cofactor is covalently linked to the α subunit of the protein by one
1925:
reduced (particularly in the case of ARA), is not always straightforward and may either underestimate or overestimate the true rate for a variety of reasons. For example, H
1400:
group of MgATP provides the energy needed to transfer electrons from the Fe protein to the MoFe protein. The binding interactions between the MgATP phosphate groups and the
901:
The MoFe protein is a heterotetramer consisting of two α subunits and two β subunits, with a mass of approximately 240-250kDa. The MoFe protein also contains two
3459:"Mapping the site(s) of MgATP and MgADP interaction with the nitrogenase of Azotobacter vinelandii. Lysine 15 of the iron protein plays a major role in MgATP interaction" 1386: 3916:
Rasche ME, Seefeldt LC (July 1997). "Reduction of thiocyanate, cyanate, and carbon disulfide by nitrogenase: kinetic characterization and EPR spectroscopic analysis".
1126:
Component II is a Fe protein that contains the Fe-S cluster., which transfers electrons to Component I. Component I contains 2 metal clusters: the P-cluster, and the
495: 308: 175: 3876:
Seefeldt LC, Rasche ME, Ensign SA (April 1995). "Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as a new inhibitor, of nitrogenase".
1036:) and a process vital to sustaining life on Earth. There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, 626: 1007:
Nitrogenase with one set of metal clusters magnified. Electrons travel from the Fe-S cluster (yellow) to the P cluster (red), and end at the FeMo-co (orange).
1242:
and the additional proton bonded to a sulfur atom. Isolation of this intermediate in mutated enzymes shows that the FeMo-co is high spin and has a spin of /
2970:
Neese F (December 2005). "The Yandulov/Schrock cycle and the nitrogenase reaction: pathways of nitrogen fixation studied by density functional theory".
1159:
where n = 0–8, corresponding to the number of equivalents transferred. The transfer of four equivalents are required before the productive addition of N
4523: 4496: 4447: 4386: 3542:
Wolle D, Dean DR, Howard JB (November 1992). "Nucleotide-iron-sulfur cluster signal transduction in the nitrogenase iron-protein: the role of Asp125".
2758:
Barney BM, Lee HI, Dos Santos PC, Hoffman BM, Dean DR, Seefeldt LC (May 2006). "Breaking the N2 triple bond: insights into the nitrogenase mechanism".
925:) of the P-cluster takes the form of two cubes linked by a central sulfur atom. Each P-cluster is linked to the MoFe protein by six cysteine residues. 4401: 3500:"Evidence for a central role of lysine 15 of Azotobacter vinelandii nitrogenase iron protein in nucleotide binding and protein conformational changes" 4528: 4424: 2818:"Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state" 960:
The MoFe protein can be replaced by alternative nitrogenases in environments low in the Mo cofactor. Two types of such nitrogenases are known: the
718: 4276: 1898:
As with many assays for enzyme activity, it is possible to estimate nitrogenase activity by measuring the rate of conversion of the substrate (N
4299: 1471:. Despite this problem, many use oxygen as a terminal electron acceptor for respiration. Although the ability of some nitrogen fixers such as 1238:– This intermediate is proposed to contain the metal cluster in its resting oxidation state with the two added electrons stored in a bridging 4040:"Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii" 3699:"Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence?" 194: 2586:
Schmidt, Frederik V.; Schulz, Luca; Zarzycki, Jan; Prinz, Simone; Oehlmann, Niels N.; Erb, Tobias J.; Rebelein, Johannes G. (2023-12-07).
4367: 1281:
experiments have provided insight into the structure of this intermediate, revealing the presence of two bridging hydrides. Mo and Fe
2458:
Franche C, Lindström K, Elmerich C (December 2008). "Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants".
3740:"Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development" 1483:, the effectiveness of such a mechanism has been questioned at oxygen concentrations above 70 ÎĽM (ambient concentration is 230 ÎĽM O 1465:, which degradatively oxidizes the Fe-S cofactors. This requires mechanisms for nitrogen fixers to protect nitrogenase from oxygen 1406: 4339: 3836:
Schrauzer GN (August 1975). "Nonenzymatic simulation of nitrogenase reactions and the mechanism of biological nitrogen fixation".
3623:"MgATP-induced conformational changes in the iron protein from Azotobacter vinelandii, as studied by small-angle x-ray scattering" 2715:
Simpson FB, Burris RH (June 1984). "A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase".
4391: 187: 3988:"Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii" 1853:
The three subunits of nitrogenase exhibit significant sequence similarity to three subunits of the light-independent version of
1273:
which residue 70, a valine amino acid, is replaced with isoleucine. This modification prevents substrate access to the FeMo-co.
2521: 2217: 2184: 385: 256: 154: 1487:), as well as during additional nutrient limitations. A molecule found in the nitrogen-fixing nodules of leguminous plants, 515: 328: 4540: 987:
to function. An engineered minimal 10-gene operon that incorporates these additional essential genes has been constructed.
4269: 1934:
these weaknesses, such assays are very useful in assessing relative rates or temporal patterns in nitrogenase activity.
862: 2200:
Schneider K, Mueller A (2004). "Iron-Only Nitrogenase: Exceptional Catalytic, Structural and Spectroscopic Features".
4889: 4583: 1282: 1278: 1020:
Catalytic sites within nitrogenase. Atoms are colored by element. Top: Fe-S Cluster Middle: P Cluster Bottom: FeMo-co
1268:, this intermediate is positioned after exactly half of the electron proton transfers and can either decay back to E 4550: 2118:
Bjornsson R, Delgado-Jaime MU, Lima FA, Sippel D, Schlesier J, WeyhermĂĽller T, Einsle O, Neese F, DeBeer S (2015).
999:
Nitrogenase with catalytic sites highlighted. There are two sets of catalytic sites within each nitrogenase enzyme.
579:). Nitrogenases are the only family of enzymes known to catalyze this reaction, which is a step in the process of 4357: 4132:
Dilworth MJ (October 1966). "Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum".
1311: 1274: 1197: 886: 1364:
generally point towards a distal pathway, while studies with Fe generally point towards an alternating pathway.
889:. The transfer of electrons requires an input of chemical energy which comes from the binding and hydrolysis of 148: 4262: 1778:
There are two types of bacteria that synthesize nitrogenase and are required for nitrogen fixation. These are:
870: 130: 2044:"Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria" 503: 316: 4739: 1948: 1878: 1854: 608: 135: 2235:"Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli" 1255:– This intermediate is proposed to be the singly reduced FeMo-co with one bridging hydride and one hydride. 995: 4248: 2508:. Nitrogen Fixation: Origins, Applications, and Research Progress. Springer Netherlands. pp. 281–307. 619:
Although the equilibrium formation of ammonia from molecular hydrogen and nitrogen has an overall negative
4899: 4545: 3662:
Seefeldt LC, Dance IG, Dean DR (February 2004). "Substrate interactions with nitrogenase: Fe versus Mo".
3305:"Hydrazine is a product of dinitrogen reduction by the vanadium-nitrogenase from Azotobacter chroococcum" 1767: 1753: 1434: 199: 398: 123: 4854: 2379:
Peters JW, Szilagyi RK (April 2006). "Exploring new frontiers of nitrogenase structure and mechanism".
1745: 499: 312: 861:
to the nitrogenase protein. Ferredoxin or flavodoxin can be reduced by one of six mechanisms: 1. by a
4840: 4827: 4814: 4801: 4788: 4775: 4762: 4724: 1418: 405: 269: 58: 1221:
spectroscopy of the trapped intermediate indicates that the FeMo-co is integer spin greater than 1.
1218: 410: 4734: 4688: 4631: 4505: 4437: 4381: 4290: 1913: 1449:
remain unknown. No crystallographic analysis has been reported on substrate bound to nitrogenase.
1147: 874: 541: 535: 151: 41: 75: 4894: 4636: 4405: 4038:
Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhophadhyay B, Blankenship RE (October 2007).
1392:
Binding of MgATP is one of the central events to occur in the mechanism employed by nitrogenase.
1003: 902: 2202:
Catalysts for Nitrogen Fixation: Nitrogenases, Relevant Chemical Models and Commercial Processes
2169:
Catalysts for Nitrogen Fixation: Nitrogenases, Relevant Chemical Models and Commercial Processes
2091:
Lawson DM, Smith BE (2002). "Molybdenum nitrogenases: a crystallographic and mechanistic view".
1425:, the protein's affinity for MgATP is greatly reduced and when the lysine is substituted for an 3219:
Chatt J, Dilworth JR, Richards RL (1978). "Recent advances in chemistry of nitrogen-fixation".
1737: 1499:
at the active site of the nitrogenase, while concomitantly allowing for efficient respiration.
905:, known as P-clusters, located at the interface between the α and β subunits and two 890: 560: 3951:
Guth JH, Burris RH (October 1983). "Inhibition of nitrogenase-catalyzed NH3 formation by H2".
1475:
to employ an oxygen-labile nitrogenase under aerobic conditions has been attributed to a high
793:, reducing this energy barrier such that the reaction can take place at ambient temperatures. 4657: 4576: 4088: 2914:
Doan PE, Telser J, Barney BM, Igarashi RY, Dean DR, Seefeldt LC, Hoffman BM (November 2011).
1795: 1348: 604: 583:. Nitrogen fixation is required for all forms of life, with nitrogen being essential for the 3248:"Reduction of N2 by supported tungsten clusters gives a model of the process by nitrogenase" 4729: 4312: 3621:
Chen L, Gavini N, Tsuruta H, Eliezer D, Burgess BK, Doniach S, Hodgson KO (February 1994).
3551: 3423: 3365: 3259: 3175: 3115: 2829: 2724: 2435: 2418: 2246: 1759: 1037: 961: 882: 620: 482: 295: 111: 3354:"Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle" 3012:
Hinnemann B, Nørskov JK (2008). "Catalysis by Enzymes: The Biological Ammonia Synthesis".
8: 4693: 4535: 4510: 1858: 878: 704:{\displaystyle \Delta H^{0}=-45.2\ \mathrm {kJ} \,\mathrm {mol^{-1}} \;\mathrm {NH_{3}} } 87: 53: 3555: 3427: 3369: 3263: 3179: 3119: 2833: 2728: 2618: 2250: 2068: 1869:, algae, and photosynthetic bacteria but has been lost by angiosperms during evolution. 390: 46: 4884: 4626: 4515: 4254: 4167:
Sims GK, Dunigan EP (1984). "Diurnal and seasonal variations in nitrogenase activity (C
4064: 4039: 3715: 3698: 3329: 3304: 3280: 3247: 3196: 3163: 3136: 3103: 3076: 3051: 3029: 2940: 2915: 2852: 2817: 2563: 2538: 2483: 2353: 2328: 2269: 2234: 2144: 2119: 1984: 1840: 4012: 3987: 3810: 3785: 3639: 3603: 3586: 3475: 3388: 3353: 2693: 4223: 4219: 4188: 4149: 4145: 4114: 4069: 4017: 3968: 3933: 3893: 3853: 3815: 3759: 3720: 3679: 3644: 3567: 3521: 3480: 3439: 3393: 3334: 3285: 3201: 3141: 3081: 2987: 2945: 2896: 2857: 2771: 2740: 2697: 2659: 2605: 2587: 2568: 2517: 2475: 2440: 2396: 2358: 2274: 2213: 2180: 2149: 2100: 2073: 2024: 1988: 1943: 1277:
characterization of this isolated intermediate shows a new species with a spin of ½.
1025: 1016: 712: 580: 490: 303: 261: 142: 3033: 2487: 2043: 444: 237: 4672: 4667: 4641: 4569: 4376: 4215: 4184: 4141: 4104: 4059: 4051: 4007: 3999: 3960: 3925: 3885: 3845: 3805: 3797: 3751: 3710: 3671: 3634: 3598: 3559: 3511: 3470: 3431: 3383: 3373: 3324: 3316: 3275: 3267: 3228: 3191: 3183: 3131: 3123: 3071: 3063: 3021: 2979: 2935: 2927: 2888: 2847: 2837: 2798: 2763: 2732: 2689: 2651: 2613: 2595: 2558: 2550: 2509: 2467: 2430: 2388: 2348: 2340: 2264: 2254: 2205: 2172: 2139: 2131: 2063: 2055: 2016: 2007: 1976: 1749: 1722: 1685: 1677: 1472: 816: 478: 291: 3801: 1921:
Unfortunately, the conversion of data from nitrogenase assays to actual moles of N
1322:
actually cycles between the original oxidation state and a singly oxidized state.
4719: 4703: 4616: 2513: 2209: 2176: 1741: 1681: 1338:
Distal vs. alternating mechanistic pathways for nitrogen fixation in nitrogenase.
1228:
Lowe-Thorneley kinetic model for reduction of nitrogen to ammonia by nitrogenase.
456: 366: 249: 4206:
Zumft WG, Mortenson LE (March 1975). "The nitrogen-fixing complex of bacteria".
3104:"N₂reduction and hydrogenation to ammonia by a molecular iron-potassium complex" 1213:– The one electron reduced intermediate has been trapped during turnover under N 1040:, and iron-only (Fe) nitrogenase. Molybdenum nitrogenase, which can be found in 4868: 4757: 4698: 4286: 3358:
Proceedings of the National Academy of Sciences of the United States of America
2822:
Proceedings of the National Academy of Sciences of the United States of America
2600: 2504:
Schneider K, MĂĽller A (January 2004). Smith BE, Richards RL, Newton WE (eds.).
2392: 2239:
Proceedings of the National Academy of Sciences of the United States of America
1872:
Separately, two of the nitrogenase subunits (NifD and NifH) have homologues in
1694: 1476: 1224: 850: 394: 170: 3755: 3025: 2471: 4878: 4662: 4621: 4352: 3763: 3516: 3499: 2609: 2479: 1890:
they are known to interact with each other and are constitutively expressed.
1789: 1539: 1516: 1488: 1480: 1430: 1414: 910: 906: 812:
which has a high reducing power and is responsible for a supply of electrons.
556: 552: 373: 4109: 4092: 3739: 3563: 3435: 3127: 3052:"Catalytic reduction of dinitrogen to ammonia at a single molybdenum center" 2842: 2736: 2642:
Burgess BK, Lowe DJ (November 1996). "Mechanism of Molybdenum Nitrogenase".
2259: 782:{\displaystyle E_{\mathrm {A} }=230-420\ \mathrm {kJ} \,\mathrm {mol^{-1}} } 4611: 4464: 4118: 4073: 3849: 3724: 3683: 3378: 3289: 3205: 3145: 3085: 2991: 2983: 2949: 2900: 2861: 2775: 2701: 2663: 2572: 2444: 2400: 2362: 2278: 2153: 2135: 2104: 2077: 2028: 1824: 1151: 599:) that create plants, animals and other organisms. They are encoded by the 584: 4153: 4021: 4003: 3972: 3937: 3897: 3819: 3648: 3571: 3525: 3484: 3443: 3338: 2744: 2554: 2539:"The structure of vanadium nitrogenase reveals an unusual bridging ligand" 839:
showing the sites of binding to nitrogenase (the amino acids cys and his).
265: 4835: 4770: 4606: 4227: 3857: 3458: 3397: 2816:
Lukoyanov D, Barney BM, Dean DR, Seefeldt LC, Hoffman BM (January 2007).
2059: 1862: 1801: 1704: 866: 819:
MoFe protein, a nitrogenase which uses the electrons provided to reduce N
801: 596: 592: 4055: 3964: 3889: 3622: 3498:
Ryle MJ, Lanzilotta WN, Mortenson LE, Watt GD, Seefeldt LC (June 1995).
3232: 3187: 1519:. A list of other reactions carried out by nitrogenases is shown below: 544: 538: 99: 4451: 4428: 4303: 1980: 1873: 1866: 1733: 1512: 1401: 1393: 1361: 1041: 858: 854: 3929: 3675: 3587:"Nuclear Magnetic Resonance Spectra of Adenosine Di- and Triphosphate" 3320: 3271: 3164:"Catalytic conversion of nitrogen to ammonia by an iron model complex" 3067: 2931: 2892: 2802: 2655: 2344: 2020: 4809: 4783: 2767: 2327:
Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (April 2014).
1813: 1783: 1661: 1523: 1446: 1422: 1397: 1356: 941: 809: 588: 4863: 1527: 1462: 1454: 1426: 1373: 1334: 1196:– This is the resting state of the enzyme before catalysis begins. 1049: 984: 937: 790: 600: 564: 548: 451: 361: 244: 2005:
Burges BK, Lowe DJ (1996). "Mechanism of Molybdenum Nitrogenase".
1325: 378: 4455: 3102:
Rodriguez MM, Bill E, Brennessel WW, Holland PL (November 2011).
1835: 1818: 1763: 1714: 1650: 1579: 1566: 1508: 1467: 1352: 1239: 831: 805: 572: 531: 118: 4086: 4037: 2117: 827:. In some assemblies it is replaced by a homologous alternative. 214:
Nitrogenase-type Oxidoreductase (component 1 subunit alpha/beta)
4822: 4592: 4243: 2383:. Bioinorganic chemistry / Biocatalysis and biotransformation. 2329:"Mechanism of nitrogen fixation by nitrogenase: the next stage" 1590: 1458: 1410: 1127: 1045: 836: 510: 323: 182: 94: 82: 70: 4208:
Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics
3413: 3101: 2877: 1882:. Little is understood about the function of these "class IV" 1507:
In addition to dinitrogen reduction, nitrogenases also reduce
1342:
While the mechanism for nitrogen fixation prior to the Janus E
28: 4796: 4484: 4479: 4474: 4343: 3786:"Interactions among substrates and inhibitors of nitrogenase" 2788: 2419:"Biosynthesis of the iron-molybdenum cofactor of nitrogenase" 1829: 1553: 1405:
interactions with the phosphates. In the absence of MgATP, a
1265: 3737: 3457:
Seefeldt LC, Morgan TV, Dean DR, Mortenson LE (April 1992).
4469: 4327: 4322: 4317: 3985: 3497: 3456: 2815: 1762:
have also been shown to catalyze the conversion of CO into
1492: 1421:
has demonstrated that when the lysine is substituted for a
472: 439: 285: 232: 106: 4561: 2757: 2585: 2233:
Yang J, Xie X, Wang X, Dixon R, Wang YP (September 2014).
4284: 3986:
Li J, Goldschmidt-Clermont M, Timko MP (December 1993).
3620: 2913: 2457: 2326: 1967:
Modak JM (2002). "Haber Process for Ammonia Synthesis".
1773: 1200:
characterization shows that this species has a spin of /
2588:"Structural insights into the iron nitrogenase complex" 4134:
Biochimica et Biophysica Acta (BBA) - General Subjects
1893: 4852: 3218: 1495:
prosthetic group, plays a crucial role in buffering O
721: 629: 3875: 3161: 1809:
Mutualistic bacteria (symbiotic), examples include:
1024:
Nitrogenase is an enzyme responsible for catalyzing
3162:Anderson JS, Rittle J, Peters JC (September 2013). 2120:"Molybdenum L-Edge XAS Spectra of MoFe Nitrogenase" 421:
Alternative nitrogenase (component 1) delta subunit
4387:4-Hydroxy-3-methylbut-2-enyl diphosphate reductase 3783: 3409: 3407: 1461:, most nitrogenases are irreversibly inhibited by 1155:reaction. Each intermediate stage is depicted as E 781: 703: 3661: 3245: 3097: 3095: 3007: 3005: 3003: 3001: 2499: 2497: 1886:genes, though they occur in many methanogens. In 1417:. Upon binding, this salt bridge is interrupted. 4876: 3157: 3155: 3011: 2873: 2871: 2679: 2232: 2199: 3541: 3404: 3045: 3043: 2637: 2635: 2633: 2631: 2629: 2503: 2322: 2320: 2318: 2316: 2314: 2312: 2310: 2308: 1848: 1141: 983:operon. This operon still requires some of the 952:binding in the central cavity of the cofactor. 614: 4205: 3915: 3092: 2998: 2675: 2673: 2494: 2378: 2374: 2372: 2306: 2304: 2302: 2300: 2298: 2296: 2294: 2292: 2290: 2288: 1174: 4577: 4270: 4033: 4031: 3537: 3535: 3351: 3152: 2965: 2963: 2961: 2959: 2868: 2714: 2412: 2410: 2041: 1380: 796:A usual assembly consists of two components: 3911: 3909: 3907: 3871: 3869: 3867: 3831: 3829: 3616: 3614: 3302: 3040: 2626: 2536: 2000: 1998: 1440: 4499:: Acting on X-H and Y-H to form an X-Y bond 4166: 2670: 2641: 2416: 2369: 2285: 2090: 2084: 343:Nitrogenase iron protein NifH (component 2) 4584: 4570: 4277: 4263: 4093:"The natural history of nitrogen fixation" 4028: 3950: 3784:Rivera-Ortiz JM, Burris RH (August 1975). 3779: 3777: 3584: 3532: 2956: 2407: 2204:. Springer Netherlands. pp. 281–307. 2171:. Springer Netherlands. pp. 255–279. 2004: 1264:– Termed the Janus intermediate after the 685: 27: 4108: 4063: 4011: 3904: 3864: 3835: 3826: 3809: 3714: 3638: 3611: 3602: 3585:Cohn, Mildred; Hughes, Thomas R. (1962). 3515: 3474: 3387: 3377: 3328: 3279: 3195: 3135: 3075: 2939: 2851: 2841: 2617: 2599: 2592:Nature Structural & Molecular Biology 2562: 2434: 2352: 2268: 2258: 2167:Hales BJ (2004). "Vanadium Nitrogenase". 2143: 2067: 1995: 757: 663: 4131: 2920:Journal of the American Chemical Society 2881:Journal of the American Chemical Society 2791:Journal of the American Chemical Society 1502: 1333: 1223: 1015: 1002: 994: 830: 559:. These enzymes are responsible for the 4392:7-Hydroxymethyl chlorophyll a reductase 3944: 3774: 3049: 1028:, which is the reduction of nitrogen (N 4877: 3246:Murakami J, Yamaguchi W (2012-05-14). 2436:10.1146/annurev.micro.62.081307.162737 4565: 4258: 3696: 2969: 2166: 1966: 1774:Organisms that synthesize nitrogenase 1457:. Due to the oxidative properties of 1326:Distal and alternating pathways for N 4541:Tetrahydrocannabinolic acid synthase 1918:apparently controlled by the plant. 1089: 1054: 1011: 4087:Raymond J, Siefert JL, Staples CR, 3627:The Journal of Biological Chemistry 3504:The Journal of Biological Chemistry 3463:The Journal of Biological Chemistry 3352:Hageman RV, Burris RH (June 1978). 2381:Current Opinion in Chemical Biology 1894:Measurement of nitrogenase activity 1491:, which can bind to dioxygen via a 1479:, allowing oxygen reduction at the 13: 4198: 3716:10.1111/j.1574-6976.2000.tb00545.x 3303:Dilworth MJ, Eady RR (July 1991). 2193: 2160: 863:pyruvate:ferredoxin oxidoreductase 766: 762: 759: 753: 750: 728: 691: 687: 672: 668: 665: 659: 656: 630: 14: 4911: 4236: 2537:Sippel D, Einsle O (2017-07-10). 1766:through a reaction comparable to 4862: 4551:Dichlorochromopyrrolate synthase 4242: 2093:Metal Ions in Biological Systems 1857:that performs the conversion of 1515:, meaning nitrogenase is also a 1385: 968:) type and the iron–iron (FeFe; 4358:(Methionine synthase) reductase 4160: 4125: 4097:Molecular Biology and Evolution 4080: 3979: 3731: 3690: 3655: 3591:Journal of Biological Chemistry 3578: 3491: 3450: 3345: 3296: 3239: 3212: 2907: 2809: 2782: 2751: 2708: 2579: 2530: 2506:Catalysts for Nitrogen Fixation 2451: 1351:in the distal pathway, and the 1097:+ 14 H + 12 e + 40 MgATP → 2 NH 887:ferredoxin:NADPH oxidoreductase 547:) that are produced by certain 2226: 2111: 2042:Alleman AB, Peters JW (2023). 2035: 1960: 1876:that do not fix nitrogen e.g. 896: 871:photosynthetic reaction center 1: 4529:(-)-bisdechlorogeodin-forming 4524:(+)-bisdechlorogeodin-forming 4177:Soil Biology and Biochemistry 3802:10.1128/JB.123.2.537-545.1975 3640:10.1016/S0021-9258(17)41861-8 3604:10.1016/S0021-9258(18)81382-5 3476:10.1016/S0021-9258(19)50480-X 3056:Accounts of Chemical Research 2694:10.1016/S0301-4622(01)00182-X 2423:Annual Review of Microbiology 1954: 1949:Abiological nitrogen fixation 1879:Methanocaldococcus jannaschii 1865:. This protein is present in 1855:protochlorophyllide reductase 1062:+ 8 H + 8 e + 16 MgATP → 2 NH 955: 609:protochlorophyllide reductase 467:Available protein structures: 280:Available protein structures: 4370:: Acting on CH or CH2 groups 4220:10.1016/0304-4173(75)90012-9 4189:10.1016/0038-0717(84)90118-4 4146:10.1016/0304-4165(66)90383-7 3050:Schrock RR (December 2005). 2514:10.1007/978-1-4020-3611-8_11 2417:Rubio LM, Ludden PW (2008). 2210:10.1007/978-1-4020-3611-8_11 2177:10.1007/978-1-4020-3611-8_10 1849:Similarity to other proteins 1445:Many mechanistic aspects of 1314:signal associated with the E 1142:Lowe-Thorneley kinetic model 990: 843: 615:Classification and structure 7: 4591: 4546:Cannabidiolic acid synthase 4175:reduction) of rice roots". 1937: 1754:rapid-equilibrium inhibitor 1409:exists between residue 15, 1115: 1080: 913:as fully oxidized Mo(VI)). 10: 4916: 2601:10.1038/s41594-023-01124-2 2393:10.1016/j.cbpa.2006.02.019 1782:Free-living bacteria (non- 1381:Mechanism of MgATP binding 555:(blue-green bacteria) and 4748: 4740:Michaelis–Menten kinetics 4712: 4681: 4650: 4599: 4495: 4446: 4423: 4400: 4366: 4338: 4298: 3756:10.1016/j.cub.2005.01.042 3703:FEMS Microbiology Reviews 3026:10.1007/s11244-006-0002-0 2472:10.1007/s11104-008-9833-8 1768:Fischer-Tropsch synthesis 1746:non-competitive inhibitor 1441:Other mechanistic details 1419:Site-specific mutagenesis 1368:to catalytically reduce N 865:, 2. by a bi-directional 789:). Nitrogenase acts as a 509: 489: 471: 466: 462: 450: 438: 430: 425: 420: 404: 384: 372: 360: 352: 347: 342: 322: 302: 284: 279: 275: 255: 243: 231: 223: 218: 213: 193: 181: 169: 164: 160: 141: 129: 117: 105: 93: 81: 69: 64: 52: 40: 35: 26: 21: 4632:Diffusion-limited enzyme 4506:Isopenicillin N synthase 4438:Nitrogenase (flavodoxin) 4382:Ribonucleotide reductase 3697:Oelze J (October 2000). 3517:10.1074/jbc.270.22.13112 1914:Clostridium pasteurianum 1266:Roman god of transitions 1163:, although reaction of E 1038:vanadium (V) nitrogenase 4044:Journal of Bacteriology 3790:Journal of Bacteriology 3564:10.1126/science.1359643 3436:10.1126/science.1529353 3309:The Biochemical Journal 3128:10.1126/science.1211906 2843:10.1073/pnas.0610975104 2737:10.1126/science.6585956 2543:Nature Chemical Biology 2260:10.1073/pnas.1411185111 975:The Anf nitrogenase in 3850:10.1002/anie.197505141 3379:10.1073/pnas.75.6.2699 2984:10.1002/anie.200502667 2136:10.1002/zaac.201400446 2048:Appl Environ Microbiol 1339: 1229: 1021: 1008: 1000: 977:Azotobacter vinelandii 928:Each FeMo cofactor (Fe 877:to dissipation of the 840: 783: 705: 607:. They are related to 4725:Eadie–Hofstee diagram 4658:Allosteric regulation 4110:10.1093/molbev/msh047 4004:10.1105/tpc.5.12.1817 2682:Biophysical Chemistry 2555:10.1038/nchembio.2428 1796:Green sulfur bacteria 1786:), examples include: 1760:Vanadium nitrogenases 1738:competitive inhibitor 1503:Nonspecific reactions 1337: 1290:state. The decay of E 1227: 1150:, freeze quench, and 1019: 1006: 998: 834: 784: 706: 4890:Iron–sulfur proteins 4735:Lineweaver–Burk plot 4427:: Acting on reduced 4406:iron–sulfur proteins 4313:Superoxide dismutase 4251:at Wikimedia Commons 2060:10.1128/aem.00378-23 1902:) to the product (NH 903:iron–sulfur clusters 883:electron bifurcation 719: 627: 621:enthalpy of reaction 4536:Aureusidin synthase 4511:Columbamine oxidase 4056:10.1128/JB.00876-07 3965:10.1021/bi00291a010 3890:10.1021/bi00016a009 3556:1992Sci...258..992W 3428:1992Sci...257.1653G 3370:1978PNAS...75.2699H 3264:2012NatSR...2E.407M 3233:10.1021/cr60316a001 3188:10.1038/nature12435 3180:2013Natur.501...84A 3120:2011Sci...334..780R 3014:Topics in Catalysis 2834:2007PNAS..104.1451L 2760:Dalton Transactions 2729:1984Sci...224.1095S 2251:2014PNAS..111E3718Y 1859:protochlorophyllide 1841:actinorhizal plants 1413:, and residue 125, 979:is organized in an 879:proton motive force 4900:Molybdenum enzymes 4694:Enzyme superfamily 4627:Enzyme promiscuity 4520:Sulochrin oxidase 4516:Reticuline oxidase 3252:Scientific Reports 1981:10.1007/bf02836187 1839:, associated with 1828:, associated with 1817:, associated with 1792:(blue-green algae) 1340: 1310:has confirmed the 1230: 1022: 1009: 1001: 841: 779: 701: 4850: 4849: 4559: 4558: 4247:Media related to 3930:10.1021/bi970217e 3838:Angewandte Chemie 3676:10.1021/bi036038g 3321:10.1042/bj2770465 3272:10.1038/srep00407 3068:10.1021/ar0501121 2972:Angewandte Chemie 2932:10.1021/ja205304t 2893:10.1021/ja043596p 2803:10.1021/ja000254k 2797:(20): 4926–4936. 2656:10.1021/cr950055x 2523:978-90-481-6675-6 2345:10.1021/cr400641x 2219:978-1-4020-3611-8 2186:978-1-4020-3611-8 2124:Z Anorg Allg Chem 2021:10.1021/cr950055x 1944:Nitrogen fixation 1123: 1122: 1105:+ 40 MgADP + 40 P 1088: 1087: 1070:+ 16 MgADP + 16 P 1026:nitrogen fixation 1012:General mechanism 873:, 4. by coupling 835:Structure of the 748: 713:activation energy 654: 581:nitrogen fixation 525: 524: 521: 520: 516:structure summary 416: 415: 338: 337: 334: 333: 329:structure summary 209: 208: 205: 204: 124:metabolic pathway 4907: 4867: 4866: 4858: 4730:Hanes–Woolf plot 4673:Enzyme activator 4668:Enzyme inhibitor 4642:Enzyme catalysis 4586: 4579: 4572: 4563: 4562: 4377:Xanthine oxidase 4279: 4272: 4265: 4256: 4255: 4246: 4231: 4193: 4192: 4164: 4158: 4157: 4129: 4123: 4122: 4112: 4084: 4078: 4077: 4067: 4035: 4026: 4025: 4015: 3983: 3977: 3976: 3948: 3942: 3941: 3913: 3902: 3901: 3873: 3862: 3861: 3833: 3824: 3823: 3813: 3781: 3772: 3771: 3735: 3729: 3728: 3718: 3694: 3688: 3687: 3659: 3653: 3652: 3642: 3618: 3609: 3608: 3606: 3582: 3576: 3575: 3539: 3530: 3529: 3519: 3495: 3489: 3488: 3478: 3454: 3448: 3447: 3422:(5077): 1653–9. 3411: 3402: 3401: 3391: 3381: 3349: 3343: 3342: 3332: 3300: 3294: 3293: 3283: 3243: 3237: 3236: 3216: 3210: 3209: 3199: 3159: 3150: 3149: 3139: 3099: 3090: 3089: 3079: 3047: 3038: 3037: 3009: 2996: 2995: 2967: 2954: 2953: 2943: 2926:(43): 17329–40. 2911: 2905: 2904: 2875: 2866: 2865: 2855: 2845: 2813: 2807: 2806: 2786: 2780: 2779: 2768:10.1039/B517633F 2755: 2749: 2748: 2723:(4653): 1095–7. 2712: 2706: 2705: 2677: 2668: 2667: 2650:(7): 2983–3012. 2644:Chemical Reviews 2639: 2624: 2623: 2621: 2603: 2583: 2577: 2576: 2566: 2534: 2528: 2527: 2501: 2492: 2491: 2455: 2449: 2448: 2438: 2414: 2405: 2404: 2376: 2367: 2366: 2356: 2333:Chemical Reviews 2324: 2283: 2282: 2272: 2262: 2245:(35): E3718-25. 2230: 2224: 2223: 2197: 2191: 2190: 2164: 2158: 2157: 2147: 2115: 2109: 2108: 2088: 2082: 2081: 2071: 2054:(5): e00378-23. 2039: 2033: 2032: 2015:(7): 2983–3011. 2008:Chemical Reviews 2002: 1993: 1992: 1964: 1756:of nitrogenase. 1750:carbon disulfide 1576: 1575: 1574: 1473:Azotobacteraceae 1435:X-ray scattering 1396:of the terminal 1389: 1302:and finally to E 1117: 1090: 1082: 1055: 1032:) to ammonia (NH 940:residue and one 817:heterotetrameric 788: 786: 785: 780: 778: 777: 776: 756: 746: 733: 732: 731: 710: 708: 707: 702: 700: 699: 698: 684: 683: 682: 662: 652: 642: 641: 464: 463: 418: 417: 340: 339: 277: 276: 211: 210: 162: 161: 31: 19: 18: 16:Class of enzymes 4915: 4914: 4910: 4909: 4908: 4906: 4905: 4904: 4875: 4874: 4873: 4861: 4853: 4851: 4846: 4758:Oxidoreductases 4744: 4720:Enzyme kinetics 4708: 4704:List of enzymes 4677: 4646: 4617:Catalytic triad 4595: 4590: 4560: 4555: 4491: 4442: 4419: 4396: 4362: 4334: 4294: 4287:oxidoreductases 4283: 4239: 4234: 4201: 4199:Further reading 4196: 4174: 4170: 4165: 4161: 4130: 4126: 4085: 4081: 4036: 4029: 3998:(12): 1817–29. 3984: 3980: 3959:(22): 5111–22. 3949: 3945: 3924:(28): 8574–85. 3914: 3905: 3874: 3865: 3834: 3827: 3782: 3775: 3744:Current Biology 3736: 3732: 3695: 3691: 3660: 3656: 3619: 3612: 3583: 3579: 3550:(5084): 992–5. 3540: 3533: 3510:(22): 13112–7. 3496: 3492: 3455: 3451: 3412: 3405: 3364:(6): 2699–702. 3350: 3346: 3301: 3297: 3244: 3240: 3217: 3213: 3160: 3153: 3114:(6057): 780–3. 3100: 3093: 3048: 3041: 3010: 2999: 2968: 2957: 2912: 2908: 2887:(17): 6231–41. 2876: 2869: 2814: 2810: 2787: 2783: 2762:(19): 2277–84. 2756: 2752: 2713: 2709: 2678: 2671: 2640: 2627: 2584: 2580: 2535: 2531: 2524: 2502: 2495: 2456: 2452: 2415: 2408: 2377: 2370: 2325: 2286: 2231: 2227: 2220: 2198: 2194: 2187: 2165: 2161: 2116: 2112: 2089: 2085: 2040: 2036: 2003: 1996: 1965: 1961: 1957: 1940: 1932: 1929:competes with N 1928: 1924: 1909: 1905: 1901: 1896: 1851: 1776: 1752:functions as a 1744:functions as a 1742:carbon monoxide 1736:functions as a 1728: 1720: 1710: 1700: 1689: 1674: 1669: 1665: 1658: 1654: 1648: 1644: 1640: 1636: 1632: 1626: 1622: 1615: 1611: 1607: 1603: 1598: 1594: 1588: 1583: 1573: 1571: 1570: 1569: 1567: 1563: 1559: 1549: 1545: 1535: 1531: 1505: 1498: 1486: 1443: 1383: 1371: 1345: 1332: 1329: 1317: 1309: 1305: 1301: 1297: 1293: 1289: 1271: 1262: 1253: 1245: 1236: 1216: 1211: 1203: 1194: 1184: 1182: 1178: 1175:Intermediates E 1170: 1166: 1162: 1158: 1144: 1137: 1133: 1108: 1104: 1100: 1096: 1073: 1069: 1065: 1061: 1035: 1031: 1014: 993: 958: 951: 935: 931: 924: 920: 899: 846: 826: 822: 769: 765: 758: 749: 727: 726: 722: 720: 717: 716: 694: 690: 686: 675: 671: 664: 655: 637: 633: 628: 625: 624: 617: 578: 570: 17: 12: 11: 5: 4913: 4903: 4902: 4897: 4895:Nitrogen cycle 4892: 4887: 4872: 4871: 4848: 4847: 4845: 4844: 4831: 4818: 4805: 4792: 4779: 4766: 4752: 4750: 4746: 4745: 4743: 4742: 4737: 4732: 4727: 4722: 4716: 4714: 4710: 4709: 4707: 4706: 4701: 4696: 4691: 4685: 4683: 4682:Classification 4679: 4678: 4676: 4675: 4670: 4665: 4660: 4654: 4652: 4648: 4647: 4645: 4644: 4639: 4634: 4629: 4624: 4619: 4614: 4609: 4603: 4601: 4597: 4596: 4589: 4588: 4581: 4574: 4566: 4557: 4556: 4554: 4553: 4548: 4543: 4538: 4533: 4532: 4531: 4526: 4518: 4513: 4508: 4502: 4500: 4493: 4492: 4490: 4489: 4488: 4487: 4482: 4477: 4472: 4461: 4459: 4444: 4443: 4441: 4440: 4434: 4432: 4421: 4420: 4418: 4417: 4411: 4409: 4398: 4397: 4395: 4394: 4389: 4384: 4379: 4373: 4371: 4364: 4363: 4361: 4360: 4355: 4349: 4347: 4336: 4335: 4333: 4332: 4331: 4330: 4325: 4320: 4309: 4307: 4296: 4295: 4282: 4281: 4274: 4267: 4259: 4253: 4252: 4238: 4237:External links 4235: 4233: 4232: 4202: 4200: 4197: 4195: 4194: 4172: 4168: 4159: 4124: 4091:(March 2004). 4089:Blankenship RE 4079: 4050:(20): 7392–8. 4027: 3992:The Plant Cell 3978: 3943: 3903: 3884:(16): 5382–9. 3863: 3825: 3773: 3750:(6): 531–535. 3730: 3689: 3654: 3610: 3577: 3531: 3490: 3469:(10): 6680–8. 3449: 3403: 3344: 3295: 3238: 3227:(6): 589–625. 3211: 3174:(7465): 84–7. 3151: 3091: 3062:(12): 955–62. 3039: 2997: 2955: 2906: 2867: 2808: 2781: 2750: 2707: 2688:(3): 281–304. 2669: 2625: 2578: 2549:(9): 956–960. 2529: 2522: 2493: 2466:(1–2): 35–59. 2460:Plant and Soil 2450: 2406: 2368: 2339:(8): 4041–62. 2284: 2225: 2218: 2192: 2185: 2159: 2110: 2083: 2034: 1994: 1958: 1956: 1953: 1952: 1951: 1946: 1939: 1936: 1930: 1926: 1922: 1907: 1903: 1899: 1895: 1892: 1850: 1847: 1846: 1845: 1844: 1843: 1832: 1821: 1807: 1806: 1805: 1798: 1793: 1775: 1772: 1730: 1729: 1726: 1718: 1712: 1708: 1702: 1698: 1692: 1687: 1675: 1672: 1667: 1663: 1656: 1652: 1646: 1642: 1638: 1634: 1630: 1627: 1624: 1620: 1617: 1613: 1609: 1605: 1601: 1596: 1592: 1586: 1581: 1572: 1564: 1561: 1557: 1551: 1547: 1543: 1537: 1533: 1529: 1504: 1501: 1496: 1484: 1477:metabolic rate 1442: 1439: 1382: 1379: 1369: 1343: 1331: 1327: 1324: 1318:intermediate. 1315: 1307: 1303: 1299: 1295: 1291: 1287: 1269: 1260: 1251: 1243: 1234: 1214: 1209: 1201: 1192: 1183: 1180: 1176: 1173: 1168: 1164: 1160: 1156: 1143: 1140: 1135: 1131: 1121: 1120: 1111: 1109: 1106: 1102: 1098: 1094: 1086: 1085: 1076: 1074: 1071: 1067: 1063: 1059: 1033: 1029: 1013: 1010: 992: 989: 957: 954: 949: 946: 945: 933: 929: 926: 922: 918: 907:FeMo cofactors 898: 895: 851:reducing agent 845: 842: 829: 828: 824: 820: 813: 775: 772: 768: 764: 761: 755: 752: 745: 742: 739: 736: 730: 725: 715:is very high ( 697: 693: 689: 681: 678: 674: 670: 667: 661: 658: 651: 648: 645: 640: 636: 632: 616: 613: 576: 568: 523: 522: 519: 518: 513: 507: 506: 493: 487: 486: 476: 469: 468: 460: 459: 454: 448: 447: 442: 436: 435: 432: 428: 427: 423: 422: 414: 413: 408: 402: 401: 388: 382: 381: 376: 370: 369: 364: 358: 357: 354: 350: 349: 345: 344: 336: 335: 332: 331: 326: 320: 319: 306: 300: 299: 289: 282: 281: 273: 272: 259: 253: 252: 247: 241: 240: 235: 229: 228: 227:Oxidored_nitro 225: 221: 220: 216: 215: 207: 206: 203: 202: 197: 191: 190: 185: 179: 178: 173: 167: 166: 158: 157: 146: 139: 138: 133: 127: 126: 121: 115: 114: 109: 103: 102: 97: 91: 90: 85: 79: 78: 73: 67: 66: 62: 61: 56: 50: 49: 44: 38: 37: 33: 32: 24: 23: 15: 9: 6: 4: 3: 2: 4912: 4901: 4898: 4896: 4893: 4891: 4888: 4886: 4883: 4882: 4880: 4870: 4865: 4860: 4859: 4856: 4842: 4838: 4837: 4832: 4829: 4825: 4824: 4819: 4816: 4812: 4811: 4806: 4803: 4799: 4798: 4793: 4790: 4786: 4785: 4780: 4777: 4773: 4772: 4767: 4764: 4760: 4759: 4754: 4753: 4751: 4747: 4741: 4738: 4736: 4733: 4731: 4728: 4726: 4723: 4721: 4718: 4717: 4715: 4711: 4705: 4702: 4700: 4699:Enzyme family 4697: 4695: 4692: 4690: 4687: 4686: 4684: 4680: 4674: 4671: 4669: 4666: 4664: 4663:Cooperativity 4661: 4659: 4656: 4655: 4653: 4649: 4643: 4640: 4638: 4635: 4633: 4630: 4628: 4625: 4623: 4622:Oxyanion hole 4620: 4618: 4615: 4613: 4610: 4608: 4605: 4604: 4602: 4598: 4594: 4587: 4582: 4580: 4575: 4573: 4568: 4567: 4564: 4552: 4549: 4547: 4544: 4542: 4539: 4537: 4534: 4530: 4527: 4525: 4522: 4521: 4519: 4517: 4514: 4512: 4509: 4507: 4504: 4503: 4501: 4498: 4494: 4486: 4483: 4481: 4478: 4476: 4473: 4471: 4468: 4467: 4466: 4463: 4462: 4460: 4457: 4453: 4449: 4445: 4439: 4436: 4435: 4433: 4430: 4426: 4422: 4416: 4413: 4412: 4410: 4407: 4403: 4399: 4393: 4390: 4388: 4385: 4383: 4380: 4378: 4375: 4374: 4372: 4369: 4365: 4359: 4356: 4354: 4353:Ceruloplasmin 4351: 4350: 4348: 4345: 4341: 4337: 4329: 4326: 4324: 4321: 4319: 4316: 4315: 4314: 4311: 4310: 4308: 4305: 4301: 4297: 4292: 4288: 4280: 4275: 4273: 4268: 4266: 4261: 4260: 4257: 4250: 4245: 4241: 4240: 4229: 4225: 4221: 4217: 4213: 4209: 4204: 4203: 4190: 4186: 4182: 4178: 4163: 4155: 4151: 4147: 4143: 4140:(2): 285–94. 4139: 4135: 4128: 4120: 4116: 4111: 4106: 4103:(3): 541–54. 4102: 4098: 4094: 4090: 4083: 4075: 4071: 4066: 4061: 4057: 4053: 4049: 4045: 4041: 4034: 4032: 4023: 4019: 4014: 4009: 4005: 4001: 3997: 3993: 3989: 3982: 3974: 3970: 3966: 3962: 3958: 3954: 3947: 3939: 3935: 3931: 3927: 3923: 3919: 3912: 3910: 3908: 3899: 3895: 3891: 3887: 3883: 3879: 3872: 3870: 3868: 3859: 3855: 3851: 3847: 3844:(8): 514–22. 3843: 3839: 3832: 3830: 3821: 3817: 3812: 3807: 3803: 3799: 3796:(2): 537–45. 3795: 3791: 3787: 3780: 3778: 3770: 3765: 3761: 3757: 3753: 3749: 3745: 3741: 3734: 3726: 3722: 3717: 3712: 3709:(4): 321–33. 3708: 3704: 3700: 3693: 3685: 3681: 3677: 3673: 3670:(6): 1401–9. 3669: 3665: 3658: 3650: 3646: 3641: 3636: 3633:(5): 3290–4. 3632: 3628: 3624: 3617: 3615: 3605: 3600: 3596: 3592: 3588: 3581: 3573: 3569: 3565: 3561: 3557: 3553: 3549: 3545: 3538: 3536: 3527: 3523: 3518: 3513: 3509: 3505: 3501: 3494: 3486: 3482: 3477: 3472: 3468: 3464: 3460: 3453: 3445: 3441: 3437: 3433: 3429: 3425: 3421: 3417: 3410: 3408: 3399: 3395: 3390: 3385: 3380: 3375: 3371: 3367: 3363: 3359: 3355: 3348: 3340: 3336: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3299: 3291: 3287: 3282: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3242: 3234: 3230: 3226: 3222: 3215: 3207: 3203: 3198: 3193: 3189: 3185: 3181: 3177: 3173: 3169: 3165: 3158: 3156: 3147: 3143: 3138: 3133: 3129: 3125: 3121: 3117: 3113: 3109: 3105: 3098: 3096: 3087: 3083: 3078: 3073: 3069: 3065: 3061: 3057: 3053: 3046: 3044: 3035: 3031: 3027: 3023: 3019: 3015: 3008: 3006: 3004: 3002: 2993: 2989: 2985: 2981: 2977: 2973: 2966: 2964: 2962: 2960: 2951: 2947: 2942: 2937: 2933: 2929: 2925: 2921: 2917: 2910: 2902: 2898: 2894: 2890: 2886: 2882: 2874: 2872: 2863: 2859: 2854: 2849: 2844: 2839: 2835: 2831: 2828:(5): 1451–5. 2827: 2823: 2819: 2812: 2804: 2800: 2796: 2792: 2785: 2777: 2773: 2769: 2765: 2761: 2754: 2746: 2742: 2738: 2734: 2730: 2726: 2722: 2718: 2711: 2703: 2699: 2695: 2691: 2687: 2683: 2676: 2674: 2665: 2661: 2657: 2653: 2649: 2645: 2638: 2636: 2634: 2632: 2630: 2620: 2615: 2611: 2607: 2602: 2597: 2593: 2589: 2582: 2574: 2570: 2565: 2560: 2556: 2552: 2548: 2544: 2540: 2533: 2525: 2519: 2515: 2511: 2507: 2500: 2498: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2454: 2446: 2442: 2437: 2432: 2429:(1): 93–111. 2428: 2424: 2420: 2413: 2411: 2402: 2398: 2394: 2390: 2386: 2382: 2375: 2373: 2364: 2360: 2355: 2350: 2346: 2342: 2338: 2334: 2330: 2323: 2321: 2319: 2317: 2315: 2313: 2311: 2309: 2307: 2305: 2303: 2301: 2299: 2297: 2295: 2293: 2291: 2289: 2280: 2276: 2271: 2266: 2261: 2256: 2252: 2248: 2244: 2240: 2236: 2229: 2221: 2215: 2211: 2207: 2203: 2196: 2188: 2182: 2178: 2174: 2170: 2163: 2155: 2151: 2146: 2141: 2137: 2133: 2129: 2125: 2121: 2114: 2106: 2102: 2098: 2094: 2087: 2079: 2075: 2070: 2065: 2061: 2057: 2053: 2049: 2045: 2038: 2030: 2026: 2022: 2018: 2014: 2010: 2009: 2001: 1999: 1990: 1986: 1982: 1978: 1974: 1970: 1963: 1959: 1950: 1947: 1945: 1942: 1941: 1935: 1919: 1916: 1915: 1891: 1889: 1888:M. jannaschii 1885: 1881: 1880: 1875: 1870: 1868: 1864: 1860: 1856: 1842: 1838: 1837: 1833: 1831: 1827: 1826: 1822: 1820: 1816: 1815: 1811: 1810: 1808: 1804: 1803: 1799: 1797: 1794: 1791: 1790:Cyanobacteria 1788: 1787: 1785: 1781: 1780: 1779: 1771: 1769: 1765: 1761: 1757: 1755: 1751: 1747: 1743: 1739: 1735: 1732:Furthermore, 1724: 1716: 1713: 1706: 1703: 1696: 1693: 1691: 1683: 1679: 1676: 1670: 1659: 1628: 1618: 1599: 1584: 1577: 1565: 1555: 1552: 1541: 1538: 1536: 1525: 1522: 1521: 1520: 1518: 1517:dehydrogenase 1514: 1510: 1500: 1494: 1490: 1489:leghemoglobin 1482: 1481:cell membrane 1478: 1474: 1470: 1469: 1464: 1460: 1456: 1450: 1448: 1438: 1436: 1432: 1431:glutamic acid 1428: 1424: 1420: 1416: 1415:aspartic acid 1412: 1408: 1403: 1399: 1395: 1390: 1388: 1378: 1375: 1365: 1363: 1358: 1354: 1350: 1336: 1323: 1319: 1313: 1284: 1280: 1276: 1267: 1263: 1256: 1254: 1247: 1241: 1237: 1226: 1222: 1220: 1212: 1205: 1199: 1195: 1188: 1172: 1153: 1149: 1139: 1138:takes place. 1129: 1128:FeMo-cofactor 1119: 1112: 1110: 1092: 1091: 1084: 1077: 1075: 1057: 1056: 1053: 1051: 1047: 1043: 1039: 1027: 1018: 1005: 997: 988: 986: 982: 978: 973: 971: 967: 963: 962:vanadium–iron 953: 943: 939: 927: 916: 915: 914: 912: 911:molybdopterin 908: 904: 894: 892: 888: 885:, or 6. by a 884: 880: 876: 875:electron flow 872: 868: 864: 860: 856: 852: 838: 837:FeMo cofactor 833: 818: 814: 811: 807: 803: 799: 798: 797: 794: 792: 773: 770: 743: 740: 737: 734: 723: 714: 695: 679: 676: 649: 646: 643: 638: 634: 622: 612: 610: 606: 602: 598: 594: 590: 586: 582: 574: 566: 562: 558: 557:rhizobacteria 554: 553:cyanobacteria 550: 546: 543: 540: 537: 533: 529: 517: 514: 512: 508: 505: 501: 497: 494: 492: 488: 484: 480: 477: 474: 470: 465: 461: 458: 455: 453: 449: 446: 443: 441: 437: 433: 429: 424: 419: 412: 409: 407: 403: 400: 396: 392: 389: 387: 383: 380: 377: 375: 371: 368: 365: 363: 359: 355: 351: 346: 341: 330: 327: 325: 321: 318: 314: 310: 307: 305: 301: 297: 293: 290: 287: 283: 278: 274: 271: 267: 263: 260: 258: 254: 251: 248: 246: 242: 239: 236: 234: 230: 226: 222: 217: 212: 201: 198: 196: 192: 189: 186: 184: 180: 177: 174: 172: 168: 163: 159: 156: 153: 150: 147: 144: 140: 137: 134: 132: 128: 125: 122: 120: 116: 113: 110: 108: 104: 101: 100:NiceZyme view 98: 96: 92: 89: 86: 84: 80: 77: 74: 72: 68: 63: 60: 57: 55: 51: 48: 45: 43: 39: 34: 30: 25: 20: 4836:Translocases 4833: 4820: 4807: 4794: 4781: 4771:Transferases 4768: 4755: 4612:Binding site 4465:Glutaredoxin 4450:: Acting on 4414: 4404:: Acting on 4342:: Oxidizing 4302:: Acting on 4211: 4207: 4180: 4176: 4162: 4137: 4133: 4127: 4100: 4096: 4082: 4047: 4043: 3995: 3991: 3981: 3956: 3953:Biochemistry 3952: 3946: 3921: 3918:Biochemistry 3917: 3881: 3878:Biochemistry 3877: 3841: 3837: 3793: 3789: 3767: 3747: 3743: 3733: 3706: 3702: 3692: 3667: 3664:Biochemistry 3663: 3657: 3630: 3626: 3594: 3590: 3580: 3547: 3543: 3507: 3503: 3493: 3466: 3462: 3452: 3419: 3415: 3361: 3357: 3347: 3315:(2): 465–8. 3312: 3308: 3298: 3255: 3251: 3241: 3224: 3220: 3214: 3171: 3167: 3111: 3107: 3059: 3055: 3020:(1): 55–70. 3017: 3013: 2978:(2): 196–9. 2975: 2971: 2923: 2919: 2909: 2884: 2880: 2825: 2821: 2811: 2794: 2790: 2784: 2759: 2753: 2720: 2716: 2710: 2685: 2681: 2647: 2643: 2591: 2581: 2546: 2542: 2532: 2505: 2463: 2459: 2453: 2426: 2422: 2387:(2): 101–8. 2384: 2380: 2336: 2332: 2242: 2238: 2228: 2201: 2195: 2168: 2162: 2130:(1): 65–71. 2127: 2123: 2113: 2096: 2092: 2086: 2051: 2047: 2037: 2012: 2006: 1975:(9): 69–77. 1972: 1968: 1962: 1920: 1912: 1906:). Since NH 1897: 1887: 1883: 1877: 1871: 1852: 1834: 1825:Azospirillum 1823: 1812: 1800: 1777: 1758: 1731: 1506: 1466: 1451: 1444: 1391: 1384: 1366: 1341: 1320: 1258: 1257: 1249: 1248: 1232: 1231: 1207: 1206: 1190: 1189: 1185: 1152:stopped-flow 1148:Steady state 1145: 1124: 1113: 1078: 1048:-associated 1023: 980: 976: 974: 969: 965: 959: 947: 917:The core (Fe 900: 847: 795: 618: 585:biosynthesis 528:Nitrogenases 527: 526: 88:BRENDA entry 4607:Active site 4415:Nitrogenase 4306:as acceptor 4249:Nitrogenase 4214:(1): 1–52. 3597:: 176–181. 1874:methanogens 1867:gymnosperms 1863:chlorophyll 1802:Azotobacter 1619:N≡C–R → RCH 1407:salt bridge 1042:diazotrophs 897:Nitrogenase 867:hydrogenase 802:homodimeric 597:amino acids 593:nucleotides 426:Identifiers 348:Identifiers 219:Identifiers 76:IntEnz view 36:Identifiers 22:Nitrogenase 4879:Categories 4810:Isomerases 4784:Hydrolases 4651:Regulation 4452:phosphorus 4429:flavodoxin 4304:superoxide 4293:1.15–1.21) 2099:: 75–119. 1955:References 1734:dihydrogen 1629:C≡N–R → CH 1513:dihydrogen 1402:amino acid 1394:Hydrolysis 1187:nitrogen: 956:Variations 869:, 3. in a 859:flavodoxin 855:ferredoxin 853:, such as 551:, such as 479:structures 292:structures 145:structures 112:KEGG entry 59:9013-04-1 4885:EC 1.18.6 4689:EC number 4458:in donors 4408:as donors 4183:: 15–18. 3764:0960-9822 3221:Chem. Rev 2610:1545-9985 2480:0032-079X 1989:195305228 1969:Resonance 1814:Rhizobium 1784:symbiotic 1725:, CO + NH 1447:catalysis 1423:glutamine 1398:phosphate 1357:hydrazine 1219:MÓ§ssbauer 1179:through E 991:Mechanism 985:Nif genes 981:anfHDGKOR 942:histidine 844:Reductase 810:reductase 771:− 741:− 677:− 647:− 631:Δ 601:Nif genes 589:molecules 561:reduction 457:IPR004349 434:AnfG_VnfG 367:IPR005977 250:IPR000510 65:Databases 4713:Kinetics 4637:Cofactor 4600:Activity 4431:as donor 4119:14694078 4074:17660283 3725:10978541 3684:14769015 3290:22586517 3206:24005414 3146:22076372 3086:16359167 3034:93357657 2992:16342309 2950:21980917 2901:15853328 2862:17251348 2776:16688314 2702:11551440 2664:11848849 2619:10803253 2573:28692069 2488:10892514 2445:18429691 2401:16510305 2363:24467365 2279:25139995 2154:26213424 2105:11913144 2078:37154716 2069:10231201 2029:11848849 1938:See also 1711:S + HCN 1697:→ CO + H 1463:dioxygen 1455:ethylene 1427:arginine 1374:tungsten 1372:. Small 1330:fixation 1050:rhizobia 1044:such as 944:residue. 938:cysteine 881:, 5. by 804:Fe-only 791:catalyst 605:homologs 565:nitrogen 549:bacteria 545:1.19.6.1 539:1.18.6.1 496:RCSB PDB 452:InterPro 362:InterPro 309:RCSB PDB 245:InterPro 200:proteins 188:articles 176:articles 149:RCSB PDB 47:1.18.6.1 4869:Biology 4823:Ligases 4593:Enzymes 4456:arsenic 4154:5964974 4065:2168459 4022:8305874 3973:6360203 3938:9214303 3898:7727396 3820:1150625 3649:8106367 3572:1359643 3552:Bibcode 3544:Science 3526:7768906 3485:1313018 3444:1529353 3424:Bibcode 3416:Science 3366:Bibcode 3339:1859374 3330:1151257 3281:3350986 3260:Bibcode 3258:: 407. 3197:3882122 3176:Bibcode 3137:3218428 3116:Bibcode 3108:Science 3077:2551323 2941:3232045 2853:1785236 2830:Bibcode 2745:6585956 2725:Bibcode 2717:Science 2594:: 1–9. 2564:5563456 2354:4012840 2270:4156695 2247:Bibcode 2145:4510703 1836:Frankia 1830:grasses 1819:legumes 1764:alkanes 1509:protons 1468:in vivo 1353:diazene 1349:nitrido 1240:hydride 806:protein 711:), the 573:ammonia 532:enzymes 445:PF03139 411:cd02040 391:d1fp6a_ 238:PF00148 136:profile 119:MetaCyc 54:CAS no. 4855:Portal 4797:Lyases 4285:Other 4228:164247 4226:  4152:  4117:  4072:  4062:  4020:  4013:160407 4010:  3971:  3936:  3896:  3858:810048 3856:  3818:  3811:235759 3808:  3762:  3723:  3682:  3647:  3570:  3524:  3483:  3442:  3398:275837 3396:  3389:392630 3386:  3337:  3327:  3288:  3278:  3204:  3194:  3168:Nature 3144:  3134:  3084:  3074:  3032:  2990:  2948:  2938:  2899:  2860:  2850:  2774:  2743:  2700:  2662:  2616:  2608:  2571:  2561:  2520:  2486:  2478:  2443:  2399:  2361:  2351:  2277:  2267:  2216:  2183:  2152:  2142:  2103:  2076:  2066:  2027:  1987:  1748:, and 1459:oxygen 1411:lysine 1306:and 2H 1167:with N 1046:legume 964:(VFe; 808:, the 747:  653:  511:PDBsum 485:  475:  431:Symbol 399:SUPFAM 353:Symbol 324:PDBsum 298:  288:  270:SUPFAM 224:Symbol 183:PubMed 165:Search 155:PDBsum 95:ExPASy 83:BRENDA 71:IntEnz 42:EC no. 4749:Types 4485:GLRX5 4480:GLRX3 4475:GLRX2 4344:metal 3030:S2CID 2484:S2CID 1985:S2CID 1715:O=C=N 1705:S=C=N 1695:O=C=O 1678:O=C=S 1671:, RNH 1554:N=N=N 1540:N=N=O 1524:HC≡CH 1283:ENDOR 1279:ENDOR 1134:to NH 1101:+ 3 H 823:to NH 571:) to 395:SCOPe 386:SCOP2 266:SCOPe 257:SCOP2 131:PRIAM 4841:list 4834:EC7 4828:list 4821:EC6 4815:list 4808:EC5 4802:list 4795:EC4 4789:list 4782:EC3 4776:list 4769:EC2 4763:list 4756:EC1 4497:1.21 4470:GLRX 4448:1.20 4425:1.19 4402:1.18 4368:1.17 4346:ions 4340:1.16 4328:SOD3 4323:SOD2 4318:SOD1 4300:1.15 4224:PMID 4150:PMID 4115:PMID 4070:PMID 4018:PMID 3969:PMID 3934:PMID 3894:PMID 3854:PMID 3816:PMID 3769:SNF. 3760:ISSN 3721:PMID 3680:PMID 3645:PMID 3568:PMID 3522:PMID 3481:PMID 3440:PMID 3394:PMID 3335:PMID 3286:PMID 3202:PMID 3142:PMID 3082:PMID 2988:PMID 2946:PMID 2897:PMID 2858:PMID 2772:PMID 2741:PMID 2698:PMID 2660:PMID 2606:ISSN 2569:PMID 2518:ISBN 2476:ISSN 2441:PMID 2397:PMID 2359:PMID 2275:PMID 2214:ISBN 2181:ISBN 2150:PMID 2101:PMID 2074:PMID 2025:PMID 1721:O + 1645:C=CH 1637:C–CH 1623:+ NH 1604:C=CH 1595:C–CH 1585:, NH 1560:+ NH 1532:C=CH 1493:heme 1355:and 1294:to E 815:The 800:The 650:45.2 530:are 504:PDBj 500:PDBe 483:ECOD 473:Pfam 440:Pfam 379:1fp6 374:CATH 356:NifH 317:PDBj 313:PDBe 296:ECOD 286:Pfam 262:1mio 233:Pfam 195:NCBI 152:PDBe 107:KEGG 4454:or 4216:doi 4212:416 4185:doi 4142:doi 4138:127 4105:doi 4060:PMC 4052:doi 4048:189 4008:PMC 4000:doi 3961:doi 3926:doi 3886:doi 3846:doi 3806:PMC 3798:doi 3794:123 3752:doi 3711:doi 3672:doi 3635:doi 3631:269 3599:doi 3595:237 3560:doi 3548:258 3512:doi 3508:270 3471:doi 3467:267 3432:doi 3420:257 3384:PMC 3374:doi 3325:PMC 3317:doi 3313:277 3276:PMC 3268:doi 3229:doi 3192:PMC 3184:doi 3172:501 3132:PMC 3124:doi 3112:334 3072:PMC 3064:doi 3022:doi 2980:doi 2936:PMC 2928:doi 2924:133 2889:doi 2885:127 2848:PMC 2838:doi 2826:104 2799:doi 2795:122 2764:doi 2733:doi 2721:224 2690:doi 2652:doi 2614:PMC 2596:doi 2559:PMC 2551:doi 2510:doi 2468:doi 2464:321 2431:doi 2389:doi 2349:PMC 2341:doi 2337:114 2265:PMC 2255:doi 2243:111 2206:doi 2173:doi 2140:PMC 2132:doi 2128:641 2064:PMC 2056:doi 2017:doi 1977:doi 1884:nif 1861:to 1723:HCN 1717:→ H 1707:→ H 1641:, H 1633:, H 1608:(CH 1600:, H 1568:C≡N 1556:→ N 1546:+ H 1542:→ N 1511:to 1312:EPR 1298:+ H 1275:EPR 1198:EPR 1066:+ H 970:Anf 966:Vnf 932:MoS 891:ATP 857:or 744:420 738:230 603:or 587:of 575:(NH 563:of 491:PDB 406:CDD 304:PDB 171:PMC 143:PDB 4881:: 4291:EC 4222:. 4210:. 4181:16 4179:. 4148:. 4136:. 4113:. 4101:21 4099:. 4095:. 4068:. 4058:. 4046:. 4042:. 4030:^ 4016:. 4006:. 3994:. 3990:. 3967:. 3957:22 3955:. 3932:. 3922:36 3920:. 3906:^ 3892:. 3882:34 3880:. 3866:^ 3852:. 3842:14 3840:. 3828:^ 3814:. 3804:. 3792:. 3788:. 3776:^ 3766:. 3758:. 3748:15 3746:. 3742:. 3719:. 3707:24 3705:. 3701:. 3678:. 3668:43 3666:. 3643:. 3629:. 3625:. 3613:^ 3593:. 3589:. 3566:. 3558:. 3546:. 3534:^ 3520:. 3506:. 3502:. 3479:. 3465:. 3461:. 3438:. 3430:. 3418:. 3406:^ 3392:. 3382:. 3372:. 3362:75 3360:. 3356:. 3333:. 3323:. 3311:. 3307:. 3284:. 3274:. 3266:. 3254:. 3250:. 3225:78 3223:. 3200:. 3190:. 3182:. 3170:. 3166:. 3154:^ 3140:. 3130:. 3122:. 3110:. 3106:. 3094:^ 3080:. 3070:. 3060:38 3058:. 3054:. 3042:^ 3028:. 3018:37 3016:. 3000:^ 2986:. 2976:45 2974:. 2958:^ 2944:. 2934:. 2922:. 2918:. 2895:. 2883:. 2870:^ 2856:. 2846:. 2836:. 2824:. 2820:. 2793:. 2770:. 2739:. 2731:. 2719:. 2696:. 2686:91 2684:. 2672:^ 2658:. 2648:96 2646:. 2628:^ 2612:. 2604:. 2590:. 2567:. 2557:. 2547:13 2545:. 2541:. 2516:. 2496:^ 2482:. 2474:. 2462:. 2439:. 2427:62 2425:. 2421:. 2409:^ 2395:. 2385:10 2371:^ 2357:. 2347:. 2335:. 2331:. 2287:^ 2273:. 2263:. 2253:. 2241:. 2237:. 2212:. 2179:. 2148:. 2138:. 2126:. 2122:. 2097:39 2095:. 2072:. 2062:. 2052:89 2050:. 2046:. 2023:. 2013:96 2011:. 1997:^ 1983:. 1971:. 1770:. 1740:, 1701:O 1684:+ 1682:CO 1680:→ 1660:, 1649:, 1612:NH 1589:, 1580:CH 1578:→ 1526:→ 1362:Mo 1246:. 1217:. 1204:. 611:. 595:, 567:(N 542:EC 536:EC 502:; 498:; 481:/ 397:/ 393:/ 315:; 311:; 294:/ 268:/ 264:/ 4857:: 4843:) 4839:( 4830:) 4826:( 4817:) 4813:( 4804:) 4800:( 4791:) 4787:( 4778:) 4774:( 4765:) 4761:( 4585:e 4578:t 4571:v 4289:( 4278:e 4271:t 4264:v 4230:. 4218:: 4191:. 4187:: 4173:2 4171:H 4169:2 4156:. 4144:: 4121:. 4107:: 4076:. 4054:: 4024:. 4002:: 3996:5 3975:. 3963:: 3940:. 3928:: 3900:. 3888:: 3860:. 3848:: 3822:. 3800:: 3754:: 3727:. 3713:: 3686:. 3674:: 3651:. 3637:: 3607:. 3601:: 3574:. 3562:: 3554:: 3528:. 3514:: 3487:. 3473:: 3446:. 3434:: 3426:: 3400:. 3376:: 3368:: 3341:. 3319:: 3292:. 3270:: 3262:: 3256:2 3235:. 3231:: 3208:. 3186:: 3178:: 3148:. 3126:: 3118:: 3088:. 3066:: 3036:. 3024:: 2994:. 2982:: 2952:. 2930:: 2903:. 2891:: 2864:. 2840:: 2832:: 2805:. 2801:: 2778:. 2766:: 2747:. 2735:: 2727:: 2704:. 2692:: 2666:. 2654:: 2622:. 2598:: 2575:. 2553:: 2526:. 2512:: 2490:. 2470:: 2447:. 2433:: 2403:. 2391:: 2365:. 2343:: 2281:. 2257:: 2249:: 2222:. 2208:: 2189:. 2175:: 2156:. 2134:: 2107:. 2080:. 2058:: 2031:. 2019:: 1991:. 1979:: 1973:7 1931:2 1927:2 1923:2 1908:3 1904:3 1900:2 1727:3 1719:2 1709:2 1699:2 1690:S 1688:2 1686:H 1673:2 1668:6 1666:H 1664:3 1662:C 1657:8 1655:H 1653:3 1651:C 1647:2 1643:2 1639:3 1635:3 1631:4 1625:3 1621:3 1616:) 1614:2 1610:3 1606:2 1602:2 1597:3 1593:3 1591:H 1587:3 1582:4 1562:3 1558:2 1550:O 1548:2 1544:2 1534:2 1530:2 1528:H 1497:2 1485:2 1370:2 1344:4 1328:2 1316:2 1308:2 1304:0 1300:2 1296:2 1292:4 1288:4 1286:E 1270:0 1261:4 1259:E 1252:3 1250:E 1244:2 1235:2 1233:E 1215:2 1210:1 1208:E 1202:2 1193:0 1191:E 1181:4 1177:0 1169:2 1165:3 1161:2 1157:n 1136:3 1132:2 1118:) 1116:2 1114:( 1107:i 1103:2 1099:4 1095:2 1093:N 1083:) 1081:1 1079:( 1072:i 1068:2 1064:3 1060:2 1058:N 1034:3 1030:2 950:2 934:9 930:7 923:7 921:S 919:8 825:3 821:2 774:1 767:l 763:o 760:m 754:J 751:k 735:= 729:A 724:E 696:3 692:H 688:N 680:1 673:l 669:o 666:m 660:J 657:k 644:= 639:0 635:H 623:( 591:( 577:3 569:2 534:(

Index


EC no.
1.18.6.1
CAS no.
9013-04-1
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile
PDB
RCSB PDB
PDBe
PDBsum
PMC
articles
PubMed
articles
NCBI
proteins
Pfam
PF00148
InterPro

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑