Knowledge

Multilinear subspace learning

Source 📝

20: 131:
introduced the Multilinear PCA terminology as a way to better differentiate between multilinear tensor decompositions that computed 2nd order statistics associated with each data tensor mode, and subsequent work on Multilinear Independent Component Analysis that computed higher order statistics for
109:
Multilinear subspace learning can be applied to observations whose measurements were vectorized and organized into a data tensor for causally aware dimensionality reduction. These methods may also be employed in reducing horizontal and vertical redundancies irrespective of the causal factors when
40:
that contains a collection of observations have been vectorized, or observations that are treated as matrices and concatenated into a data tensor. Here are some examples of data tensors whose observations are vectorized or whose observations are matrices concatenated into data tensor
105:
learning algorithms are traditional dimensionality reduction techniques that are well suited for datasets that are the result of varying a single causal factor. Unfortunately, they often become inadequate when dealing with datasets that are the result of multiple causal factors. .
230:
A TVP is a direct projection of a high-dimensional tensor to a low-dimensional vector, which is also referred to as the rank-one projections. As TVP projects a tensor to a vector, it can be viewed as multiple projections from a tensor to a scalar. Thus, the TVP of a tensor to a
64:
is a multilinear projection. When observations are retained in the same organizational structure as matrices or higher order tensors, their representations are computed by performing linear projections into the column space, row space and fiber space.
654:"TensorTextures: Multilinear Image-Based Rendering", M. A. O. Vasilescu and D. Terzopoulos, Proc. ACM SIGGRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, 336–342. 144: 243:
unit projection vectors. It is the projection of a tensor on a single line (resulting a scalar), with one projection vector in each mode. Thus, the TVP of a tensor object to a vector in a
239:
projections from the tensor to a scalar. The projection from a tensor to a scalar is an elementary multilinear projection (EMP). In EMP, a tensor is projected to a point through
606: 99:
Multilinear methods may be causal in nature and perform causal inference, or they may be simple regression methods from which no causal conclusion are drawn.
569: 470: 433: 643:, "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553." 218: 110:
the observations are treated as a "matrix" (ie. a collection of independent column/row observations) and concatenated into a tensor.
723:," Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), Beijing, China, August 3–9, 2013. 124: 452:, "Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456–460." 299: 504: 878: 23:
A video or an image sequence represented as a third-order tensor of column x row x time for multilinear subspace learning.
272:
sets of parameters to be solved, one in each mode. The solution to one set often depends on the other sets (except when
30:
is an approach for disentangling the causal factor of data formation and performing dimensionality reduction. The
754: 420:, "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003" 127:
has been referred to as "M-mode PCA", a terminology which was coined by Peter Kroonenberg. In 2005, Vasilescu and
695:
Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition
201:
A TTP is a direct projection of a high-dimensional tensor to a low-dimensional tensor of the same order, using
185: 148: 80: 733:
Khan, Suleiman A.; Kaski, Samuel (2014-09-15). "Bayesian Multi-view Tensor Factorization". In Calders, Toon;
283:
For each mode, fixing the projection in all the other mode, and solve for the projection in the current mode.
57: 876:
Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis
834:
J. D. Carroll & J. Chang (1970). "Analysis of individual differences in multidimensional scaling via an
918: 913: 449: 303: 161: 133: 84: 76: 653: 524: 335: 707: 343: 339: 720: 499:. Chapman & Hall/CRC Press Machine Learning and Pattern Recognition Series. Taylor and Francis. 741:. Lecture Notes in Computer Science. Vol. 8724. Springer Berlin Heidelberg. pp. 656–671. 623:
Principal component analysis of three-mode data by means of alternating least squares algorithms
708:
Canonical correlation analysis of video volume tensors for action categorization and detection
565: 436:, Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002 88: 50: 315: 309: 19: 539: 391: 381: 321: 222: 684:," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 10, pp. 1700–1715, October 2007. 8: 417: 366: 361: 290:
This is originated from the alternating least square method for multi-way data analysis.
128: 31: 896:
On the best rank-1 and rank-(R1, R2, ..., RN ) approximation of higher-order tensors
543: 857: 816: 582: 776:, SIAM Journal of Matrix Analysis and Applications vol. 21, no. 4, pp. 1253–1278, 2000 808: 750: 734: 721:
Learning Canonical Correlations of Paired Tensor Sets via Tensor-to-Vector Projection
500: 494: 861: 820: 923: 849: 800: 786: 742: 547: 474: 356: 252: 710:," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 8, pp. 1415–1428, 2009. 276:, the linear case). Therefore, the suboptimal iterative procedure in is followed. 882: 746: 640: 551: 386: 371: 102: 72: 602: 496:
Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data
895: 875: 773: 467:
Multilinear Projection for Appearance-Based Recognition in the Tensor Framework
694: 478: 213:
steps with each step performing a tensor-matrix multiplication (product). The
907: 840: 791: 681: 668: 682:
General tensor discriminant analysis and gabor features for gait recognition
898:, SIAM Journal of Matrix Analysis and Applications 21 (4) (2000) 1324–1342. 789:(September 1966). "Some mathematical notes on three-mode factor analysis". 61: 812: 697:," IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 103–123, January 2009. 286:
Do the mode-wise optimization for a few iterations or until convergence.
853: 804: 622: 671:," IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 18–39, January 2008. 221:(HOSVD) to subspace learning. Hence, its origin is traced back to the 196:
TVP-based: Bayesian Multilinear Canonical Correlation Analysis (BMTF)
166:
TTP-based: Discriminant Analysis with Tensor Representation (DATER)
256: 172:
TVP-based: Uncorrelated Multilinear Discriminant Analysis (UMLDA)
669:
MPCA: Multilinear principal component analysis of tensor objects
376: 217:
steps are exchangeable. This projection is an extension of the
37: 523:
Lu, Haiping; Plataniotis, K.N.; Venetsanopoulos, A.N. (2011).
493:
Lu, Haiping; Plataniotis, K.N.; Venetsanopoulos, A.N. (2013).
601:
S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H.-J. Zhang, "
178: 139: 46: 42: 833: 583:"Future Directions in Tensor-Based Computation and Modeling" 522: 492: 193:
TVP-based: Multilinear Canonical Correlation Analysis (MCCA)
525:"A Survey of Multilinear Subspace Learning for Tensor Data" 450:"Human Motion Signatures: Analysis, Synthesis, Recognition" 154: 118: 607:
IEEE Conference on Computer Vision and Pattern Recognition
428: 426: 310:
The MPCA algorithm written in Matlab (MPCA+LDA included)
885:. UCLA Working Papers in Phonetics, 16, pp. 1–84, 1970. 423: 190:
TTP-based: Tensor Canonical Correlation Analysis (TCCA)
838:-way generalization of 'Eckart–Young' decomposition". 693:
H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "
667:
H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "
434:"Multilinear Analysis of Image Ensembles: TensorFaces" 169:
TTP-based: General tensor discriminant analysis (GTDA)
739:
Machine Learning and Knowledge Discovery in Databases
322:
The UMLDA algorithm written in Matlab (data included)
316:
The UMPCA algorithm written in Matlab (data included)
894:L. D. Lathauwer, B. D. Moor, J. Vandewalle, 464: 617: 615: 570:Advances in Neural Information Processing Systemsc 444: 442: 418:"Multilinear Subspace Analysis of Image Ensembles" 905: 785: 772:L.D. Lathauwer, B.D. Moor, J. Vandewalle, 635: 633: 631: 603:Discriminant analysis with tensor representation 612: 460: 458: 439: 412: 410: 408: 406: 663: 661: 280:Initialization of the projections in each mode 774:A multilinear singular value decomposition 646: 628: 251:EMPs. This projection is an extension of the 641:"Multilinear Independent Component Analysis" 455: 403: 658: 518: 516: 471:International Conference on Computer Vision 465:Vasilescu, M.A.O.; Terzopoulos, D. (2007). 680:D. Tao, X. Li, X. Wu, and S. J. Maybank, " 639:M. A. O. Vasilescu, D. Terzopoulos (2005) 432:M. A. O. Vasilescu, D. Terzopoulos (2002) 416:M. A. O. Vasilescu, D. Terzopoulos (2003) 263: 179:Multilinear canonical correlation analysis 145:Multilinear independent component analysis 140:Multilinear independent component analysis 132:each tensor mode. MPCA is an extension of 732: 219:higher-order singular value decomposition 768: 766: 652:M.A.O. Vasilescu, D. Terzopoulos (2004) 513: 372:Multilinear Principal Component Analysis 209:th-order tensor. It can be performed in 155:Multilinear linear discriminant analysis 125:multilinear principal component analysis 119:Multilinear principal component analysis 69:Multilinear subspace learning algorithms 18: 737:; Hüllermeier, Eyke; Meo, Rosa (eds.). 597: 595: 906: 625:, Psychometrika, 45 (1980), pp. 69–97. 558: 486: 247:-dimensional vector space consists of 763: 592: 334:3D gait data (third-order tensors): 71:are higher-order generalizations of 16:Approach to dimensionality reduction 621:P. M. Kroonenberg and J. de Leeuw, 328: 13: 14: 935: 609:, vol. I, June 2005, pp. 526–532. 235:-dimensional vector consists of 888: 868: 827: 779: 726: 713: 700: 687: 674: 68: 575: 89:canonical correlation analysis 81:independent component analysis 60:to a set of lower dimensional 1: 397: 113: 94: 58:high-dimensional vector space 28:Multilinear subspace learning 747:10.1007/978-3-662-44848-9_42 552:10.1016/j.patcog.2011.01.004 304:Sandia National Laboratories 85:linear discriminant analysis 77:principal component analysis 7: 706:T.-K. Kim and R. Cipolla. " 350: 205:projection matrices for an 36:can be performed on a data 10: 940: 564:X. He, D. Cai, P. Niyogi, 448:M. A. O. Vasilescu,(2002) 479:10.1109/ICCV.2007.4409067 184:Multilinear extension of 160:Multilinear extension of 75:learning methods such as 566:Tensor subspace analysis 259:(PARAFAC) decomposition. 33:Dimensionality reduction 293: 264:Typical approach in MSL 253:canonical decomposition 49:sequences (3D/4D), and 24: 300:MATLAB Tensor Toolbox 22: 392:Tucker decomposition 382:Tensor decomposition 255:, also known as the 223:Tucker decomposition 919:Multilinear algebra 914:Dimension reduction 544:2011PatRe..44.1540L 532:Pattern Recognition 367:Multilinear algebra 362:Dimension reduction 147:is an extension of 56:The mapping from a 51:hyperspectral cubes 881:2004-10-10 at the 854:10.1007/BF02310791 805:10.1007/BF02289464 735:Esposito, Floriana 25: 506:978-1-4398572-4-3 931: 899: 892: 886: 874:R. A. Harshman, 872: 866: 865: 831: 825: 824: 787:Ledyard R Tucker 783: 777: 770: 761: 760: 730: 724: 717: 711: 704: 698: 691: 685: 678: 672: 665: 656: 650: 644: 637: 626: 619: 610: 599: 590: 589: 587: 579: 573: 572:18 (NIPS), 2005. 562: 556: 555: 538:(7): 1540–1551. 529: 520: 511: 510: 490: 484: 482: 473:. pp. 1–8. 462: 453: 446: 437: 430: 421: 414: 357:CP decomposition 336:128x88x20(21.2M) 329:Tensor data sets 257:parallel factors 939: 938: 934: 933: 932: 930: 929: 928: 904: 903: 902: 893: 889: 883:Wayback Machine 873: 869: 832: 828: 784: 780: 771: 764: 757: 731: 727: 718: 714: 705: 701: 692: 688: 679: 675: 666: 659: 651: 647: 638: 629: 620: 613: 600: 593: 585: 581: 580: 576: 563: 559: 527: 521: 514: 507: 491: 487: 463: 456: 447: 440: 431: 424: 415: 404: 400: 387:Tensor software 353: 331: 296: 266: 181: 157: 142: 121: 116: 103:Linear subspace 97: 73:linear subspace 17: 12: 11: 5: 937: 927: 926: 921: 916: 901: 900: 887: 867: 848:(3): 283–319. 826: 799:(3): 279–311. 778: 762: 755: 725: 712: 699: 686: 673: 657: 645: 627: 611: 591: 574: 557: 512: 505: 485: 454: 438: 422: 401: 399: 396: 395: 394: 389: 384: 379: 374: 369: 364: 359: 352: 349: 348: 347: 344:32x22x10(3.2M) 340:64x44x20(9.9M) 330: 327: 326: 325: 319: 313: 307: 295: 292: 288: 287: 284: 281: 265: 262: 261: 260: 227: 226: 199: 198: 197: 194: 191: 180: 177: 176: 175: 174: 173: 170: 167: 156: 153: 141: 138: 123:Historically, 120: 117: 115: 112: 96: 93: 15: 9: 6: 4: 3: 2: 936: 925: 922: 920: 917: 915: 912: 911: 909: 897: 891: 884: 880: 877: 871: 863: 859: 855: 851: 847: 843: 842: 841:Psychometrika 837: 830: 822: 818: 814: 810: 806: 802: 798: 794: 793: 792:Psychometrika 788: 782: 775: 769: 767: 758: 756:9783662448472 752: 748: 744: 740: 736: 729: 722: 716: 709: 703: 696: 690: 683: 677: 670: 664: 662: 655: 649: 642: 636: 634: 632: 624: 618: 616: 608: 604: 598: 596: 584: 578: 571: 567: 561: 553: 549: 545: 541: 537: 533: 526: 519: 517: 508: 502: 498: 497: 489: 480: 476: 472: 468: 461: 459: 451: 445: 443: 435: 429: 427: 419: 413: 411: 409: 407: 402: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 358: 355: 354: 345: 341: 337: 333: 332: 323: 320: 317: 314: 311: 308: 305: 301: 298: 297: 291: 285: 282: 279: 278: 277: 275: 271: 258: 254: 250: 246: 242: 238: 234: 229: 228: 224: 220: 216: 212: 208: 204: 200: 195: 192: 189: 188: 187: 183: 182: 171: 168: 165: 164: 163: 159: 158: 152: 150: 146: 137: 135: 130: 126: 111: 107: 104: 100: 92: 90: 86: 82: 78: 74: 70: 66: 63: 62:vector spaces 59: 54: 52: 48: 44: 39: 35: 34: 29: 21: 890: 870: 845: 839: 835: 829: 796: 790: 781: 738: 728: 715: 702: 689: 676: 648: 605:," in Proc. 577: 560: 535: 531: 495: 488: 469:. IEEE 11th 466: 289: 273: 269: 267: 248: 244: 240: 236: 232: 214: 210: 206: 202: 143: 122: 108: 101: 98: 67: 55: 32: 27: 26: 588:. May 2009. 129:Terzopoulos 908:Categories 398:References 268:There are 114:Algorithms 95:Background 87:(LDA) and 719:H. Lu, " 225:in 1960s. 53:(3D/4D). 45:(2D/3D), 879:Archived 862:50364581 821:44301099 351:See also 924:Tensors 813:5221127 540:Bibcode 91:(CCA). 83:(ICA), 79:(PCA), 860:  819:  811:  753:  568:, in: 503:  377:Tensor 43:images 38:tensor 858:S2CID 817:S2CID 586:(PDF) 528:(PDF) 47:video 809:PMID 751:ISBN 501:ISBN 294:Code 850:doi 801:doi 743:doi 548:doi 483:. 475:doi 302:by 274:N=1 186:CCA 162:LDA 149:ICA 134:PCA 910:: 856:. 846:35 844:. 815:. 807:. 797:31 795:. 765:^ 749:. 660:^ 630:^ 614:^ 594:^ 546:. 536:44 534:. 530:. 515:^ 457:^ 441:^ 425:^ 405:^ 342:; 338:; 151:. 136:. 864:. 852:: 836:n 823:. 803:: 759:. 745:: 554:. 550:: 542:: 509:. 481:. 477:: 346:; 324:. 318:. 312:. 306:. 270:N 249:P 245:P 241:N 237:P 233:P 215:N 211:N 207:N 203:N

Index


Dimensionality reduction
tensor
images
video
hyperspectral cubes
high-dimensional vector space
vector spaces
Multilinear subspace learning algorithms
linear subspace
principal component analysis
independent component analysis
linear discriminant analysis
canonical correlation analysis
Linear subspace
multilinear principal component analysis
Terzopoulos
PCA
Multilinear independent component analysis
ICA
LDA
CCA
higher-order singular value decomposition
Tucker decomposition
canonical decomposition
parallel factors
MATLAB Tensor Toolbox
Sandia National Laboratories
The MPCA algorithm written in Matlab (MPCA+LDA included)
The UMPCA algorithm written in Matlab (data included)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.