Knowledge

Hecke operator

Source 📝

787: 264: 982: 596: 1465: 1557:. In the case treated by Mordell, the space of cusp forms of weight 12 with respect to the full modular group is one-dimensional. It follows that the Ramanujan form has an Euler product and establishes the multiplicativity of 360: 1160: 96: 814: 782:{\displaystyle T_{m}f(z)=m^{k-1}\sum _{\left({\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}\right)\in \Gamma \backslash M_{m}}(cz+d)^{-k}f\left({\frac {az+b}{cz+d}}\right),} 444: 1290: 493:, as well as moderate growth at infinity; these conditions are preserved by the summation, and so Hecke operators preserve the space of modular forms of a given weight. 1574:
are also called "Hecke algebras", although sometimes the link to Hecke operators is not entirely obvious. These algebras include certain quotients of the
1758: 279: 1610: 808:
assures that the image of a form with integer Fourier coefficients has integer Fourier coefficients. This can be rewritten in the form
1046: 385:
Hecke operators can be realized in a number of contexts. The simplest meaning is combinatorial, namely as taking for a given integer
259:{\displaystyle \Delta (z)=q\left(\prod _{n=1}^{\infty }(1-q^{n})\right)^{24}=\sum _{n=1}^{\infty }\tau (n)q^{n},\quad q=e^{2\pi iz},} 1470:
Thus for normalized cuspidal Hecke eigenforms of integer weight, their Fourier coefficients coincide with their Hecke eigenvalues.
1595: 1803: 1643: 977:{\displaystyle T_{m}f(z)=m^{k-1}\sum _{a,d>0,ad=m}{\frac {1}{d^{k}}}\sum _{b{\pmod {d}}}f\left({\frac {az+b}{d}}\right),} 17: 1711:
Hecke, E. (1937b), "Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. II.",
1673:
Hecke, E. (1937a), "Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I.",
1571: 1665: 1660: 1165:
One can see from this explicit formula that Hecke operators with different indices commute and that if
412: 52: 1753: 1460:{\displaystyle T_{m}f=a_{m}f,\quad a_{m}a_{n}=\sum _{r>0,r|(m,n)}r^{k-1}a_{mn/r^{2}},\ m,n\geq 1.} 490: 1655: 370: 1514: 270: 1818: 87: 47:), is a certain kind of "averaging" operator that plays a significant role in the structure of 1713: 1675: 1510: 1489: 486: 1771: 1742: 1704: 8: 1628: 1799: 1777: 1730: 1692: 1639: 1583: 482: 1582:. The presence of this commutative operator algebra plays a significant role in the 1767: 1738: 1722: 1700: 1684: 1605: 1534: 1530: 1518: 1485: 799: 508:
approach, this translates to double cosets with respect to some compact subgroups.
63: 481:
are particular kinds of functions of a lattice, subject to conditions making them
1635: 403: 652: 1623: 1812: 1749: 1734: 1696: 1600: 1538: 1526: 1522: 1509:
coprime to the level acting on the space of cusp forms of a given weight are
1479: 554: 501: 374: 366: 497: 478: 48: 32: 1579: 532: 79: 40: 28: 1787: 1726: 1688: 1575: 355:{\displaystyle \tau (mn)=\tau (m)\tau (n)\quad {\text{ for }}(m,n)=1.} 1209: 75: 71: 454: 1525:
for these Hecke operators. Each of these basic forms possesses an
70:) used Hecke operators on modular forms in a paper on the special 1484:
Algebras of Hecke operators are called "Hecke algebras", and are
1754:"On Mr. Ramanujan's empirical expansions of modular functions." 1155:{\displaystyle b_{n}=\sum _{r>0,r|(m,n)}r^{k-1}a_{mn/r^{2}}.} 1202:
is preserved by the Hecke operators. If a (non-zero) cusp form
505: 987:
which leads to the formula for the Fourier coefficients of
1521:
implies that there is a basis of modular forms that are
1630:
Modular functions and Dirichlet series in number theory
690: 496:
Another way to express Hecke operators is by means of
1293: 1049: 817: 599: 415: 282: 99: 90:, expressing the coefficients of the Ramanujan form, 1759:Proceedings of the Cambridge Philosophical Society 1627: 1459: 1154: 976: 781: 438: 354: 258: 1810: 377:which realise some individual Hecke operators. 1792:Elliptic Modular Forms and Their Applications 83: 44: 380: 473:and two dimensions, there are three such 1018:in terms of the Fourier coefficients of 1748: 1622: 365:The idea goes back to earlier work of 78:, ahead of the general theory given by 67: 14: 1811: 1710: 1672: 1611:Wiles's proof of Fermat's Last Theorem 1586:of modular forms and generalisations. 590:th Hecke operator acts by the formula 1541:with the local factor for each prime 1596:Eichler–Shimura congruence relation 929: 922: 511: 24: 1634:(2nd ed.), Berlin, New York: 687: 426: 197: 140: 100: 51:of modular forms and more general 25: 1830: 1473: 651: 439:{\displaystyle \sum f(\Lambda ')} 31:, in particular in the theory of 1572:Other related mathematical rings 449:with the sum taken over all the 1798:, Universitext, Springer, 2008 1326: 802:and the normalization constant 325: 227: 1387: 1375: 1371: 1100: 1088: 1084: 933: 923: 837: 831: 721: 705: 619: 613: 433: 422: 343: 331: 322: 316: 310: 304: 295: 286: 211: 205: 164: 145: 109: 103: 13: 1: 1616: 1492:theory, the Hecke operators 1551:, a quadratic polynomial in 7: 1661:Encyclopedia of Mathematics 1589: 86:). Mordell proved that the 53:automorphic representations 10: 1835: 1796:The 1-2-3 of Modular Forms 1477: 58: 371:algebraic correspondences 1196:of cusp forms of weight 381:Mathematical description 1515:Petersson inner product 1270:. Hecke eigenforms are 1212:of all Hecke operators 567:. Given a modular form 531:integral matrices with 271:multiplicative function 1782:A course in arithmetic 1547:is the inverse of the 1529:. More precisely, its 1461: 1210:simultaneous eigenform 1156: 978: 783: 504:. In the contemporary 440: 356: 260: 201: 144: 88:Ramanujan tau function 1714:Mathematische Annalen 1676:Mathematische Annalen 1490:elliptic modular form 1462: 1157: 979: 784: 441: 357: 261: 181: 124: 1513:with respect to the 1291: 1047: 815: 597: 467:. For example, with 413: 280: 97: 1488:. In the classical 1727:10.1007/BF01594180 1689:10.1007/BF01594160 1457: 1391: 1185:, so the subspace 1152: 1104: 974: 938: 895: 779: 704: 678: 677: 483:analytic functions 436: 352: 256: 1804:978-3-540-74117-6 1778:Jean-Pierre Serre 1750:Mordell, Louis J. 1645:978-0-387-97127-8 1584:harmonic analysis 1517:. Therefore, the 1486:commutative rings 1441: 1350: 1223:with eigenvalues 1063: 965: 913: 911: 859: 770: 641: 406:of fixed rank to 329: 18:Modular eigenform 16:(Redirected from 1826: 1774: 1745: 1707: 1669: 1656:"Hecke operator" 1650:(See chapter 8.) 1648: 1633: 1606:Abstract algebra 1567: 1556: 1549:Hecke polynomial 1546: 1535:Dirichlet series 1531:Mellin transform 1519:spectral theorem 1508: 1502: 1466: 1464: 1463: 1458: 1439: 1435: 1434: 1433: 1432: 1423: 1407: 1406: 1390: 1374: 1346: 1345: 1336: 1335: 1319: 1318: 1303: 1302: 1283: 1269: 1259: 1233: 1222: 1207: 1201: 1195: 1184: 1174: 1161: 1159: 1158: 1153: 1148: 1147: 1146: 1145: 1136: 1120: 1119: 1103: 1087: 1059: 1058: 1039: 1017: 983: 981: 980: 975: 970: 966: 961: 947: 937: 936: 912: 910: 909: 897: 894: 858: 857: 827: 826: 807: 800:upper half-plane 797: 788: 786: 785: 780: 775: 771: 769: 755: 741: 732: 731: 703: 702: 701: 683: 679: 640: 639: 609: 608: 589: 583: 577: 566: 552: 539: 530: 526: 512:Explicit formula 489:with respect to 476: 472: 466: 460: 452: 445: 443: 442: 437: 432: 401: 390: 361: 359: 358: 353: 330: 327: 265: 263: 262: 257: 252: 251: 223: 222: 200: 195: 177: 176: 171: 167: 163: 162: 143: 138: 21: 1834: 1833: 1829: 1828: 1827: 1825: 1824: 1823: 1809: 1808: 1654: 1646: 1636:Springer-Verlag 1624:Apostol, Tom M. 1619: 1592: 1558: 1552: 1542: 1504: 1501: 1493: 1482: 1476: 1428: 1424: 1419: 1412: 1408: 1396: 1392: 1370: 1354: 1341: 1337: 1331: 1327: 1314: 1310: 1298: 1294: 1292: 1289: 1288: 1281: 1275: 1267: 1261: 1258: 1252: 1243: 1235: 1232: 1224: 1221: 1213: 1203: 1197: 1194: 1186: 1182: 1176: 1172: 1166: 1141: 1137: 1132: 1125: 1121: 1109: 1105: 1083: 1067: 1054: 1050: 1048: 1045: 1044: 1035: 1019: 1013: 996: 988: 948: 946: 942: 921: 917: 905: 901: 896: 863: 847: 843: 822: 818: 816: 813: 812: 803: 793: 756: 742: 740: 736: 724: 720: 697: 693: 676: 675: 670: 664: 663: 658: 650: 646: 645: 629: 625: 604: 600: 598: 595: 594: 585: 579: 568: 557: 551: 541: 535: 528: 525: 517: 514: 474: 468: 462: 458: 450: 425: 414: 411: 410: 402:defined on the 392: 386: 383: 328: for  326: 281: 278: 277: 238: 234: 218: 214: 196: 185: 172: 158: 154: 139: 128: 123: 119: 118: 98: 95: 94: 61: 41:Erich Hecke 23: 22: 15: 12: 11: 5: 1832: 1822: 1821: 1807: 1806: 1785: 1775: 1746: 1708: 1670: 1652: 1644: 1618: 1615: 1614: 1613: 1608: 1603: 1598: 1591: 1588: 1576:group algebras 1539:Euler products 1523:eigenfunctions 1497: 1478:Main article: 1475: 1474:Hecke algebras 1472: 1468: 1467: 1456: 1453: 1450: 1447: 1444: 1438: 1431: 1427: 1422: 1418: 1415: 1411: 1405: 1402: 1399: 1395: 1389: 1386: 1383: 1380: 1377: 1373: 1369: 1366: 1363: 1360: 1357: 1353: 1349: 1344: 1340: 1334: 1330: 1325: 1322: 1317: 1313: 1309: 1306: 1301: 1297: 1279: 1265: 1256: 1248: 1239: 1228: 1217: 1190: 1180: 1170: 1163: 1162: 1151: 1144: 1140: 1135: 1131: 1128: 1124: 1118: 1115: 1112: 1108: 1102: 1099: 1096: 1093: 1090: 1086: 1082: 1079: 1076: 1073: 1070: 1066: 1062: 1057: 1053: 1031: 1009: 992: 985: 984: 973: 969: 964: 960: 957: 954: 951: 945: 941: 935: 932: 928: 925: 920: 916: 908: 904: 900: 893: 890: 887: 884: 881: 878: 875: 872: 869: 866: 862: 856: 853: 850: 846: 842: 839: 836: 833: 830: 825: 821: 790: 789: 778: 774: 768: 765: 762: 759: 754: 751: 748: 745: 739: 735: 730: 727: 723: 719: 716: 713: 710: 707: 700: 696: 692: 689: 686: 682: 674: 671: 669: 666: 665: 662: 659: 657: 654: 653: 649: 644: 638: 635: 632: 628: 624: 621: 618: 615: 612: 607: 603: 549: 527:be the set of 521: 513: 510: 447: 446: 435: 431: 428: 424: 421: 418: 391:some function 382: 379: 375:modular curves 369:, who treated 363: 362: 351: 348: 345: 342: 339: 336: 333: 324: 321: 318: 315: 312: 309: 306: 303: 300: 297: 294: 291: 288: 285: 267: 266: 255: 250: 247: 244: 241: 237: 233: 230: 226: 221: 217: 213: 210: 207: 204: 199: 194: 191: 188: 184: 180: 175: 170: 166: 161: 157: 153: 150: 147: 142: 137: 134: 131: 127: 122: 117: 114: 111: 108: 105: 102: 60: 57: 37:Hecke operator 9: 6: 4: 3: 2: 1831: 1820: 1819:Modular forms 1817: 1816: 1814: 1805: 1801: 1797: 1793: 1789: 1786: 1783: 1779: 1776: 1773: 1769: 1765: 1761: 1760: 1755: 1751: 1747: 1744: 1740: 1736: 1732: 1728: 1724: 1720: 1717:(in German), 1716: 1715: 1709: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1679:(in German), 1678: 1677: 1671: 1667: 1663: 1662: 1657: 1653: 1651: 1647: 1641: 1637: 1632: 1631: 1625: 1621: 1620: 1612: 1609: 1607: 1604: 1602: 1601:Hecke algebra 1599: 1597: 1594: 1593: 1587: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1555: 1550: 1545: 1540: 1536: 1532: 1528: 1527:Euler product 1524: 1520: 1516: 1512: 1507: 1500: 1496: 1491: 1487: 1481: 1480:Hecke algebra 1471: 1454: 1451: 1448: 1445: 1442: 1436: 1429: 1425: 1420: 1416: 1413: 1409: 1403: 1400: 1397: 1393: 1384: 1381: 1378: 1367: 1364: 1361: 1358: 1355: 1351: 1347: 1342: 1338: 1332: 1328: 1323: 1320: 1315: 1311: 1307: 1304: 1299: 1295: 1287: 1286: 1285: 1278: 1273: 1264: 1255: 1251: 1247: 1242: 1238: 1231: 1227: 1220: 1216: 1211: 1206: 1200: 1193: 1189: 1179: 1169: 1149: 1142: 1138: 1133: 1129: 1126: 1122: 1116: 1113: 1110: 1106: 1097: 1094: 1091: 1080: 1077: 1074: 1071: 1068: 1064: 1060: 1055: 1051: 1043: 1042: 1041: 1038: 1034: 1030: 1026: 1022: 1016: 1012: 1008: 1004: 1000: 995: 991: 971: 967: 962: 958: 955: 952: 949: 943: 939: 930: 926: 918: 914: 906: 902: 898: 891: 888: 885: 882: 879: 876: 873: 870: 867: 864: 860: 854: 851: 848: 844: 840: 834: 828: 823: 819: 811: 810: 809: 806: 801: 796: 776: 772: 766: 763: 760: 757: 752: 749: 746: 743: 737: 733: 728: 725: 717: 714: 711: 708: 698: 694: 684: 680: 672: 667: 660: 655: 647: 642: 636: 633: 630: 626: 622: 616: 610: 605: 601: 593: 592: 591: 588: 582: 575: 571: 564: 560: 556: 555:modular group 548: 544: 538: 534: 524: 520: 509: 507: 503: 502:modular group 499: 498:double cosets 494: 492: 488: 484: 480: 479:Modular forms 471: 465: 456: 429: 419: 416: 409: 408: 407: 405: 399: 395: 389: 378: 376: 372: 368: 367:Adolf Hurwitz 349: 346: 340: 337: 334: 319: 313: 307: 301: 298: 292: 289: 283: 276: 275: 274: 272: 253: 248: 245: 242: 239: 235: 231: 228: 224: 219: 215: 208: 202: 192: 189: 186: 182: 178: 173: 168: 159: 155: 151: 148: 135: 132: 129: 125: 120: 115: 112: 106: 93: 92: 91: 89: 85: 81: 77: 73: 69: 65: 56: 54: 50: 49:vector spaces 46: 42: 39:, studied by 38: 34: 33:modular forms 30: 19: 1795: 1791: 1781: 1763: 1757: 1718: 1712: 1680: 1674: 1659: 1649: 1629: 1580:braid groups 1570: 1563: 1559: 1553: 1548: 1543: 1511:self-adjoint 1505: 1498: 1494: 1483: 1469: 1276: 1271: 1262: 1253: 1249: 1245: 1240: 1236: 1229: 1225: 1218: 1214: 1204: 1198: 1191: 1187: 1177: 1167: 1164: 1036: 1032: 1028: 1024: 1020: 1014: 1010: 1006: 1002: 998: 993: 989: 986: 804: 794: 791: 586: 580: 573: 569: 562: 558: 553:be the full 546: 542: 536: 522: 518: 515: 495: 469: 463: 448: 397: 393: 387: 384: 364: 268: 62: 36: 26: 1766:: 117–124, 1721:: 316–351, 1027:) = Σ  533:determinant 491:homotheties 487:homogeneous 84:1937a,1937b 45:1937a,1937b 29:mathematics 1788:Don Zagier 1772:46.0605.01 1743:0016.35503 1705:0015.40202 1617:References 1272:normalized 798:is in the 578:of weight 1735:0025-5831 1697:0025-5831 1666:EMS Press 1537:that has 1452:≥ 1401:− 1352:∑ 1114:− 1065:∑ 915:∑ 861:∑ 852:− 726:− 691:∖ 688:Γ 685:∈ 643:∑ 634:− 461:of index 455:subgroups 453:that are 427:Λ 417:∑ 314:τ 302:τ 284:τ 243:π 203:τ 198:∞ 183:∑ 152:− 141:∞ 126:∏ 101:Δ 76:Ramanujan 72:cusp form 1813:Category 1752:(1917), 1683:: 1–28, 1626:(1990), 1590:See also 1274:so that 475:Λ′ 451:Λ′ 430:′ 404:lattices 373:between 1668:, 2001 1533:is the 1284:, then 1005:)) = Σ 500:in the 82: ( 66: ( 64:Mordell 59:History 43: ( 1802:  1770:  1741:  1733:  1703:  1695:  1642:  1560:τ 1440:  1246:λ 1226:λ 792:where 584:, the 543:Γ 506:adelic 398:Λ 1794:, in 1503:with 1234:then 1208:is a 1175:then 269:is a 80:Hecke 1800:ISBN 1731:ISSN 1693:ISSN 1640:ISBN 1359:> 1260:and 1072:> 874:> 561:(2, 540:and 516:Let 485:and 68:1917 35:, a 1768:JFM 1739:Zbl 1723:doi 1719:114 1701:Zbl 1685:doi 1681:114 1578:of 1282:= 1 1268:≠ 0 1183:= 0 1173:= 0 927:mod 545:= 529:2×2 470:n=2 457:of 74:of 27:In 1815:: 1790:, 1780:, 1764:19 1762:, 1756:, 1737:, 1729:, 1699:, 1691:, 1664:, 1658:, 1638:, 1568:. 1455:1. 1244:= 1040:: 559:SL 477:. 350:1. 273:: 174:24 55:. 1784:. 1725:: 1687:: 1566:) 1564:n 1562:( 1554:p 1544:p 1506:n 1499:n 1495:T 1449:n 1446:, 1443:m 1437:, 1430:2 1426:r 1421:/ 1417:n 1414:m 1410:a 1404:1 1398:k 1394:r 1388:) 1385:n 1382:, 1379:m 1376:( 1372:| 1368:r 1365:, 1362:0 1356:r 1348:= 1343:n 1339:a 1333:m 1329:a 1324:, 1321:f 1316:m 1312:a 1308:= 1305:f 1300:m 1296:T 1280:1 1277:a 1266:1 1263:a 1257:1 1254:a 1250:m 1241:m 1237:a 1230:m 1219:m 1215:T 1205:f 1199:k 1192:k 1188:S 1181:0 1178:b 1171:0 1168:a 1150:. 1143:2 1139:r 1134:/ 1130:n 1127:m 1123:a 1117:1 1111:k 1107:r 1101:) 1098:n 1095:, 1092:m 1089:( 1085:| 1081:r 1078:, 1075:0 1069:r 1061:= 1056:n 1052:b 1037:q 1033:n 1029:a 1025:z 1023:( 1021:f 1015:q 1011:n 1007:b 1003:z 1001:( 999:f 997:( 994:m 990:T 972:, 968:) 963:d 959:b 956:+ 953:z 950:a 944:( 940:f 934:) 931:d 924:( 919:b 907:k 903:d 899:1 892:m 889:= 886:d 883:a 880:, 877:0 871:d 868:, 865:a 855:1 849:k 845:m 841:= 838:) 835:z 832:( 829:f 824:m 820:T 805:m 795:z 777:, 773:) 767:d 764:+ 761:z 758:c 753:b 750:+ 747:z 744:a 738:( 734:f 729:k 722:) 718:d 715:+ 712:z 709:c 706:( 699:m 695:M 681:) 673:d 668:c 661:b 656:a 648:( 637:1 631:k 627:m 623:= 620:) 617:z 614:( 611:f 606:m 602:T 587:m 581:k 576:) 574:z 572:( 570:f 565:) 563:Z 550:1 547:M 537:m 523:m 519:M 464:n 459:Λ 434:) 423:( 420:f 400:) 396:( 394:f 388:n 347:= 344:) 341:n 338:, 335:m 332:( 323:) 320:n 317:( 311:) 308:m 305:( 299:= 296:) 293:n 290:m 287:( 254:, 249:z 246:i 240:2 236:e 232:= 229:q 225:, 220:n 216:q 212:) 209:n 206:( 193:1 190:= 187:n 179:= 169:) 165:) 160:n 156:q 149:1 146:( 136:1 133:= 130:n 121:( 116:q 113:= 110:) 107:z 104:( 20:)

Index

Modular eigenform
mathematics
modular forms
Erich Hecke
1937a,1937b
vector spaces
automorphic representations
Mordell
1917
cusp form
Ramanujan
Hecke
1937a,1937b
Ramanujan tau function
multiplicative function
Adolf Hurwitz
algebraic correspondences
modular curves
lattices
subgroups
Modular forms
analytic functions
homogeneous
homotheties
double cosets
modular group
adelic
determinant
modular group
upper half-plane

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.