Knowledge

Mersenne prime

Source 📝

2137: 2415:(PRP) test, based on development from Robert Gerbicz in 2017, and a simple way to verify tests developed by Krzysztof Pietrzak in 2018. Due to the low error rate and ease of proof, this nearly halved the computing time to rule out potential primes over the Lucas-Lehmer test (as two users would no longer have to perform the same test to confirm the other's result), although exponents passing the PRP test still require one to confirm their primality. 11798: 1237: 2132:
During the era of manual calculation, all the exponents up to and including 257 were tested with the Lucas–Lehmer test and found to be composite. A notable contribution was made by retired Yale physics professor Horace Scudder Uhler, who did the calculations for exponents 157, 167, 193, 199, 227, and
5234:
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667,
3408:
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667,
1895:
and got the same number, then returned to his seat (to applause) without speaking. He later said that the result had taken him "three years of Sundays" to find. A correct list of all Mersenne primes in this number range was completed and rigorously verified only about three centuries after Mersenne
944: 5251:
3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399, ..., 13347311, 13372531, ...
1874:, though Mersenne claimed it was composite, and for this reason it is sometimes called Pervushin's number. This was the second-largest known prime number, and it remained so until 1911. Lucas had shown another error in Mersenne's list in 1876 by demonstrating that 3440:
for links to more information. The special number field sieve can factorize numbers with more than one large factor. If a number has only one very large factor then other algorithms can factorize larger numbers by first finding small factors and then running a
2133:
229. Unfortunately for those investigators, the interval they were testing contains the largest known relative gap between Mersenne primes: the next Mersenne prime exponent, 521, would turn out to be more than four times as large as the previous record of 127.
4756:
3, 2, 2, 5, 2, 3, 2, 3, 5, 5, 2, 3, 2, 3, 3, 7, 2, 17, 2, 3, 3, 11, 2, 3, 11, 0, 3, 7, 2, 109, 2, 5, 3, 11, 31, 5, 2, 3, 53, 17, 2, 5, 2, 103, 7, 5, 2, 7, 1153, 3, 7, 21943, 2, 3, 37, 53, 3, 17, 2, 7, 2, 3, 0, 19, 7, 3, 2, 11, 3, 5, 2, ... (sequence
6732:
2, 2, 2, 3, 2, 2, 7, 2, 2, 3, 2, 17, 3, 2, 2, 5, 3, 2, 5, 2, 2, 229, 2, 3, 3, 2, 3, 3, 2, 2, 5, 3, 2, 3, 2, 2, 3, 3, 2, 7, 2, 3, 37, 2, 3, 5, 58543, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 4663, 54517, 17, 3, 2, 5, 2, 3, 3, 2, 2, 47, 61, 19, ... (sequence
4714:
2, 3, 2, 3, 2, 5, 3, 0, 2, 17, 2, 5, 3, 3, 2, 3, 2, 19, 3, 3, 2, 5, 3, 0, 7, 3, 2, 5, 2, 7, 0, 3, 13, 313, 2, 13, 3, 349, 2, 3, 2, 5, 5, 19, 2, 127, 19, 0, 3, 4229, 2, 11, 3, 17, 7, 3, 2, 3, 2, 7, 3, 5, 0, 19, 2, 19, 5, 3, 2, 3, 2, ... (sequence
4285:
2, 3, 5, 7, 11, 19, 29, 47, 73, 79, 113, 151, 157, 163, 167, 239, 241, 283, 353, 367, 379, 457, 997, 1367, 3041, 10141, 14699, 27529, 49207, 77291, 85237, 106693, 160423, 203789, 364289, 991961, 1203793, 1667321, 3704053, 4792057, ... (sequence
4812:
2, 2, 2, 2, 5, 2, 2, 2, 10, 6, 2, 61, 14, 15, 5, 24, 19, 2, 46, 3, 11, 22, 41, 2, 12, 22, 3, 2, 12, 86, 2, 7, 13, 11, 5, 29, 56, 30, 44, 60, 304, 5, 74, 118, 33, 156, 46, 183, 72, 606, 602, 223, 115, 37, 52, 104, 41, 6, 338, 217, ... (sequence
6766:
1, 1, 1, 1, 5, 1, 1, 1, 5, 2, 1, 39, 6, 4, 12, 2, 2, 1, 6, 17, 46, 7, 5, 1, 25, 2, 41, 1, 12, 7, 1, 7, 327, 7, 8, 44, 26, 12, 75, 14, 51, 110, 4, 14, 49, 286, 15, 4, 39, 22, 109, 367, 22, 67, 27, 95, 80, 149, 2, 142, 3, 11, ... (sequence
4837:
3, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 16, 61, 2, 6, 10, 6, 2, 5, 46, 18, 2, 49, 16, 70, 2, 5, 6, 12, 92, 2, 48, 89, 30, 16, 147, 19, 19, 2, 16, 11, 289, 2, 12, 52, 2, 66, 9, 22, 5, 489, 69, 137, 16, 36, 96, 76, 117, 26, 3, ... (sequence
1232:{\displaystyle {\begin{aligned}2^{ab}-1&=(2^{a}-1)\cdot \left(1+2^{a}+2^{2a}+2^{3a}+\cdots +2^{(b-1)a}\right)\\&=(2^{b}-1)\cdot \left(1+2^{b}+2^{2b}+2^{3b}+\cdots +2^{(a-1)b}\right).\end{aligned}}} 2345:
for their discovery of a very nearly 13-million-digit Mersenne prime. The prize, finally confirmed in October 2009, is for the first known prime with at least 10 million digits. The prime was found on a
1320:
that greatly aids this task, making it much easier to test the primality of Mersenne numbers than that of most other numbers of the same size. The search for the largest known prime has somewhat of a
315:
asserts a one-to-one correspondence between even perfect numbers and Mersenne primes. Many of the largest known primes are Mersenne primes because Mersenne numbers are easier to check for primality.
1280:
The evidence at hand suggests that a randomly selected Mersenne number is much more likely to be prime than an arbitrary randomly selected odd integer of similar size. Nonetheless, prime values of
949: 3428:
Since they are prime numbers, Mersenne primes are divisible only by 1 and themselves. However, not all Mersenne numbers are Mersenne primes. Mersenne numbers are very good test cases for the
1312:
The current lack of any simple test to determine whether a given Mersenne number is prime makes the search for Mersenne primes a difficult task, since Mersenne numbers grow very rapidly. The
419: 2379:(a number with 22,338,618 digits), as a result of a search executed by a GIMPS server network. This was the fourth Mersenne prime discovered by Cooper and his team in the past ten years. 4915: 2353:
On April 12, 2009, a GIMPS server log reported that a 47th Mersenne prime had possibly been found. The find was first noticed on June 4, 2009, and verified a week later. The prime is
1754:
His list replicated the known primes of his time with exponents up to 19. His next entry, 31, was correct, but the list then became largely incorrect, as Mersenne mistakenly included
4497: 790: 669: 2397:(a number with 23,249,425 digits), as a result of a search executed by a GIMPS server network. The discovery was made by a computer in the offices of a church in the same town. 8276: 8196: 8330:– status page gives various statistics on search progress, typically updated every week, including progress towards proving the ordering of the largest known Mersenne primes 1859: 719: 2182: 836: 1458: 1507: 450: 2357:. Although it is chronologically the 47th Mersenne prime to be discovered, it is smaller than the largest known at the time, which was the 45th to be discovered. 1343:
of Mersenne number order requires knowing the factorization of that number, so Mersenne primes allow one to find primitive polynomials of very high order. Such
5268:
2, 3, 5, 17, 29, 31, 53, 59, 101, 277, 647, 1061, 2381, 2833, 3613, 3853, 3929, 5297, 7417, 90217, 122219, 173191, 256199, 336353, 485977, 591827, 1059503, ...
2140:
Graph of number of digits in largest known Mersenne prime by year – electronic era. The vertical scale is logarithmic in the number of digits, thus being a
1728:
The first 64 prime exponents with those corresponding to Mersenne primes shaded in cyan and in bold, and those thought to do so by Mersenne in red and bold
9900: 4378:
2, 5, 7, 11, 17, 19, 79, 163, 193, 239, 317, 353, 659, 709, 1049, 1103, 1759, 2029, 5153, 7541, 9049, 10453, 23743, 255361, 534827, 2237561, ... (sequence
3460:
is a 3,829,294-digit probable prime. It was discovered by a GIMPS participant with nickname "Funky Waddle". As of September 2022, the Mersenne number
3254:, so −2 is the product of a residue and a nonresidue and hence it is a nonresidue, which is a contradiction. Hence, the former congruence must be true and 7947:
Zalnezhad, Ali; Zalnezhad, Hossein; Shabani, Ghasem; Zalnezhad, Mehdi (March 2015). "Relationships and Algorithm in order to Achieve the Largest Primes".
5300:
2, 3, 5, 7, 13, 23, 43, 281, 359, 487, 577, 1579, 1663, 1741, 3191, 9209, 11257, 12743, 13093, 17027, 26633, 104243, 134227, 152287, 700897, 1205459, ...
3467:
is the smallest composite Mersenne number with no known factors; it has no prime factors below 2, and is very unlikely to have any factors below 10 (~2).
3436:
is the record-holder, having been factored with a variant of the special number field sieve that allows the factorization of several numbers at once. See
1742:, who compiled what was supposed to be a list of Mersenne primes with exponents up to 257. The exponents listed by Mersenne in 1644 were as follows: 358:
Many fundamental questions about Mersenne primes remain unresolved. It is not even known whether the set of Mersenne primes is finite or infinite.
9387: 5332:
2, 3, 7, 17, 59, 283, 311, 383, 499, 521, 541, 599, 1193, 1993, 2671, 7547, 24019, 46301, 48121, 68597, 91283, 131497, 148663, 184463, 341233, ...
8531: 455:
It is also not known whether infinitely many Mersenne numbers with prime exponents are composite, although this would follow from widely believed
8475: 8463: 8619: 7456: 1344: 8990: 362: 8543: 8119: 1814:
is indeed prime, as Mersenne claimed. This was the largest known prime number for 75 years until 1951, when Ferrier found a larger prime,
12297: 11879: 3395: 334:
project. In December 2020, a major milestone in the project was passed after all exponents below 100 million were checked at least once.
2400:
On December 21, 2018, it was announced that The Great Internet Mersenne Prime Search (GIMPS) discovered the largest known prime number,
1887:
in 1903. Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one, resulting in the number
7319: 1324:. Consequently, a large amount of computer power has been expended searching for new Mersenne primes, much of which is now done using 12292: 7055: 6774: 6740: 4845: 4820: 4764: 4722: 4575: 4544: 4532: 4403: 4385: 4318: 4293: 3744: 3477: 3416: 2430: 576: 270: 240: 114: 9893: 9072: 8221: 352: 7571: 11919: 8141: 1336: 8995: 8385: 7914: 7802: 7686: 2338: 2213: 11874: 8909: 8508: 8439: 7632: 7484: 6829: 5390:
3, 43, 59, 191, 223, 349, 563, 709, 743, 1663, 5471, 17707, 19609, 35449, 36697, 45259, 91493, 246497, 265007, 289937, ...
327: 10700: 9886: 8434: 1340: 7511: 3432:
algorithm, so often the largest number factorized with this algorithm has been a Mersenne number. As of June 2019,
11834: 10695: 8612: 7897:
Solinas, Jerome A. (1 January 2011). "Generalized Mersenne Prime". In Tilborg, Henk C. A. van; Jajodia, Sushil (eds.).
7703: 12287: 12193: 10710: 10690: 7879: 372: 11403: 10983: 9246: 8393: 7553: 12013: 12008: 12003: 11998: 11993: 11988: 11983: 11978: 3103:
are coprime. Consequently, a prime number divides at most one prime-exponent Mersenne number. That is, the set of
2048: 1313: 17: 4863: 4300:
Like the sequence of exponents for usual Mersenne primes, this sequence contains only (rational) prime numbers.
10705: 9327: 7378: 2365: 2342: 4304: 12228: 12108: 11489: 8605: 8315: 7403: 3437: 2361: 1348: 205:. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form 6803: 5284:
3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611, 877843, ...
4452: 12113: 12103: 12043: 11155: 10805: 10474: 10267: 9449: 9107: 9020: 3775: 2206: 5438:
3, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407, 10949, 13241, 13873, 16519, 201359, 396413, 1888279, ...
2287:
was the first with more than a million. In general, the number of digits in the decimal representation of
2188:
The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
740: 12058: 11912: 11331: 11190: 11021: 10835: 10825: 10479: 10459: 9474: 8310: 2877:, which asserts the infinitude of primes, distinct from the proof written by Euclid: for every odd prime 2341:
participating in the Great Internet Mersenne Prime Search (GIMPS) won part of a $ 100,000 prize from the
618: 11160: 8488:
sequence A250197 (Numbers n such that the left Aurifeuillian primitive part of 2^n+1 is prime)
12302: 12203: 11280: 10903: 10745: 10660: 10469: 10451: 10345: 10335: 10325: 10161: 9382: 8940: 8528: 6835: 4240: 3998: 3429: 2736: 1905: 1356: 319: 11185: 3281:
With the exception of 1, a Mersenne number cannot be a perfect power. That is, and in accordance with
2136: 12188: 12053: 11408: 10953: 10574: 10360: 10355: 10350: 10340: 10317: 8472: 8460: 8305: 8227: 8147: 2389:
On January 3, 2018, it was announced that Jonathan Pace, a 51-year-old electrical engineer living in
2019: 1871: 11165: 8419: 4974:, the division is necessary for there to be any chance of finding prime numbers.) We can ask which 1817: 682: 12312: 12307: 12266: 10830: 10740: 10393: 9411: 7748: 7231: 2382:
On September 2, 2016, the Great Internet Mersenne Prime Search finished verifying all tests below M
2143: 1405: 1368: 795: 312: 188: 11519: 11484: 11270: 11180: 11054: 11029: 10938: 10928: 10650: 10540: 10522: 10442: 9015: 8540: 8455: 6018:
2, 3, 5, 7, 11, 17, 19, 41, 53, 109, 167, 2207, 3623, 5059, 5471, 7949, 21211, 32993, 60251, ...
3282: 2411:
In late 2020, GIMPS began using a new technique to rule out potential Mersenne primes called the
1418: 7669:
Kleinjung, Thorsten; Bos, Joppe W.; Lenstra, Arjen K. (2014). "Mersenne Factorization Factory".
4392:
The norms (that is, squares of absolute values) of these Eisenstein primes are rational primes:
1463: 12261: 12156: 11905: 11869: 11827: 11779: 11049: 10923: 10554: 10330: 10110: 10037: 9532: 8661: 6870: 6818: 5550:
2, 3, 11, 31, 43, 47, 59, 107, 811, 2819, 4817, 9601, 33581, 38447, 41341, 131891, 196337, ...
3774:
steps, assuming no mistakes are made. The number of rice grains on the whole chessboard in the
2372:(a number with 17,425,170 digits), as a result of a search executed by a GIMPS server network. 2047:
The most efficient method presently known for testing the primality of Mersenne numbers is the
1509:
is a Perfect Number. (Perfect Numbers are Triangular Numbers whose base is a Mersenne Prime.)
326:, is a Mersenne prime. Since 1997, all newly found Mersenne primes have been discovered by the 12223: 12213: 12151: 11743: 11383: 11034: 10888: 10815: 9970: 9869: 9459: 9112: 7930: 7342: 5774:
7, 11, 17, 29, 31, 79, 113, 131, 139, 4357, 44029, 76213, 83663, 173687, 336419, 615997, ...
5422:
2, 5, 7, 13, 19, 37, 59, 67, 79, 307, 331, 599, 1301, 12263, 12589, 18443, 20149, 27983, ...
3986: 2965: 2390: 1904:
Fast algorithms for finding Mersenne primes are available, and as of June 2023, the six
1325: 331: 8450: 7301: 290:. Sometimes, however, Mersenne numbers are defined to have the additional requirement that 11854: 11676: 11570: 11534: 11275: 10998: 10978: 10795: 10464: 10252: 9439: 7327: 6808: 5880:
4, 7, 13, 31, 43, 269, 353, 383, 619, 829, 877, 4957, 5711, 8317, 21739, 24029, 38299, ...
5454:
5, 67, 101, 103, 229, 347, 4013, 23297, 30133, 177337, 193939, 266863, 277183, 335429, ...
5406:
13, 19, 23, 31, 47, 127, 223, 281, 2083, 5281, 7411, 7433, 19051, 27239, 35863, 70327, ...
3470:
The table below shows factorizations for the first 20 composite Mersenne numbers (sequence
3127: 2217: 604: 460: 428: 10755: 10224: 5374:
3, 5, 19, 37, 173, 211, 227, 619, 977, 1237, 2437, 5741, 13463, 23929, 81223, 121271, ...
8: 12098: 11398: 11262: 11257: 11225: 10988: 10963: 10958: 10933: 10863: 10859: 10790: 10680: 10512: 10308: 10277: 9434: 9092: 7408: 7343:"A Brief History of the Investigations on Mersenne Numbers and the Latest Immense Primes" 3445:
on the cofactor. As of September 2022, the largest completely factored number (with
3135: 2874: 2221: 908: 463: 366: 9097: 8093: 8067: 8019: 4537:
corresponding to primes 11, 1111111111111111111, 11111111111111111111111, ... (sequence
2224:. It was the first Mersenne prime to be identified in thirty-eight years; the next one, 12146: 12048: 12038: 11859: 11801: 11555: 11550: 11464: 11438: 11336: 11315: 11087: 10968: 10918: 10840: 10810: 10750: 10517: 10497: 10428: 10141: 9542: 9479: 9469: 9454: 9087: 8945: 8866: 8041: 7997: 7948: 7489: 7152: 6933: 6929: 4204: 4167: 4152: 4136: 3830: 3275: 2480: 1409: 1404:
proved that, conversely, all even perfect numbers have this form. This is known as the
467: 10685: 8513: 8357: 7967: 7844: 12063: 11820: 11797: 11695: 11640: 11494: 11469: 11443: 10898: 10893: 10820: 10800: 10785: 10507: 10489: 10408: 10398: 10383: 10146: 9511: 9486: 9464: 9444: 9067: 9039: 8732: 8580: 8561: 7910: 7798: 7682: 5518:
2, 5, 11, 13, 23, 61, 83, 421, 1039, 1511, 31237, 60413, 113177, 135647, 258413, ...
5486:
2, 3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789, ...
3104: 2193: 1884: 592: 11220: 8564: 7284: 7267: 4568:
2, 5, 11, 109, 193, 1483, 11353, 21419, 21911, 24071, 106859, 139739, ... (sequence
1799:(which are prime). Mersenne gave little indication of how he came up with his list. 12248: 12068: 12018: 11886: 11731: 11524: 11110: 11082: 11072: 11064: 10948: 10913: 10908: 10875: 10569: 10532: 10423: 10418: 10413: 10403: 10375: 10262: 10209: 10166: 10105: 9421: 9406: 9343: 9190: 9057: 8960: 8583: 7902: 7674: 7585: 7529: 7279: 6813: 5534:
2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, 19889, 79987, 608099, ...
4216: 4200: 3737:
The number of factors for the first 500 Mersenne numbers can be found at (sequence
1883:
was composite without finding a factor. No factor was found until a famous talk by
1352: 907:, all other Mersenne numbers are also congruent to 3 (mod 4). Consequently, in the 198: 10214: 7649: 7430: 7298: 2233:, was found by the computer a little less than two hours later. Three more — 2006: 1802: 12208: 11707: 11596: 11529: 11455: 11378: 11352: 11170: 10883: 10675: 10645: 10635: 10630: 10296: 10204: 10151: 9995: 9935: 9122: 9082: 8965: 8930: 8894: 8849: 8702: 8690: 8547: 8535: 8479: 8467: 7906: 7678: 7636: 6875: 6840: 2978: 2209: 1239:
This rules out primality for Mersenne numbers with a composite exponent, such as
8425: 7629: 7205: 7098:
is a perfect fourth power, it can be shown that there are at most two values of
2350:
745 on August 23, 2008. This was the eighth Mersenne prime discovered at UCLA.
1309:
is prime for only 43 of the first two million prime numbers (up to 32,452,843).
12238: 12129: 12028: 11843: 11712: 11580: 11565: 11429: 11393: 11368: 11244: 11215: 11200: 11077: 10973: 10943: 10670: 10625: 10502: 10100: 10095: 10090: 10062: 9960: 9945: 9923: 9910: 9527: 9501: 9398: 9266: 9117: 9077: 9062: 8934: 8825: 8790: 8745: 8670: 7883: 6896: 6845: 5235:
42643801, 43112609, 57885161, ..., 74207281, ..., 77232917, ..., 82589933, ...
5156: 4258: 4192: 3826: 3756: 3446: 3442: 3322: 2412: 2405: 2317: 2069: 1993: 1980: 1739: 1401: 1385: 1321: 1317: 1263:, this is not the case, and the smallest counterexample is the Mersenne number 225: 184: 39: 8327: 5470:
2, 3, 17, 19, 47, 101, 1709, 2539, 5591, 6037, 8011, 19373, 26489, 27427, ...
3451:
2 − 1 = 1,119,429,257 × 175,573,124,547,437,977 × 8,480,999,878,421,106,991 ×
2968:, every prime modulus in which the number 2 has a square root is congruent to 2375:
On January 19, 2016, Cooper published his discovery of a 49th Mersenne prime,
233:
which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, ... (sequence
12281: 12198: 11973: 11953: 11928: 11635: 11619: 11560: 11514: 11210: 11195: 11105: 10388: 10257: 10219: 10176: 10057: 10042: 10032: 9990: 9980: 9955: 9878: 9537: 9302: 9166: 9139: 8975: 8840: 8778: 8769: 8754: 8717: 8643: 7515: 7461: 7364: 7178: 6865: 6855: 6793: 4591: 3935: 3811: 3799: 2347: 2205:, by this means was achieved at 10:00 pm on January 30, 1952, using the U.S. 1735: 1332: 260: 8405: 7723: 7605: 7219: 6563:
2, 3, 5, 19, 97, 109, 317, 353, 701, 9739, 14951, 37573, 46889, 769543, ...
4307:(that is, squares of absolute values) of these numbers are rational primes: 12233: 11671: 11660: 11575: 11413: 11388: 11305: 11205: 11175: 11150: 11134: 11039: 11006: 10729: 10640: 10579: 10156: 10052: 9985: 9965: 9940: 9858: 9853: 9848: 9843: 9838: 9833: 9828: 9823: 9818: 9813: 9808: 9803: 9798: 9793: 9788: 9783: 9778: 9773: 9768: 9763: 9758: 9753: 9748: 9743: 9738: 9733: 9728: 9723: 9718: 9713: 9708: 9703: 9698: 9693: 9688: 9491: 9214: 8980: 8970: 8955: 8950: 8914: 8628: 7248: 6850: 6798: 6255:
5, 19, 67, 107, 593, 757, 1801, 2243, 2383, 6043, 10181, 11383, 15629, ...
5742:
2, 11, 31, 173, 271, 547, 1823, 2111, 5519, 7793, 22963, 41077, 49739, ...
5502:
4, 5, 7, 19, 29, 61, 137, 883, 1381, 1823, 5227, 25561, 29537, 300893, ...
5043: 4026: 3795: 2404:, having 24,862,048 digits. A computer volunteered by Patrick Laroche from 2041: 1335:, making them popular choices when a prime modulus is desired, such as the 722: 256: 158: 154: 95: 8445: 8333: 6579:
2, 5, 11, 109, 193, 1483, 11353, 21419, 21911, 24071, 106859, 139739, ...
12243: 12183: 11630: 11505: 11310: 10774: 10665: 10620: 10615: 10365: 10272: 10171: 10000: 9975: 9950: 9683: 9678: 9673: 9668: 9663: 9658: 9653: 9648: 9643: 9638: 9633: 9628: 9623: 9618: 9613: 9608: 9603: 9598: 9593: 9588: 9583: 9429: 9102: 9010: 9005: 8985: 8899: 8802: 8678: 8401: 7934: 7654: 7244: 6860: 4196: 4156: 3815: 2189: 365:
claims that there are infinitely many Mersenne primes and predicts their
252: 162: 146: 91: 69: 7768: 6351:
17, 19, 73, 139, 907, 1907, 2029, 4801, 5153, 10867, 20161, 293831, ...
4551:
These primes are called repunit primes. Another example is when we take
4311:
5, 13, 41, 113, 2113, 525313, 536903681, 140737471578113, ... (sequence
3720:
3,391 × 23,279 × 65,993 × 1,868,569 × 1,066,818,132,868,207 (16 digits)
1415:
An alternative form of Perfect Numbers (not affecting the essence): If
921: ) there must be at least one prime factor congruent to 3 (mod 4). 12033: 11767: 11748: 11044: 10655: 9506: 9322: 9230: 9150: 9000: 8904: 8597: 7673:. Lecture Notes in Computer Science. Vol. 8874. pp. 358–377. 4022: 4003:
The simplest generalized Mersenne primes are prime numbers of the form
3850: 456: 341: 248: 244: 87: 83: 6335:
2, 5, 11, 13, 331, 599, 18839, 23747, 24371, 29339, 32141, 67421, ...
3409:
42643801, 43112609, 57885161, 74207281, 77232917, 82589933. (sequence
2386:, thus officially confirming its position as the 45th Mersenne prime. 2196:
in 1949, but the first successful identification of a Mersenne prime,
12139: 12134: 11968: 11373: 11300: 11292: 11097: 11011: 10129: 9547: 9496: 9377: 8588: 8569: 5316:
3, 4, 7, 11, 83, 149, 223, 599, 647, 1373, 8423, 149497, 388897, ...
4184:
does not lead to anything interesting (since it is always −1 for all
3950:
MF(2, 2), MF(2, 3), MF(2, 4), MF(2, 5), MF(3, 2), MF(3, 3), MF(7, 2),
3731:
263 × 10,350,794,431,055,162,386,718,619,237,468,234,569 (38 digits)
3400:
As of 2023, the 51 known Mersenne primes are 2 − 1 for the following
296:
be prime. The smallest composite Mersenne number with prime exponent
8529:
http://www.leyland.vispa.com/numth/factorization/cunningham/main.htm
5080:
is prime. However, this has not been proved for any single value of
3687:
7,432,339,208,719 (13 digits) × 341,117,531,003,194,129 (18 digits)
369:
and frequency: For every number n, there should on average be about
12073: 11474: 8358:
Property of Mersenne numbers with prime exponent that are composite
7953: 5986:
3, 59, 223, 547, 773, 1009, 1823, 3803, 49223, 193247, 703393, ...
5896:
2, 7, 29, 31, 67, 149, 401, 2531, 19913, 30773, 53857, 170099, ...
3838: 3822: 3791: 2260: — were found by the same program in the next several months. 1331:
Arithmetic modulo a Mersenne number is particularly efficient on a
8473:
http://www.leyland.vispa.com/numth/factorization/cunningham/2+.txt
8461:
http://www.leyland.vispa.com/numth/factorization/cunningham/2-.txt
7946: 5726:
2, 3, 5, 19, 41, 47, 8231, 33931, 43781, 50833, 53719, 67211, ...
5662:
5, 13, 131, 149, 1699, 14221, 35201, 126037, 371669, 1264699, ...
4525:
2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, ... (sequence
11963: 11812: 11479: 11138: 11132: 9049: 8484: 7819: 6823: 6788: 5582:
2, 3, 7, 29, 41, 67, 1327, 1399, 2027, 69371, 86689, 355039, ...
4929: 4421: 3092: 925: 307:
Mersenne primes were studied in antiquity because of their close
175: 11897: 6207:
3, 5, 19, 311, 317, 1129, 4253, 7699, 18199, 35153, 206081, ...
2889:; thus there are always larger primes than any particular prime. 2423:
Mersenne numbers are 0, 1, 3, 7, 15, 31, 63, ... (sequence
12218: 12023: 11958: 7457:"Prime number with 22 million digits is the biggest ever found" 6082:
2, 3, 7, 11, 19, 29, 401, 709, 2531, 15787, 66949, 282493, ...
4440:, it is to simply take out this factor and ask which values of 4330:
One may encounter cases where such a Mersenne prime is also an
3807: 3803: 1389: 10194: 8541:
http://www.leyland.vispa.com/numth/factorization/anbn/main.htm
7701: 7650:"Proof of a result of Euler and Lagrange on Mersenne Divisors" 7379:"UCLA mathematicians discover a 13-million-digit prime number" 4630:
is a perfect power, it can be shown that there is at most one
4508:
can be either positive or negative.) If, for example, we take
4139:, the former is not a prime. This can be remedied by allowing 3423: 3274:
All composite divisors of prime-exponent Mersenne numbers are
9044: 9030: 7485:"New Biggest Prime Number = 2 to the 74 Mil ... Uh, It's Big" 7431:"Mersenne Prime Number discovery – 2 − 1 is Prime!" 6066:
3, 7, 13, 19, 307, 619, 2089, 7297, 75571, 76103, 98897, ...
5694:
2, 5, 23, 73, 101, 401, 419, 457, 811, 1163, 1511, 8011, ...
3845:
then because it is primitive it constrains the odd leg to be
3841:
is always a Mersenne number. For example, if the even leg is
887:, all Mersenne primes are congruent to 3 (mod 4). Other than 7586:"GIMPS Discovers Largest Known Prime Number: 2^82,589,933-1" 6319:
3, 5, 19, 31, 367, 389, 431, 2179, 10667, 13103, 90397, ...
6162:
2, 3, 19, 31, 101, 139, 167, 1097, 43151, 60703, 90499, ...
2563:(which is a contradiction, as neither −1 nor 0 is prime) or 8487: 7299:
Bell, E.T. and Mathematical Association of America (1951).
7059: 6769: 6735: 6627: 6598: 6582: 6566: 6550: 6534: 6518: 6502: 6434: 6418: 6402: 6386: 6370: 6354: 6338: 6322: 6306: 6290: 6274: 6258: 6242: 6226: 6210: 6194: 6165: 6149: 6133: 6117: 6101: 6085: 6069: 6053: 6037: 6021: 6005: 5989: 5960: 5931: 5915: 5899: 5883: 5867: 5851: 5809: 5793: 5777: 5761: 5745: 5729: 5713: 5697: 5681: 5665: 5649: 5633: 5617: 5601: 5585: 5569: 5553: 5537: 5521: 5505: 5489: 5473: 5457: 5441: 5425: 5409: 5393: 5377: 5335: 5319: 5303: 5287: 5271: 5255: 5238: 5220: 4840: 4815: 4759: 4717: 4570: 4539: 4527: 4398: 4396:
7, 271, 2269, 176419, 129159847, 1162320517, ... (sequence
4380: 4313: 4288: 4092:
It is also natural to try to generalize primes of the form
3818:
having been discovered and named during the 19th century).
3750: 3739: 3472: 3411: 2425: 2269:
was the first prime discovered with more than 1000 digits,
1996:
in 1772. The next (in historical, not numerical order) was
571: 265: 235: 8322: 7865: 6431:
7, 11, 181, 421, 2297, 2797, 4129, 4139, 7151, 29033, ...
6178:
2, 3, 5, 11, 19, 1259, 1399, 2539, 2843, 5857, 10589, ...
3709:
745,988,807 × 870,035,986,098,720,987,332,873 (24 digits)
3698:
2,550,183,799 × 3,976,656,429,941,438,590,393 (22 digits)
3321:
The Mersenne number sequence is a member of the family of
2220:, with a computer search program written and run by Prof. 11948: 7153:"GIMPS Project Discovers Largest Known Prime Number: 2-1" 6034:
3, 5, 13, 17, 43, 127, 229, 277, 6043, 11131, 11821, ...
425:
with n decimal digits (i.e. 10 < p < 10) for which
8559: 6146:
5, 7, 19, 31, 53, 67, 293, 641, 2137, 3011, 268207, ...
6130:
2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, ...
5678:
3, 17, 23, 29, 47, 61, 1619, 18251, 106187, 201653, ...
5566:
3, 4, 5, 17, 397, 409, 643, 1783, 2617, 4583, 8783, ...
3837: ) generates a unique right triangle such that its 3802:
after Marin Mersenne, because 8191 is a Mersenne prime (
3676:
11,447 × 13,842,607,235,828,485,645,766,393 (26 digits)
1961:, was discovered anonymously before 1461; the next two ( 8578: 7206:"Heuristics: Deriving the Wagstaff Mersenne Conjecture" 5957:
2, 3, 5, 13, 29, 37, 1021, 1399, 2137, 4493, 5521, ...
1302:(the correct terms on Mersenne's original list), while 7572:"Found: A Special, Mind-Bogglingly Large Prime Number" 1734:
Mersenne primes take their name from the 17th-century
621: 10858: 9578: 9573: 9568: 9563: 8509:
Factorization of completely factored Mersenne numbers
8230: 8150: 7554:"Largest-known prime number found on church computer" 6650:
are not included in the corresponding OEIS sequence.
6383:
3, 5, 17, 67, 83, 101, 1373, 6101, 12119, 61781, ...
5710:
3, 13, 31, 313, 3709, 7933, 14797, 30689, 38333, ...
5630:
3, 7, 19, 109, 131, 607, 863, 2917, 5923, 12421, ...
4866: 4580:
corresponding to primes −11, 19141, 57154490053, ....
4455: 2146: 1820: 1466: 1421: 1291:
increases. For example, eight of the first 11 primes
947: 798: 743: 685: 431: 375: 123: 11243: 6595:
2, 3, 5, 13, 347, 977, 1091, 4861, 4967, 34679, ...
6367:
5, 7, 179, 229, 439, 557, 6113, 223999, 327001, ...
6303:
3, 5, 11, 17, 71, 89, 827, 22307, 45893, 63521, ...
4978:
makes this number prime. It can be shown that such
4852: 4118: 3654:
2,687 × 202,029,703 × 1,113,491,139,767 (13 digits)
838:
cannot be prime. The first four Mersenne primes are
459:
about prime numbers, for example, the infinitude of
8451:
Decimal digits and English names of Mersenne primes
7668: 7530:"Mersenne Prime Discovery - 2^77232917-1 is Prime!" 6547:2, 3, 31, 41, 53, 101, 421, 1259, 4721, 45259, ... 6287:5, 41, 149, 229, 263, 739, 3457, 20269, 98221, ... 941:must also be prime. This follows from the identity 8270: 8190: 7300: 6050:2, 3, 107, 197, 2843, 3571, 4451, ..., 31517, ... 4909: 4491: 4143:to be an algebraic integer instead of an integer: 2418: 2176: 1853: 1501: 1452: 1231: 830: 784: 713: 663: 444: 413: 191:, who studied them in the early 17th century. If 10242: 6611:2, 3, 7, 67, 79, 167, 953, 1493, 3389, 4871, ... 5848:2, 5, 163, 191, 229, 271, 733, 21059, 25237, ... 5614:2, 5, 11, 61, 619, 2879, 2957, 24371, 69247, ... 3665:167 × 57,912,614,113,275,649,087,721 (23 digits) 12279: 9260: = 0, 1, 2, 3, ... 7868:. The On-Line Encyclopedia of Integer Sequences. 5646:3, 7, 19, 79, 431, 1373, 1801, 2897, 46997, ... 5598:3, 5, 7, 113, 397, 577, 7573, 14561, 58543, ... 3643:439 × 2,298,041 × 9,361,973,132,609 (13 digits) 3389: 1899: 1891:. On the other side of the board, he multiplied 286:without the primality requirement may be called 10128: 7340: 5007:is prime. It is a conjecture that for any pair 4191:). Thus, we can regard a ring of "integers" on 4180:are the usual Mersenne primes, and the formula 2892:It follows from this fact that for every prime 2212:at the Institute for Numerical Analysis at the 2051:. Specifically, it can be shown that for prime 878:and because the first Mersenne prime starts at 343: 9922: 9908: 414:{\displaystyle e^{\gamma }\cdot \log _{2}(10)} 318:As of 2023, 51 Mersenne primes are known. The 11913: 11828: 9894: 8613: 8442:– contains factors for small Mersenne numbers 7272:Bulletin of the American Mathematical Society 4982:must be primes themselves or equal to 4, and 4325: 3938:. The only known Mersenne–Fermat primes with 3023:. If the given congruence is satisfied, then 1252:Though the above examples might suggest that 11730: 10080: 7724:"M12720787 Mersenne number exponent details" 7476: 7220:Mersenne Primes: History, Theorems and Lists 6447:2, 5, 7, 107, 383, 17359, 21929, 26393, ... 5928:3, 11, 17, 173, 839, 971, 40867, 45821, ... 5790:2, 19, 1021, 5077, 34031, 46099, 65707, ... 4767:) (notice this OEIS sequence does not allow 1400:) is a perfect number. In the 18th century, 7842: 7243: 6473:2, 3, 13, 31, 59, 131, 223, 227, 1523, ... 4210: 3424:Factorization of composite Mersenne numbers 3396:List of Mersenne primes and perfect numbers 3238:and therefore 2 is a quadratic residue mod 3002:does not hold. By Fermat's little theorem, 2040:) were found early in the 20th century, by 11920: 11906: 11835: 11821: 10195:Possessing a specific set of other numbers 10018: 9901: 9887: 8620: 8606: 7880:"A research of Mersenne and Fermat primes" 7422: 6675:, a difference of two consecutive perfect 5806:2, 3, 7, 19, 31, 67, 89, 9227, 43891, ... 4910:{\displaystyle {\frac {a^{n}-b^{n}}{a-b}}} 4584:It is a conjecture that for every integer 4354:. In these cases, such numbers are called 3621:193,707,721 × 761,838,257,287 (12 digits) 2899:, there is at least one prime of the form 349:Are there infinitely many Mersenne primes? 11658: 10605: 8514:The Cunningham project, factorization of 7952: 7899:Encyclopedia of Cryptography and Security 7365:The Mathematics Department and the Mark 1 7303:Mathematics, queen and servant of science 7283: 7145: 6531:2, 3, 7, 13, 47, 89, 139, 523, 1051, ... 6271:2, 3, 11, 163, 191, 269, 1381, 1493, ... 5864:2, 7, 19, 167, 173, 223, 281, 21647, ... 4426:The other way to deal with the fact that 4368:is an Eisenstein prime for the following 3864: 3833:and has its even leg a power of 2 (  3218:, so −2 would be a quadratic residue mod 2994:is a Mersenne prime, then the congruence 2797:. As a result, for all positive integers 2278:was the first with more than 10,000, and 1748:2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. 8627: 8422:with hyperlinks to original publications 8334:GIMPS, known factors of Mersenne numbers 7792: 7769:"M1277 Mersenne number exponent details" 7376: 7255:(4th ed.). Oxford University Press. 7253:An Introduction to the Theory of Numbers 6515:2, 3, 7, 89, 101, 293, 4463, 70067, ... 6002:2, 3, 7, 127, 283, 883, 1523, 4001, ... 3751:Mersenne numbers in nature and elsewhere 3610:179,951 × 3,203,431,780,337 (13 digits) 2135: 1247:= 2 − 1 = 15 = 3 × 5 = (2 − 1) × (1 + 2) 337: 243:) and the resulting Mersenne primes are 9138: 7896: 7671:Advances in Cryptology – ASIACRYPT 2014 7197: 4857:Another generalized Mersenne number is 353:(more unsolved problems in mathematics) 14: 12280: 11766: 7795:Famous Puzzles of Great Mathematicians 7428: 6239:2, 7, 11, 17, 37, 521, 877, 2423, ... 5046:, there are infinitely many values of 4594:, there are infinitely many values of 4492:{\displaystyle {\frac {b^{n}-1}{b-1}}} 4275:is a Gaussian prime for the following 3906:natural number, and can be written as 2785:is also the smallest positive integer 1870:was determined to be prime in 1883 by 1408:. It is unknown whether there are any 1287:appear to grow increasingly sparse as 928:about Mersenne numbers states that if 11901: 11816: 11765: 11729: 11693: 11657: 11617: 11242: 11131: 10857: 10772: 10727: 10604: 10294: 10241: 10193: 10127: 10079: 10017: 9921: 9882: 8601: 8579: 8560: 7931:The Prime Glossary: Gaussian Mersenne 7817: 7482: 7454: 7401: 6191:4, 7, 67, 73, 1091, 1483, 10937, ... 3107:Mersenne numbers is pairwise coprime. 2337:In September 2008, mathematicians at 2214:University of California, Los Angeles 1983:in 1588. After nearly two centuries, 363:Lenstra–Pomerance–Wagstaff conjecture 11875:Great Internet Mersenne Prime Search 10295: 8490:– Factorization of Mersenne numbers 7702:Henri Lifchitz and Renaud Lifchitz. 7647: 7265: 7203: 7102:with this property: in these cases, 6830:Great Internet Mersenne Prime Search 6399:3, 103, 271, 523, 23087, 69833, ... 6114:2, 3, 5, 37, 599, 38393, 51431, ... 4410: 2670:is composite. By contraposition, if 2368:, discovered a 48th Mersenne prime, 1951:were known in antiquity. The fifth, 1861:, using a desk calculating machine. 1351:with very large periods such as the 785:{\displaystyle \Phi _{p}(2)=2^{p}-1} 679:or 1. However, it cannot be 1 since 664:{\textstyle {\frac {(2p+1)-1}{2}}=p} 328:Great Internet Mersenne Prime Search 308: 11694: 7268:"On the factoring of large numbers" 6098:2, 31, 103, 617, 10253, 10691, ... 3632:228,479 × 48,544,121 × 212,885,833 3250:, −1 is a quadratic nonresidue mod 2625:is composite, hence can be written 2408:made the find on December 7, 2018. 2393:, had found a 50th Mersenne prime, 2184:function in the value of the prime. 1337:Park–Miller random number generator 591:is congruent to 7 mod 8, so 2 is a 24: 12298:Unsolved problems in number theory 11842: 11618: 8553: 7483:Chang, Kenneth (21 January 2016). 7455:Brook, Robert (January 19, 2016). 7377:Maugh II, Thomas H. (2008-09-27). 6415:2, 7, 53, 67, 71, 443, 26497, ... 4146: 3992: 2927:is an odd prime, then every prime 2687:is an odd prime, then every prime 1772:(which are composite) and omitted 1362: 745: 687: 482:(which is also prime) will divide 25: 12324: 12194:Indefinite and fictitious numbers 11927: 8456:Prime curios: 2305843009213693951 8446:Known factors of Mersenne numbers 8391: 8298: 7901:. Springer US. pp. 509–510. 7845:"JPL Small-Body Database Browser" 7429:Cooper, Curtis (7 January 2016). 7404:"Largest Prime Number Discovered" 6223:5, 31, 271, 929, 2789, 4153, ... 4853:Other generalized Mersenne primes 4415: 3334:(3, 2). That is, Mersenne number 2210:Western Automatic Computer (SWAC) 1355:, generalized shift register and 161:. That is, it is a prime number 12293:Eponymous numbers in mathematics 11796: 11404:Perfect digit-to-digit invariant 10773: 8996:Supersingular (moonshine theory) 4303:As for all Gaussian primes, the 3927:, it is a Mersenne number. When 3160:: 11 and 23 are both prime, and 2044:in 1911 and 1914, respectively. 27:Prime number of the form (2^n)-1 8271:{\displaystyle (a^{n}+b^{n})/c} 8215: 8191:{\displaystyle (a^{n}-b^{n})/c} 8135: 8113: 8087: 8061: 8035: 8013: 7991: 7961: 7940: 7923: 7890: 7872: 7858: 7836: 7811: 7786: 7761: 7741: 7716: 7695: 7662: 7641: 7623: 7598: 7578: 7564: 7546: 7522: 7504: 7448: 7395: 7370: 7357: 7334: 7285:10.1090/S0002-9904-1903-01079-9 7266:Cole, F. N. (1 December 1903). 7066: 6961: 6895:This number is the same as the 6889: 6499:53, 421, 647, 1601, 35527, ... 2595:which is not prime. Therefore, 2419:Theorems about Mersenne numbers 1911:The first four Mersenne primes 344:Unsolved problem in mathematics 8991:Supersingular (elliptic curve) 8440:Will Edgington's Mersenne Page 8257: 8231: 8177: 8151: 7820:"Wheat and Chessboard Problem" 7797:. AMS Bookstore. p. 197. 7630:Will Edgington's Mersenne Page 7312: 7292: 7259: 7237: 7224: 7212: 7171: 7132:can be factored algebraically. 7014:. Thus, in this case the pair 6486:2, 3, 17, 41, 43, 59, 83, ... 3210:. Supposing latter true, then 3186:. By Fermat's little theorem, 2873:This fact leads to a proof of 2447:are natural numbers such that 2366:University of Central Missouri 2343:Electronic Frontier Foundation 2171: 2168: 2162: 2153: 1854:{\displaystyle (2^{148}+1)/17} 1840: 1821: 1488: 1476: 1447: 1422: 1349:pseudorandom number generators 1295:give rise to a Mersenne prime 1209: 1197: 1124: 1105: 1082: 1070: 997: 978: 760: 754: 714:{\displaystyle \Phi _{1}(2)=1} 702: 696: 640: 625: 408: 402: 58: 46: 13: 1: 12109:Conway chained arrow notation 10243:Expressible via specific sums 8772:2 ± 2 ± 1 7606:"GIMPS - The Math - PrimeNet" 7139: 6700:, because it is divisible by 3438:integer factorization records 3390:List of known Mersenne primes 3122:are both prime (meaning that 2977:A Mersenne prime cannot be a 2695:must be 1 plus a multiple of 2177:{\displaystyle \log(\log(y))} 1900:Searching for Mersenne primes 1893:193,707,721 × 761,838,257,287 831:{\displaystyle 2^{p}-1=M_{p}} 309:connection to perfect numbers 8426:report about Mersenne primes 7907:10.1007/978-1-4419-5906-5_32 7679:10.1007/978-3-662-45611-8_19 4693:is prime are (starting with 4261:which will then be called a 4135:, so unless the latter is a 3776:wheat and chessboard problem 3755:In the mathematical problem 3728:272225893536...454145691647 3717:103845937170...992658440191 3706:649037107316...312041152511 3695:101412048018...973625643007 3684:253530120045...993406410751 3673:158456325028...187087900671 3662:967140655691...033397649407 3599:6,361 × 69,431 × 20,394,401 3013:. Therefore, one can write 2755:, for all positive integers 2207:National Bureau of Standards 1992:was verified to be prime by 935:is prime, then the exponent 911:of a Mersenne number (  7: 11332:Multiplicative digital root 8523:= 2, 3, 5, 6, 7, 10, 11, 12 8420:Mersenne prime bibliography 8311:Encyclopedia of Mathematics 7749:"Exponent Status for M1277" 6781: 5155:(some large terms are only 5096:For more information, see 3759:, solving a puzzle with an 3588:2,351 × 4,513 × 13,264,529 2049:Lucas–Lehmer primality test 1906:largest known prime numbers 1889:147,573,952,589,676,412,927 1453:{\displaystyle (M=2^{n}-1)} 1357:Lagged Fibonacci generators 1314:Lucas–Lehmer primality test 128:Mersenne primes (of form 2^ 10: 12329: 12204:Largest known prime number 10728: 7793:Petković, Miodrag (2009). 6836:Largest known prime number 6646:is even, then the numbers 6460:7, 1163, 4007, 10159, ... 5912:3, 5, 7, 4703, 30113, ... 4735:, they are (starting with 4419: 4356:Eisenstein Mersenne primes 4326:Eisenstein Mersenne primes 3999:Generalized Mersenne prime 3996: 3430:special number field sieve 3393: 2717:. A composite example is 1512: 1502:{\displaystyle P=M(M+1)/2} 1366: 579:). Since for these primes 320:largest known prime number 12257: 12189:Extended real number line 12169: 12122: 12104:Knuth's up-arrow notation 12091: 12082: 11935: 11850: 11792: 11775: 11761: 11739: 11725: 11703: 11689: 11667: 11653: 11626: 11613: 11589: 11543: 11503: 11454: 11428: 11409:Perfect digital invariant 11361: 11345: 11324: 11291: 11256: 11252: 11238: 11146: 11127: 11096: 11063: 11020: 10997: 10984:Superior highly composite 10874: 10870: 10853: 10781: 10768: 10736: 10723: 10611: 10600: 10562: 10553: 10531: 10488: 10450: 10441: 10374: 10316: 10307: 10303: 10290: 10248: 10237: 10200: 10189: 10137: 10123: 10086: 10075: 10028: 10013: 9931: 9917: 9867: 9556: 9520: 9420: 9397: 9371: 9131: 9029: 8923: 8887: 8636: 7179:"GIMPS Milestones Report" 5758:3, 53, 83, 487, 743, ... 4215:If we regard the ring of 3651:604462909807314587353087 3083:are natural numbers then 2364:, a mathematician at the 2216:, under the direction of 2192:searched for them on the 2020:Ivan Mikheevich Pervushin 1872:Ivan Mikheevich Pervushin 1727: 1388:. In the 4th century BC, 1384:are closely connected to 113: 102: 79: 68: 56: 45: 35: 12288:Classes of prime numbers 12114:Steinhaus–Moser notation 11022:Euler's totient function 10806:Euler–Jacobi pseudoprime 10081:Other polynomial numbers 9378:Mega (1,000,000+ digits) 9247:Arithmetic progression ( 8394:"31 and Mersenne Primes" 8222:PRP records, search for 8142:PRP records, search for 7341:Horace S. Uhler (1952). 7320:"h2g2: Mersenne Numbers" 7185:. Mersenne Research, Inc 7049:must be prime. That is, 6882: 6624:47, 401, 509, 8609, ... 4986:can be 4 if and only if 4211:Gaussian Mersenne primes 3577:431 × 9,719 × 2,099,863 1460:is a prime number, then 1274:= 2 − 1 = 2047 = 23 × 89 1259:is prime for all primes 259:, 8191, 131071, 524287, 183:. They are named after 157:that is one less than a 10836:Somer–Lucas pseudoprime 10826:Lucas–Carmichael number 10661:Lazy caterer's sequence 8328:GIMPS Milestones Report 7307:. McGraw-Hill New York. 4964:is always divisible by 4502:be prime. (The integer 4433:is always divisible by 4263:Gaussian Mersenne prime 4128:is always divisible by 3857:and its inradius to be 3640:9444732965739290427391 3629:2361183241434822606847 3292:has no solutions where 2737:Fermat's little theorem 2702:. This holds even when 2661:(2) + (2) + ... + 2 + 1 675:is a prime, it must be 12157:Fast-growing hierarchy 11870:Double Mersenne number 10711:Wedderburn–Etherington 10111:Lucky numbers of Euler 9533:Industrial-grade prime 8910:Newman–Shanks–Williams 8428:– detection in detail 8272: 8192: 7558:christianchronicle.org 7435:Mersenne Research, Inc 7157:Mersenne Research, Inc 6819:Double Mersenne number 6804:Erdős–Borwein constant 4911: 4493: 4176:is either 2 or 0. But 4096:to primes of the form 3871:Mersenne–Fermat number 3865:Mersenne–Fermat primes 3618:147573952589676412927 2907:less than or equal to 2881:, all primes dividing 2546:. In the former case, 2185: 2178: 1855: 1503: 1454: 1316:(LLT) is an efficient 1233: 832: 786: 715: 665: 446: 415: 302:2 − 1 = 2047 = 23 × 89 12214:Long and short scales 12152:Grzegorczyk hierarchy 10999:Prime omega functions 10816:Frobenius pseudoprime 10606:Combinatorial numbers 10475:Centered dodecahedral 10268:Primary pseudoperfect 9870:List of prime numbers 9328:Sophie Germain/Safe ( 8273: 8193: 7232:Mersenne's conjecture 5027:are not both perfect 4912: 4494: 4117:). However (see also 4059:; another example is 3987:cyclotomic polynomial 3798:number 8191 is named 3765:-disc tower requires 3566:13,367 × 164,511,353 3050:= 1 + 2 + 2 + ... + 2 2966:quadratic reciprocity 2847:. Furthermore, since 2727:89 = 1 + 4 × (2 × 11) 2391:Germantown, Tennessee 2360:On January 25, 2013, 2179: 2139: 1908:are Mersenne primes. 1856: 1504: 1455: 1326:distributed computing 1234: 833: 787: 716: 666: 461:Sophie Germain primes 447: 445:{\displaystyle M_{p}} 416: 338:About Mersenne primes 332:distributed computing 263:, ... (sequence 11855:Mersenne conjectures 11458:-composition related 11258:Arithmetic functions 10860:Arithmetic functions 10796:Elliptic pseudoprime 10480:Centered icosahedral 10460:Centered tetrahedral 9052:(10 − 1)/9 8228: 8148: 7330:on December 5, 2014. 6809:Mersenne conjectures 4864: 4453: 4334:, being of the form 3544:233 × 1,103 × 2,089 3449:factors allowed) is 3283:Mihăilescu's theorem 3128:Sophie Germain prime 3070:which is impossible. 2957:is a square root of 2765:is also a factor of 2715:31 = 1 + 3 × (2 × 5) 2570:In the latter case, 2144: 1896:published his list. 1818: 1805:proved in 1876 that 1464: 1419: 1406:Euclid–Euler theorem 1369:Euclid–Euler theorem 1345:primitive trinomials 1341:primitive polynomial 945: 796: 741: 683: 619: 605:multiplicative order 470:). For these primes 429: 373: 313:Euclid–Euler theorem 276:Numbers of the form 12229:Orders of magnitude 12099:Scientific notation 11384:Kaprekar's constant 10904:Colossally abundant 10791:Catalan pseudoprime 10691:Schröder–Hipparchus 10470:Centered octahedral 10346:Centered heptagonal 10336:Centered pentagonal 10326:Centered triangular 9926:and related numbers 9361: ± 7, ... 8888:By integer sequence 8673:(2 + 1)/3 7818:Weisstein, Eric W. 7648:Caldwell, Chris K. 7560:. January 12, 2018. 7409:Scientific American 7347:Scripta Mathematica 7218:Chris K. Caldwell, 7084:th powers for some 6871:Gillies' conjecture 5097: 4827:For negative bases 4729:For negative bases 4205:Eisenstein integers 4025:with small integer 3607:576460752303423487 3276:strong pseudoprimes 2914:, for some integer 2859:is odd. Therefore, 2817:. Therefore, since 2777:is not a factor of 2022:in 1883. Two more ( 1410:odd perfect numbers 909:prime factorization 32: 12147:Ackermann function 11802:Mathematics portal 11744:Aronson's sequence 11490:Smarandache–Wellin 11247:-dependent numbers 10954:Primitive abundant 10841:Strong pseudoprime 10831:Perrin pseudoprime 10811:Fermat pseudoprime 10751:Wolstenholme prime 10575:Squared triangular 10361:Centered decagonal 10356:Centered nonagonal 10351:Centered octagonal 10341:Centered hexagonal 9543:Formula for primes 9176: + 2 or 9108:Smarandache–Wellin 8581:Weisstein, Eric W. 8562:Weisstein, Eric W. 8546:2016-02-02 at the 8534:2016-03-04 at the 8478:2013-05-02 at the 8466:2014-11-05 at the 8268: 8188: 7847:. Ssd.jpl.nasa.gov 7824:Mathworld. Wolfram 7635:2014-10-14 at the 7574:. January 5, 2018. 7490:The New York Times 7159:. 21 December 2018 6934:quadratic equation 6679:th powers, and if 5165:are checked up to 5095: 5031:th powers for any 4907: 4489: 4219:, we get the case 3555:223 × 616,318,177 3304:are integers with 3212:2 = (2) ≡ −2 (mod 2593:0 − 1 = 0 − 1 = −1 2186: 2174: 1851: 1499: 1450: 1229: 1227: 828: 782: 711: 661: 442: 411: 109:(December 7, 2018) 103:Largest known term 30: 12303:Integer sequences 12275: 12274: 12165: 12164: 11895: 11894: 11810: 11809: 11788: 11787: 11757: 11756: 11721: 11720: 11685: 11684: 11649: 11648: 11609: 11608: 11605: 11604: 11424: 11423: 11234: 11233: 11123: 11122: 11119: 11118: 11065:Aliquot sequences 10876:Divisor functions 10849: 10848: 10821:Lucas pseudoprime 10801:Euler pseudoprime 10786:Carmichael number 10764: 10763: 10719: 10718: 10596: 10595: 10592: 10591: 10588: 10587: 10549: 10548: 10437: 10436: 10394:Square triangular 10286: 10285: 10233: 10232: 10185: 10184: 10119: 10118: 10071: 10070: 10009: 10008: 9876: 9875: 9487:Carmichael number 9422:Composite numbers 9357: ± 3, 8 9353: ± 1, 4 9316: ± 1, … 9312: ± 1, 4 9308: ± 1, 2 9298: 9297: 8843:3·2 − 1 8748:2·3 + 1 8662:Double Mersenne ( 8565:"Mersenne number" 8306:"Mersenne number" 7916:978-1-4419-5905-8 7843:Alan Chamberlin. 7804:978-0-8218-4814-2 7704:"PRP Top Records" 7688:978-3-662-45607-1 7383:Los Angeles Times 7230:The Prime Pages, 7204:Caldwell, Chris. 7080:are both perfect 6633: 6632: 5361:2, 3 (no others) 5042:is not a perfect 4905: 4487: 4411:Divide an integer 4217:Gaussian integers 4201:Gaussian integers 3735: 3734: 3596:9007199254740991 3503:Factorization of 3222:. However, since 2723:23 = 1 + (2 × 11) 2320:(or equivalently 2194:Manchester Mark 1 1885:Frank Nelson Cole 1732: 1731: 653: 593:quadratic residue 143: 142: 16:(Redirected from 12320: 12089: 12088: 12019:Eddington number 11964:Hundred thousand 11922: 11915: 11908: 11899: 11898: 11887:Mersenne Twister 11837: 11830: 11823: 11814: 11813: 11800: 11763: 11762: 11732:Natural language 11727: 11726: 11691: 11690: 11659:Generated via a 11655: 11654: 11615: 11614: 11520:Digit-reassembly 11485:Self-descriptive 11289: 11288: 11254: 11253: 11240: 11239: 11191:Lucas–Carmichael 11181:Harmonic divisor 11129: 11128: 11055:Sparsely totient 11030:Highly cototient 10939:Multiply perfect 10929:Highly composite 10872: 10871: 10855: 10854: 10770: 10769: 10725: 10724: 10706:Telephone number 10602: 10601: 10560: 10559: 10541:Square pyramidal 10523:Stella octangula 10448: 10447: 10314: 10313: 10305: 10304: 10297:Figurate numbers 10292: 10291: 10239: 10238: 10191: 10190: 10125: 10124: 10077: 10076: 10015: 10014: 9919: 9918: 9903: 9896: 9889: 9880: 9879: 9407:Eisenstein prime 9362: 9338: 9317: 9289: 9261: 9241: 9225: 9209: 9204: + 6, 9200: + 2, 9185: 9180: + 4, 9161: 9136: 9135: 9053: 9016:Highly cototient 8878: 8877: 8871: 8861: 8844: 8835: 8820: 8797: 8796:·2 − 1 8785: 8784:·2 + 1 8773: 8764: 8749: 8740: 8727: 8712: 8697: 8685: 8684:·2 + 1 8674: 8665: 8656: 8647: 8622: 8615: 8608: 8599: 8598: 8594: 8593: 8584:"Mersenne prime" 8575: 8574: 8524: 8504: 8498: 8486: 8431: 8416: 8414: 8413: 8404:. Archived from 8384: 8356: 8319: 8293: 8291: 8279: 8277: 8275: 8274: 8269: 8264: 8256: 8255: 8243: 8242: 8219: 8213: 8211: 8199: 8197: 8195: 8194: 8189: 8184: 8176: 8175: 8163: 8162: 8139: 8133: 8130: 8126: 8117: 8111: 8108: 8104: 8091: 8085: 8082: 8078: 8065: 8059: 8056: 8052: 8039: 8033: 8030: 8026: 8017: 8011: 8008: 8004: 7995: 7989: 7986: 7982: 7974: 7965: 7959: 7958: 7956: 7944: 7938: 7929:Chris Caldwell: 7927: 7921: 7920: 7894: 7888: 7887: 7882:. Archived from 7876: 7870: 7869: 7862: 7856: 7855: 7853: 7852: 7840: 7834: 7833: 7831: 7830: 7815: 7809: 7808: 7790: 7784: 7783: 7781: 7779: 7765: 7759: 7758: 7756: 7755: 7745: 7739: 7738: 7736: 7734: 7720: 7714: 7713: 7711: 7710: 7699: 7693: 7692: 7666: 7660: 7659: 7645: 7639: 7627: 7621: 7620: 7618: 7616: 7610:www.mersenne.org 7602: 7596: 7595: 7593: 7592: 7582: 7576: 7575: 7568: 7562: 7561: 7550: 7544: 7543: 7541: 7540: 7534:www.mersenne.org 7526: 7520: 7519: 7514:. Archived from 7508: 7502: 7501: 7499: 7497: 7480: 7474: 7473: 7471: 7469: 7452: 7446: 7445: 7443: 7441: 7426: 7420: 7419: 7417: 7416: 7399: 7393: 7392: 7390: 7389: 7374: 7368: 7361: 7355: 7354: 7338: 7332: 7331: 7326:. Archived from 7316: 7310: 7308: 7306: 7296: 7290: 7289: 7287: 7263: 7257: 7256: 7241: 7235: 7228: 7222: 7216: 7210: 7209: 7201: 7195: 7194: 7192: 7190: 7175: 7169: 7168: 7166: 7164: 7149: 7133: 7131: 7130: 7128: 7127: 7118: 7115: 7101: 7097: 7090: 7083: 7079: 7075: 7070: 7064: 7062: 7052: 7048: 7037: 7025: 7013: 6995: 6993: 6992: 6983: 6980: 6965: 6959: 6957: 6927: 6923: 6919: 6893: 6814:Mersenne twister 6772: 6761: 6750: 6738: 6727: 6716: 6709: 6699: 6692: 6688: 6678: 6674: 6663: 6649: 6645: 6641: 5216: 5215: 5209: 5200: 5196: 5195: 5189: 5180: 5179: 5177: 5168: 5164: 5163: 5152: 5151: 5150: 5148: 5147: 5138: 5135: 5120: 5119: 5112: 5111: 5105: 5104: 5098: 5094: 5091: 5079: 5078: 5076: 5075: 5066: 5063: 5049: 5041: 5034: 5030: 5026: 5022: 5018: 5006: 4996: 4985: 4981: 4977: 4973: 4963: 4953: 4938: 4927: 4923: 4916: 4914: 4913: 4908: 4906: 4904: 4893: 4892: 4891: 4879: 4878: 4868: 4843: 4832: 4818: 4807: 4806: 4804: 4803: 4797: 4794: 4783: 4773: 4762: 4751: 4745: 4741: 4734: 4720: 4709: 4703: 4699: 4692: 4691: 4689: 4688: 4682: 4679: 4668: 4659: 4658: 4656: 4655: 4649: 4646: 4636:value such that 4635: 4629: 4624:is prime. (When 4623: 4622: 4620: 4619: 4613: 4610: 4599: 4589: 4573: 4563: 4557: 4542: 4530: 4520: 4514: 4507: 4498: 4496: 4495: 4490: 4488: 4486: 4475: 4468: 4467: 4457: 4445: 4439: 4432: 4401: 4383: 4373: 4367: 4353: 4343: 4332:Eisenstein prime 4316: 4291: 4280: 4274: 4256: 4248: 4238: 4228: 4190: 4183: 4179: 4175: 4165: 4155:of integers (on 4134: 4127: 4116: 4109: 4102: 4095: 4088: 4069: 4063:, in this case, 4062: 4058: 4039: 4033:, in this case, 4032: 4029:. An example is 4021:is a low-degree 4020: 4009: 3984: 3978: 3955: 3951: 3944: 3933: 3926: 3918: 3905: 3899: 3893: 3892: 3890: 3889: 3886: 3883: 3860: 3856: 3848: 3844: 3836: 3786: 3773: 3764: 3742: 3585:140737488355327 3511: 3500: 3490: 3483: 3482: 3475: 3459: 3455: 3454: 3435: 3414: 3384: 3374: 3364: 3333: 3317: 3310: 3303: 3299: 3295: 3291: 3268: 3261: 3253: 3249: 3246:is congruent to 3245: 3241: 3237: 3234:is congruent to 3233: 3229: 3226:is congruent to 3225: 3221: 3217: 3209: 3201: 3193: 3185: 3177: 3167: 3164:, so 23 divides 3163: 3153: 3149: 3141: 3133: 3125: 3121: 3113: 3102: 3098: 3090: 3086: 3082: 3078: 3069: 3066:, and therefore 3065: 3058: 3051: 3048: 3047: 3045: 3044: 3041: 3038: 3029: 3022: 3012: 3001: 2993: 2971: 2963: 2956: 2952: 2938: 2935:is congruent to 2934: 2930: 2926: 2917: 2913: 2906: 2898: 2888: 2885:are larger than 2884: 2880: 2875:Euclid's theorem 2869: 2858: 2855:, which is odd, 2854: 2850: 2846: 2835: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2792: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2754: 2750: 2746: 2742: 2728: 2724: 2720: 2716: 2712: 2705: 2701: 2694: 2690: 2686: 2673: 2669: 2665: 2655: 2652: 2649: 2645: 2638: 2634: 2624: 2614: 2610: 2601: 2594: 2590: 2583: 2576: 2569: 2562: 2555: 2545: 2538: 2527: 2520: 2509: 2498: 2487: 2467: 2460: 2453: 2446: 2442: 2428: 2403: 2396: 2378: 2371: 2356: 2333: 2315: 2307: 2295: 2286: 2277: 2268: 2259: 2250: 2241: 2232: 2204: 2183: 2181: 2180: 2175: 2128: 2121: 2101: 2091: 2079: 2067: 2057: 2039: 2030: 2017: 2004: 1991: 1979:) were found by 1978: 1969: 1960: 1950: 1940: 1930: 1920: 1894: 1890: 1882: 1869: 1860: 1858: 1857: 1852: 1847: 1833: 1832: 1813: 1798: 1789: 1780: 1771: 1762: 1517: 1516: 1508: 1506: 1505: 1500: 1495: 1459: 1457: 1456: 1451: 1440: 1439: 1399: 1395: 1383: 1373:Mersenne primes 1353:Mersenne twister 1308: 1301: 1294: 1290: 1286: 1275: 1262: 1258: 1248: 1238: 1236: 1235: 1230: 1228: 1221: 1217: 1216: 1215: 1182: 1181: 1166: 1165: 1150: 1149: 1117: 1116: 1098: 1094: 1090: 1089: 1088: 1055: 1054: 1039: 1038: 1023: 1022: 990: 989: 964: 963: 940: 934: 920: 906: 896: 886: 877: 867: 857: 847: 837: 835: 834: 829: 827: 826: 808: 807: 791: 789: 788: 783: 775: 774: 753: 752: 736: 728: 725:, so it must be 720: 718: 717: 712: 695: 694: 678: 674: 670: 668: 667: 662: 654: 649: 623: 614: 602: 590: 582: 574: 568: 558: 548: 538: 528: 518: 508: 498: 488: 481: 473: 451: 449: 448: 443: 441: 440: 420: 418: 417: 412: 398: 397: 385: 384: 345: 325: 303: 295: 288:Mersenne numbers 285: 268: 238: 232: 220: 214: 204: 199:composite number 196: 182: 173: 108: 75:Mersenne numbers 60: 48: 33: 29: 21: 12328: 12327: 12323: 12322: 12321: 12319: 12318: 12317: 12313:Perfect numbers 12308:Mersenne primes 12278: 12277: 12276: 12271: 12253: 12209:List of numbers 12177: 12175: 12173: 12171: 12161: 12118: 12084: 12078: 12049:Graham's number 12039:Skewes's number 11941: 11939: 11937: 11931: 11926: 11896: 11891: 11860:Mersenne's laws 11846: 11841: 11811: 11806: 11784: 11780:Strobogrammatic 11771: 11753: 11735: 11717: 11699: 11681: 11663: 11645: 11622: 11601: 11585: 11544:Divisor-related 11539: 11499: 11450: 11420: 11357: 11341: 11320: 11287: 11260: 11248: 11230: 11142: 11141:related numbers 11115: 11092: 11059: 11050:Perfect totient 11016: 10993: 10924:Highly abundant 10866: 10845: 10777: 10760: 10732: 10715: 10701:Stirling second 10607: 10584: 10545: 10527: 10484: 10433: 10370: 10331:Centered square 10299: 10282: 10244: 10229: 10196: 10181: 10133: 10132:defined numbers 10115: 10082: 10067: 10038:Double Mersenne 10024: 10005: 9927: 9913: 9911:natural numbers 9907: 9877: 9872: 9863: 9557:First 60 primes 9552: 9516: 9416: 9399:Complex numbers 9393: 9367: 9345: 9329: 9304: 9303:Bi-twin chain ( 9294: 9268: 9248: 9232: 9216: 9192: 9168: 9152: 9127: 9113:Strobogrammatic 9051: 9025: 8919: 8883: 8875: 8869: 8868: 8851: 8842: 8827: 8804: 8792: 8780: 8771: 8756: 8747: 8734: 8726:# + 1 8724: 8719: 8711:# ± 1 8709: 8704: 8696:! ± 1 8692: 8680: 8672: 8664:2 − 1 8663: 8655:2 − 1 8654: 8646:2 + 1 8645: 8632: 8626: 8556: 8554:MathWorld links 8548:Wayback Machine 8536:Wayback Machine 8515: 8500: 8496: 8491: 8480:Wayback Machine 8468:Wayback Machine 8429: 8411: 8409: 8371: 8363: 8346: 8338: 8323:GIMPS home page 8304: 8301: 8296: 8281: 8260: 8251: 8247: 8238: 8234: 8229: 8226: 8225: 8223: 8220: 8216: 8201: 8180: 8171: 8167: 8158: 8154: 8149: 8146: 8145: 8143: 8140: 8136: 8128: 8120: 8118: 8114: 8106: 8094: 8092: 8088: 8080: 8068: 8066: 8062: 8054: 8042: 8040: 8036: 8028: 8020: 8018: 8014: 8006: 7998: 7996: 7992: 7984: 7976: 7968: 7966: 7962: 7945: 7941: 7928: 7924: 7917: 7895: 7891: 7878: 7877: 7873: 7864: 7863: 7859: 7850: 7848: 7841: 7837: 7828: 7826: 7816: 7812: 7805: 7791: 7787: 7777: 7775: 7773:www.mersenne.ca 7767: 7766: 7762: 7753: 7751: 7747: 7746: 7742: 7732: 7730: 7728:www.mersenne.ca 7722: 7721: 7717: 7708: 7706: 7700: 7696: 7689: 7667: 7663: 7646: 7642: 7637:Wayback Machine 7628: 7624: 7614: 7612: 7604: 7603: 7599: 7590: 7588: 7584: 7583: 7579: 7570: 7569: 7565: 7552: 7551: 7547: 7538: 7536: 7528: 7527: 7523: 7510: 7509: 7505: 7495: 7493: 7481: 7477: 7467: 7465: 7453: 7449: 7439: 7437: 7427: 7423: 7414: 7412: 7400: 7396: 7387: 7385: 7375: 7371: 7362: 7358: 7339: 7335: 7318: 7317: 7313: 7297: 7293: 7264: 7260: 7242: 7238: 7229: 7225: 7217: 7213: 7202: 7198: 7188: 7186: 7177: 7176: 7172: 7162: 7160: 7151: 7150: 7146: 7142: 7137: 7136: 7119: 7116: 7107: 7106: 7104: 7103: 7099: 7092: 7085: 7081: 7077: 7073: 7071: 7067: 7054: 7050: 7039: 7027: 7015: 6984: 6981: 6972: 6971: 6969: 6968: 6966: 6962: 6936: 6925: 6921: 6904: 6899: 6894: 6890: 6885: 6880: 6876:Williams number 6841:Wieferich prime 6784: 6768: 6752: 6748: 6734: 6718: 6714: 6701: 6694: 6690: 6689:is prime, then 6680: 6676: 6665: 6654: 6647: 6643: 6636: 5205: 5203: 5202: 5198: 5185: 5183: 5182: 5173: 5171: 5170: 5166: 5161: 5160: 5157:probable primes 5154: 5139: 5136: 5127: 5126: 5124: 5123: 5122: 5117: 5116: 5109: 5108: 5102: 5101: 5081: 5067: 5064: 5055: 5054: 5052: 5051: 5047: 5036: 5032: 5028: 5024: 5020: 5008: 4998: 4987: 4983: 4979: 4975: 4965: 4955: 4940: 4933: 4925: 4921: 4894: 4887: 4883: 4874: 4870: 4869: 4867: 4865: 4862: 4861: 4855: 4839: 4828: 4814: 4798: 4795: 4789: 4788: 4786: 4785: 4779: 4768: 4758: 4747: 4743: 4736: 4730: 4716: 4705: 4701: 4694: 4683: 4680: 4674: 4673: 4671: 4670: 4664: 4650: 4647: 4641: 4640: 4638: 4637: 4631: 4625: 4614: 4611: 4605: 4604: 4602: 4601: 4595: 4590:which is not a 4585: 4579: 4569: 4559: 4552: 4538: 4536: 4526: 4516: 4509: 4503: 4476: 4463: 4459: 4458: 4456: 4454: 4451: 4450: 4441: 4434: 4427: 4424: 4418: 4413: 4397: 4379: 4369: 4361: 4345: 4335: 4328: 4312: 4287: 4276: 4268: 4250: 4244: 4239:, and can ask ( 4230: 4220: 4213: 4193:complex numbers 4185: 4181: 4177: 4171: 4160: 4149: 4147:Complex numbers 4129: 4122: 4111: 4104: 4097: 4093: 4071: 4064: 4060: 4041: 4034: 4030: 4011: 4004: 4001: 3995: 3993:Generalizations 3980: 3975: 3961: 3953: 3949: 3939: 3928: 3921: 3908: 3901: 3895: 3887: 3884: 3878: 3877: 3875: 3874: 3867: 3859:2 − 1 3858: 3855:4 + 1 3854: 3847:4 − 1 3846: 3842: 3834: 3784: 3779: 3771: 3766: 3760: 3753: 3738: 3509: 3504: 3498: 3493: 3486: 3471: 3466: 3457: 3452: 3450: 3433: 3426: 3410: 3398: 3392: 3382: 3376: 3372: 3366: 3363: 3353: 3343: 3335: 3332: 3326: 3323:Lucas sequences 3312: 3305: 3301: 3297: 3293: 3286: 3285:, the equation 3267: 3263: 3255: 3251: 3247: 3243: 3239: 3235: 3231: 3227: 3223: 3219: 3211: 3203: 3195: 3187: 3179: 3175: 3165: 3161: 3151: 3143: 3139: 3131: 3123: 3115: 3111: 3100: 3096: 3095:if and only if 3088: 3084: 3080: 3076: 3067: 3060: 3052: 3049: 3042: 3039: 3036: 3035: 3033: 3031: 3024: 3014: 3003: 2995: 2988: 2979:Wieferich prime 2969: 2958: 2954: 2946: 2936: 2932: 2928: 2924: 2915: 2912: 2908: 2900: 2893: 2886: 2882: 2878: 2860: 2856: 2852: 2851:is a factor of 2848: 2837: 2830: 2829:is a factor of 2826: 2822: 2821:is a factor of 2818: 2814: 2813:is a factor of 2810: 2809:if and only if 2806: 2805:is a factor of 2802: 2798: 2794: 2793:is a factor of 2790: 2786: 2782: 2778: 2774: 2770: 2766: 2762: 2756: 2752: 2751:is a factor of 2748: 2744: 2743:is a factor of 2740: 2726: 2722: 2719:2 − 1 = 23 × 89 2718: 2714: 2710: 2703: 2696: 2692: 2688: 2684: 2671: 2667: 2664: 2660: 2656: 2653: 2650: 2647: 2640: 2636: 2626: 2622: 2621:: Suppose that 2612: 2611:is prime, then 2608: 2596: 2592: 2585: 2578: 2571: 2564: 2557: 2547: 2540: 2529: 2522: 2511: 2500: 2489: 2475: 2462: 2455: 2454:is prime, then 2448: 2444: 2438: 2424: 2421: 2401: 2394: 2385: 2376: 2369: 2354: 2330: 2325: 2321: 2309: 2305: 2297: 2293: 2288: 2285: 2279: 2276: 2270: 2267: 2261: 2258: 2252: 2249: 2243: 2240: 2234: 2231: 2225: 2203: 2197: 2145: 2142: 2141: 2123: 2119: 2108: 2103: 2099: 2093: 2090: 2081: 2077: 2072: 2064: 2059: 2052: 2038: 2032: 2029: 2023: 2016: 2010: 2003: 1997: 1990: 1984: 1977: 1971: 1968: 1962: 1958: 1952: 1948: 1942: 1938: 1932: 1928: 1922: 1918: 1912: 1902: 1892: 1888: 1881: 1875: 1868: 1862: 1843: 1828: 1824: 1819: 1816: 1815: 1812: 1806: 1797: 1791: 1788: 1782: 1779: 1773: 1770: 1764: 1761: 1755: 1515: 1491: 1465: 1462: 1461: 1435: 1431: 1420: 1417: 1416: 1397: 1396:is prime, then 1393: 1392:proved that if 1386:perfect numbers 1382: 1374: 1371: 1365: 1363:Perfect numbers 1333:binary computer 1307: 1303: 1300: 1296: 1292: 1288: 1285: 1281: 1273: 1267: 1260: 1257: 1253: 1246: 1240: 1226: 1225: 1196: 1192: 1174: 1170: 1158: 1154: 1145: 1141: 1134: 1130: 1112: 1108: 1096: 1095: 1069: 1065: 1047: 1043: 1031: 1027: 1018: 1014: 1007: 1003: 985: 981: 971: 956: 952: 948: 946: 943: 942: 936: 933: 929: 919: 912: 904: 898: 894: 888: 885: 879: 875: 869: 865: 859: 855: 849: 845: 839: 822: 818: 803: 799: 797: 794: 793: 770: 766: 748: 744: 742: 739: 738: 730: 726: 690: 686: 684: 681: 680: 676: 672: 624: 622: 620: 617: 616: 608: 596: 584: 580: 570: 567: 560: 557: 550: 547: 540: 537: 530: 527: 520: 517: 510: 507: 500: 497: 490: 489:, for example, 487: 483: 475: 471: 436: 432: 430: 427: 426: 393: 389: 380: 376: 374: 371: 370: 367:order of growth 356: 355: 350: 347: 340: 323: 301: 291: 282: 277: 264: 234: 228: 216: 215:for some prime 211: 206: 202: 192: 178: 170: 165: 139: 106: 28: 23: 22: 18:Mersenne number 15: 12: 11: 5: 12326: 12316: 12315: 12310: 12305: 12300: 12295: 12290: 12273: 12272: 12270: 12269: 12264: 12258: 12255: 12254: 12252: 12251: 12246: 12241: 12239:Power of three 12236: 12231: 12226: 12221: 12219:Number systems 12216: 12211: 12206: 12201: 12196: 12191: 12186: 12180: 12178: 12174:(alphabetical 12167: 12166: 12163: 12162: 12160: 12159: 12154: 12149: 12144: 12143: 12142: 12137: 12130:Hyperoperation 12126: 12124: 12120: 12119: 12117: 12116: 12111: 12106: 12101: 12095: 12093: 12086: 12080: 12079: 12077: 12076: 12071: 12066: 12061: 12056: 12051: 12046: 12044:Moser's number 12041: 12036: 12031: 12029:Shannon number 12026: 12021: 12016: 12011: 12006: 12001: 11996: 11991: 11986: 11981: 11976: 11971: 11966: 11961: 11956: 11951: 11945: 11943: 11933: 11932: 11925: 11924: 11917: 11910: 11902: 11893: 11892: 11890: 11889: 11884: 11883: 11882: 11877: 11872: 11865:Mersenne prime 11862: 11857: 11851: 11848: 11847: 11844:Marin Mersenne 11840: 11839: 11832: 11825: 11817: 11808: 11807: 11805: 11804: 11793: 11790: 11789: 11786: 11785: 11783: 11782: 11776: 11773: 11772: 11759: 11758: 11755: 11754: 11752: 11751: 11746: 11740: 11737: 11736: 11723: 11722: 11719: 11718: 11716: 11715: 11713:Sorting number 11710: 11708:Pancake number 11704: 11701: 11700: 11687: 11686: 11683: 11682: 11680: 11679: 11674: 11668: 11665: 11664: 11651: 11650: 11647: 11646: 11644: 11643: 11638: 11633: 11627: 11624: 11623: 11620:Binary numbers 11611: 11610: 11607: 11606: 11603: 11602: 11600: 11599: 11593: 11591: 11587: 11586: 11584: 11583: 11578: 11573: 11568: 11563: 11558: 11553: 11547: 11545: 11541: 11540: 11538: 11537: 11532: 11527: 11522: 11517: 11511: 11509: 11501: 11500: 11498: 11497: 11492: 11487: 11482: 11477: 11472: 11467: 11461: 11459: 11452: 11451: 11449: 11448: 11447: 11446: 11435: 11433: 11430:P-adic numbers 11426: 11425: 11422: 11421: 11419: 11418: 11417: 11416: 11406: 11401: 11396: 11391: 11386: 11381: 11376: 11371: 11365: 11363: 11359: 11358: 11356: 11355: 11349: 11347: 11346:Coding-related 11343: 11342: 11340: 11339: 11334: 11328: 11326: 11322: 11321: 11319: 11318: 11313: 11308: 11303: 11297: 11295: 11286: 11285: 11284: 11283: 11281:Multiplicative 11278: 11267: 11265: 11250: 11249: 11245:Numeral system 11236: 11235: 11232: 11231: 11229: 11228: 11223: 11218: 11213: 11208: 11203: 11198: 11193: 11188: 11183: 11178: 11173: 11168: 11163: 11158: 11153: 11147: 11144: 11143: 11125: 11124: 11121: 11120: 11117: 11116: 11114: 11113: 11108: 11102: 11100: 11094: 11093: 11091: 11090: 11085: 11080: 11075: 11069: 11067: 11061: 11060: 11058: 11057: 11052: 11047: 11042: 11037: 11035:Highly totient 11032: 11026: 11024: 11018: 11017: 11015: 11014: 11009: 11003: 11001: 10995: 10994: 10992: 10991: 10986: 10981: 10976: 10971: 10966: 10961: 10956: 10951: 10946: 10941: 10936: 10931: 10926: 10921: 10916: 10911: 10906: 10901: 10896: 10891: 10889:Almost perfect 10886: 10880: 10878: 10868: 10867: 10851: 10850: 10847: 10846: 10844: 10843: 10838: 10833: 10828: 10823: 10818: 10813: 10808: 10803: 10798: 10793: 10788: 10782: 10779: 10778: 10766: 10765: 10762: 10761: 10759: 10758: 10753: 10748: 10743: 10737: 10734: 10733: 10721: 10720: 10717: 10716: 10714: 10713: 10708: 10703: 10698: 10696:Stirling first 10693: 10688: 10683: 10678: 10673: 10668: 10663: 10658: 10653: 10648: 10643: 10638: 10633: 10628: 10623: 10618: 10612: 10609: 10608: 10598: 10597: 10594: 10593: 10590: 10589: 10586: 10585: 10583: 10582: 10577: 10572: 10566: 10564: 10557: 10551: 10550: 10547: 10546: 10544: 10543: 10537: 10535: 10529: 10528: 10526: 10525: 10520: 10515: 10510: 10505: 10500: 10494: 10492: 10486: 10485: 10483: 10482: 10477: 10472: 10467: 10462: 10456: 10454: 10445: 10439: 10438: 10435: 10434: 10432: 10431: 10426: 10421: 10416: 10411: 10406: 10401: 10396: 10391: 10386: 10380: 10378: 10372: 10371: 10369: 10368: 10363: 10358: 10353: 10348: 10343: 10338: 10333: 10328: 10322: 10320: 10311: 10301: 10300: 10288: 10287: 10284: 10283: 10281: 10280: 10275: 10270: 10265: 10260: 10255: 10249: 10246: 10245: 10235: 10234: 10231: 10230: 10228: 10227: 10222: 10217: 10212: 10207: 10201: 10198: 10197: 10187: 10186: 10183: 10182: 10180: 10179: 10174: 10169: 10164: 10159: 10154: 10149: 10144: 10138: 10135: 10134: 10121: 10120: 10117: 10116: 10114: 10113: 10108: 10103: 10098: 10093: 10087: 10084: 10083: 10073: 10072: 10069: 10068: 10066: 10065: 10060: 10055: 10050: 10045: 10040: 10035: 10029: 10026: 10025: 10011: 10010: 10007: 10006: 10004: 10003: 9998: 9993: 9988: 9983: 9978: 9973: 9968: 9963: 9958: 9953: 9948: 9943: 9938: 9932: 9929: 9928: 9915: 9914: 9906: 9905: 9898: 9891: 9883: 9874: 9873: 9868: 9865: 9864: 9862: 9861: 9856: 9851: 9846: 9841: 9836: 9831: 9826: 9821: 9816: 9811: 9806: 9801: 9796: 9791: 9786: 9781: 9776: 9771: 9766: 9761: 9756: 9751: 9746: 9741: 9736: 9731: 9726: 9721: 9716: 9711: 9706: 9701: 9696: 9691: 9686: 9681: 9676: 9671: 9666: 9661: 9656: 9651: 9646: 9641: 9636: 9631: 9626: 9621: 9616: 9611: 9606: 9601: 9596: 9591: 9586: 9581: 9576: 9571: 9566: 9560: 9558: 9554: 9553: 9551: 9550: 9545: 9540: 9535: 9530: 9528:Probable prime 9524: 9522: 9521:Related topics 9518: 9517: 9515: 9514: 9509: 9504: 9502:Sphenic number 9499: 9494: 9489: 9484: 9483: 9482: 9477: 9472: 9467: 9462: 9457: 9452: 9447: 9442: 9437: 9426: 9424: 9418: 9417: 9415: 9414: 9412:Gaussian prime 9409: 9403: 9401: 9395: 9394: 9392: 9391: 9390: 9380: 9375: 9373: 9369: 9368: 9366: 9365: 9341: 9337: + 1 9325: 9320: 9299: 9296: 9295: 9293: 9292: 9264: 9244: 9240: + 6 9228: 9224: + 4 9212: 9208: + 8 9188: 9184: + 6 9164: 9160: + 2 9147: 9145: 9133: 9129: 9128: 9126: 9125: 9120: 9115: 9110: 9105: 9100: 9095: 9090: 9085: 9080: 9075: 9070: 9065: 9060: 9055: 9047: 9042: 9036: 9034: 9027: 9026: 9024: 9023: 9018: 9013: 9008: 9003: 8998: 8993: 8988: 8983: 8978: 8973: 8968: 8963: 8958: 8953: 8948: 8943: 8938: 8927: 8925: 8921: 8920: 8918: 8917: 8912: 8907: 8902: 8897: 8891: 8889: 8885: 8884: 8882: 8881: 8864: 8860: − 1 8847: 8838: 8823: 8800: 8788: 8776: 8767: 8752: 8743: 8739: + 1 8730: 8722: 8715: 8707: 8700: 8688: 8676: 8668: 8659: 8650: 8640: 8638: 8634: 8633: 8625: 8624: 8617: 8610: 8602: 8596: 8595: 8576: 8555: 8552: 8551: 8550: 8538: 8526: 8511: 8506: 8494: 8482: 8470: 8458: 8453: 8448: 8443: 8437: 8432: 8423: 8417: 8392:Grime, James. 8389: 8367: 8361: 8342: 8336: 8331: 8325: 8320: 8300: 8299:External links 8297: 8295: 8294: 8267: 8263: 8259: 8254: 8250: 8246: 8241: 8237: 8233: 8214: 8187: 8183: 8179: 8174: 8170: 8166: 8161: 8157: 8153: 8134: 8112: 8086: 8060: 8034: 8012: 7990: 7960: 7939: 7922: 7915: 7889: 7886:on 2012-05-29. 7871: 7866:"OEIS A016131" 7857: 7835: 7810: 7803: 7785: 7760: 7740: 7715: 7694: 7687: 7661: 7640: 7622: 7597: 7577: 7563: 7545: 7521: 7518:on 2016-09-03. 7503: 7475: 7447: 7421: 7394: 7369: 7363:Brian Napper, 7356: 7333: 7311: 7291: 7278:(3): 134–138. 7258: 7236: 7223: 7211: 7196: 7170: 7143: 7141: 7138: 7135: 7134: 7065: 6960: 6902: 6887: 6886: 6884: 6881: 6879: 6878: 6873: 6868: 6863: 6858: 6853: 6848: 6846:Wagstaff prime 6843: 6838: 6833: 6827: 6821: 6816: 6811: 6806: 6801: 6796: 6791: 6785: 6783: 6780: 6779: 6778: 6745: 6744: 6631: 6630: 6625: 6622: 6619: 6615: 6614: 6612: 6609: 6606: 6602: 6601: 6596: 6593: 6590: 6586: 6585: 6580: 6577: 6574: 6570: 6569: 6564: 6561: 6558: 6554: 6553: 6548: 6545: 6542: 6538: 6537: 6532: 6529: 6526: 6522: 6521: 6516: 6513: 6510: 6506: 6505: 6500: 6497: 6494: 6490: 6489: 6487: 6484: 6481: 6477: 6476: 6474: 6471: 6468: 6464: 6463: 6461: 6458: 6455: 6451: 6450: 6448: 6445: 6442: 6438: 6437: 6432: 6429: 6426: 6422: 6421: 6416: 6413: 6410: 6406: 6405: 6400: 6397: 6394: 6390: 6389: 6384: 6381: 6378: 6374: 6373: 6368: 6365: 6362: 6358: 6357: 6352: 6349: 6346: 6342: 6341: 6336: 6333: 6330: 6326: 6325: 6320: 6317: 6314: 6310: 6309: 6304: 6301: 6298: 6294: 6293: 6288: 6285: 6282: 6278: 6277: 6272: 6269: 6266: 6262: 6261: 6256: 6253: 6250: 6246: 6245: 6240: 6237: 6234: 6230: 6229: 6224: 6221: 6218: 6214: 6213: 6208: 6205: 6202: 6198: 6197: 6192: 6189: 6186: 6182: 6181: 6179: 6176: 6173: 6169: 6168: 6163: 6160: 6157: 6153: 6152: 6147: 6144: 6141: 6137: 6136: 6131: 6128: 6125: 6121: 6120: 6115: 6112: 6109: 6105: 6104: 6099: 6096: 6093: 6089: 6088: 6083: 6080: 6077: 6073: 6072: 6067: 6064: 6061: 6057: 6056: 6051: 6048: 6045: 6041: 6040: 6035: 6032: 6029: 6025: 6024: 6019: 6016: 6013: 6009: 6008: 6003: 6000: 5997: 5993: 5992: 5987: 5984: 5981: 5977: 5976: 5974: 5971: 5968: 5964: 5963: 5958: 5955: 5952: 5948: 5947: 5945: 5944:2 (no others) 5942: 5939: 5935: 5934: 5929: 5926: 5923: 5919: 5918: 5913: 5910: 5907: 5903: 5902: 5897: 5894: 5891: 5887: 5886: 5881: 5878: 5875: 5871: 5870: 5865: 5862: 5859: 5855: 5854: 5849: 5846: 5843: 5839: 5838: 5836: 5835:2 (no others) 5833: 5830: 5826: 5825: 5823: 5822:3 (no others) 5820: 5817: 5813: 5812: 5807: 5804: 5801: 5797: 5796: 5791: 5788: 5785: 5781: 5780: 5775: 5772: 5769: 5765: 5764: 5759: 5756: 5753: 5749: 5748: 5743: 5740: 5737: 5733: 5732: 5727: 5724: 5721: 5717: 5716: 5711: 5708: 5705: 5701: 5700: 5695: 5692: 5689: 5685: 5684: 5679: 5676: 5673: 5669: 5668: 5663: 5660: 5657: 5653: 5652: 5647: 5644: 5641: 5637: 5636: 5631: 5628: 5625: 5621: 5620: 5615: 5612: 5609: 5605: 5604: 5599: 5596: 5593: 5589: 5588: 5583: 5580: 5577: 5573: 5572: 5567: 5564: 5561: 5557: 5556: 5551: 5548: 5545: 5541: 5540: 5535: 5532: 5529: 5525: 5524: 5519: 5516: 5513: 5509: 5508: 5503: 5500: 5497: 5493: 5492: 5487: 5484: 5481: 5477: 5476: 5471: 5468: 5465: 5461: 5460: 5455: 5452: 5449: 5445: 5444: 5439: 5436: 5433: 5429: 5428: 5423: 5420: 5417: 5413: 5412: 5407: 5404: 5401: 5397: 5396: 5391: 5388: 5385: 5381: 5380: 5375: 5372: 5369: 5365: 5364: 5362: 5359: 5356: 5352: 5351: 5349: 5348:2 (no others) 5346: 5343: 5339: 5338: 5333: 5330: 5327: 5323: 5322: 5317: 5314: 5311: 5307: 5306: 5301: 5298: 5295: 5291: 5290: 5285: 5282: 5279: 5275: 5274: 5269: 5266: 5263: 5259: 5258: 5253: 5249: 5246: 5242: 5241: 5236: 5232: 5229: 5225: 5224: 5218: 5113: 5106: 4918: 4917: 4903: 4900: 4897: 4890: 4886: 4882: 4877: 4873: 4854: 4851: 4850: 4849: 4825: 4824: 4776: 4775: 4727: 4726: 4582: 4581: 4549: 4548: 4500: 4499: 4485: 4482: 4479: 4474: 4471: 4466: 4462: 4420:Main article: 4417: 4416:Repunit primes 4414: 4412: 4409: 4408: 4407: 4390: 4389: 4327: 4324: 4323: 4322: 4298: 4297: 4259:Gaussian prime 4212: 4209: 4148: 4145: 4119:theorems above 3997:Main article: 3994: 3991: 3973: 3958: 3957: 3873:is defined as 3866: 3863: 3827:right triangle 3782: 3769: 3757:Tower of Hanoi 3752: 3749: 3733: 3732: 3729: 3726: 3722: 3721: 3718: 3715: 3711: 3710: 3707: 3704: 3700: 3699: 3696: 3693: 3689: 3688: 3685: 3682: 3678: 3677: 3674: 3671: 3667: 3666: 3663: 3660: 3656: 3655: 3652: 3649: 3645: 3644: 3641: 3638: 3634: 3633: 3630: 3627: 3623: 3622: 3619: 3616: 3612: 3611: 3608: 3605: 3601: 3600: 3597: 3594: 3590: 3589: 3586: 3583: 3579: 3578: 3575: 3574:8796093022207 3572: 3568: 3567: 3564: 3563:2199023255551 3561: 3557: 3556: 3553: 3550: 3546: 3545: 3542: 3539: 3535: 3534: 3531: 3528: 3524: 3523: 3520: 3517: 3513: 3512: 3507: 3501: 3496: 3491: 3464: 3447:probable prime 3443:primality test 3425: 3422: 3421: 3420: 3394:Main article: 3391: 3388: 3387: 3386: 3380: 3370: 3358: 3348: 3339: 3328: 3319: 3279: 3278:to the base 2. 3272: 3271: 3270: 3265: 3169: 3162:11 = 2 × 4 + 3 3108: 3073: 3072: 3071: 3068:−1 = 0 (mod p) 2975: 2974: 2973: 2921: 2920: 2919: 2910: 2890: 2871: 2730: 2713:is prime, and 2681: 2680: 2679: 2674:is prime then 2662: 2658: 2605: 2604: 2603: 2420: 2417: 2413:Probable prime 2406:Ocala, Florida 2383: 2328: 2323: 2318:floor function 2303: 2291: 2283: 2274: 2265: 2256: 2247: 2238: 2229: 2222:R. M. Robinson 2201: 2173: 2170: 2167: 2164: 2161: 2158: 2155: 2152: 2149: 2114: 2106: 2097: 2085: 2075: 2070:if and only if 2062: 2036: 2027: 2014: 2009:in 1876, then 2001: 1994:Leonhard Euler 1988: 1981:Pietro Cataldi 1975: 1966: 1956: 1946: 1936: 1926: 1916: 1901: 1898: 1879: 1866: 1850: 1846: 1842: 1839: 1836: 1831: 1827: 1823: 1810: 1795: 1786: 1777: 1768: 1759: 1752: 1751: 1750: 1749: 1740:Marin Mersenne 1730: 1729: 1725: 1724: 1721: 1718: 1715: 1712: 1709: 1706: 1703: 1699: 1698: 1695: 1692: 1689: 1686: 1683: 1680: 1677: 1673: 1672: 1669: 1666: 1663: 1660: 1657: 1654: 1651: 1647: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1621: 1620: 1617: 1614: 1611: 1608: 1605: 1602: 1599: 1595: 1594: 1591: 1588: 1585: 1582: 1579: 1576: 1573: 1569: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1543: 1542: 1539: 1536: 1533: 1530: 1527: 1524: 1521: 1514: 1511: 1498: 1494: 1490: 1487: 1484: 1481: 1478: 1475: 1472: 1469: 1449: 1446: 1443: 1438: 1434: 1430: 1427: 1424: 1402:Leonhard Euler 1378: 1367:Main article: 1364: 1361: 1322:cult following 1318:primality test 1305: 1298: 1283: 1278: 1277: 1271: 1255: 1244: 1224: 1220: 1214: 1211: 1208: 1205: 1202: 1199: 1195: 1191: 1188: 1185: 1180: 1177: 1173: 1169: 1164: 1161: 1157: 1153: 1148: 1144: 1140: 1137: 1133: 1129: 1126: 1123: 1120: 1115: 1111: 1107: 1104: 1101: 1099: 1097: 1093: 1087: 1084: 1081: 1078: 1075: 1072: 1068: 1064: 1061: 1058: 1053: 1050: 1046: 1042: 1037: 1034: 1030: 1026: 1021: 1017: 1013: 1010: 1006: 1002: 999: 996: 993: 988: 984: 980: 977: 974: 972: 970: 967: 962: 959: 955: 951: 950: 931: 917: 902: 892: 883: 873: 863: 853: 843: 825: 821: 817: 814: 811: 806: 802: 781: 778: 773: 769: 765: 762: 759: 756: 751: 747: 710: 707: 704: 701: 698: 693: 689: 660: 657: 652: 648: 645: 642: 639: 636: 633: 630: 627: 565: 555: 545: 535: 525: 515: 505: 495: 485: 439: 435: 421:≈ 5.92 primes 410: 407: 404: 401: 396: 392: 388: 383: 379: 351: 348: 342: 339: 336: 280: 209: 185:Marin Mersenne 168: 151:Mersenne prime 141: 140: 138: 137: 126: 120: 118: 111: 110: 104: 100: 99: 81: 77: 76: 73: 66: 65: 62: 54: 53: 50: 49:of known terms 43: 42: 40:Marin Mersenne 37: 31:Mersenne prime 26: 9: 6: 4: 3: 2: 12325: 12314: 12311: 12309: 12306: 12304: 12301: 12299: 12296: 12294: 12291: 12289: 12286: 12285: 12283: 12268: 12265: 12263: 12260: 12259: 12256: 12250: 12247: 12245: 12242: 12240: 12237: 12235: 12232: 12230: 12227: 12225: 12222: 12220: 12217: 12215: 12212: 12210: 12207: 12205: 12202: 12200: 12199:Infinitesimal 12197: 12195: 12192: 12190: 12187: 12185: 12182: 12181: 12179: 12168: 12158: 12155: 12153: 12150: 12148: 12145: 12141: 12138: 12136: 12133: 12132: 12131: 12128: 12127: 12125: 12121: 12115: 12112: 12110: 12107: 12105: 12102: 12100: 12097: 12096: 12094: 12090: 12087: 12081: 12075: 12072: 12070: 12069:Rayo's number 12067: 12065: 12062: 12060: 12057: 12055: 12052: 12050: 12047: 12045: 12042: 12040: 12037: 12035: 12032: 12030: 12027: 12025: 12022: 12020: 12017: 12015: 12012: 12010: 12007: 12005: 12002: 12000: 11997: 11995: 11992: 11990: 11987: 11985: 11982: 11980: 11977: 11975: 11972: 11970: 11967: 11965: 11962: 11960: 11957: 11955: 11952: 11950: 11947: 11946: 11944: 11934: 11930: 11929:Large numbers 11923: 11918: 11916: 11911: 11909: 11904: 11903: 11900: 11888: 11885: 11881: 11878: 11876: 11873: 11871: 11868: 11867: 11866: 11863: 11861: 11858: 11856: 11853: 11852: 11849: 11845: 11838: 11833: 11831: 11826: 11824: 11819: 11818: 11815: 11803: 11799: 11795: 11794: 11791: 11781: 11778: 11777: 11774: 11769: 11764: 11760: 11750: 11747: 11745: 11742: 11741: 11738: 11733: 11728: 11724: 11714: 11711: 11709: 11706: 11705: 11702: 11697: 11692: 11688: 11678: 11675: 11673: 11670: 11669: 11666: 11662: 11656: 11652: 11642: 11639: 11637: 11634: 11632: 11629: 11628: 11625: 11621: 11616: 11612: 11598: 11595: 11594: 11592: 11588: 11582: 11579: 11577: 11574: 11572: 11571:Polydivisible 11569: 11567: 11564: 11562: 11559: 11557: 11554: 11552: 11549: 11548: 11546: 11542: 11536: 11533: 11531: 11528: 11526: 11523: 11521: 11518: 11516: 11513: 11512: 11510: 11507: 11502: 11496: 11493: 11491: 11488: 11486: 11483: 11481: 11478: 11476: 11473: 11471: 11468: 11466: 11463: 11462: 11460: 11457: 11453: 11445: 11442: 11441: 11440: 11437: 11436: 11434: 11431: 11427: 11415: 11412: 11411: 11410: 11407: 11405: 11402: 11400: 11397: 11395: 11392: 11390: 11387: 11385: 11382: 11380: 11377: 11375: 11372: 11370: 11367: 11366: 11364: 11360: 11354: 11351: 11350: 11348: 11344: 11338: 11335: 11333: 11330: 11329: 11327: 11325:Digit product 11323: 11317: 11314: 11312: 11309: 11307: 11304: 11302: 11299: 11298: 11296: 11294: 11290: 11282: 11279: 11277: 11274: 11273: 11272: 11269: 11268: 11266: 11264: 11259: 11255: 11251: 11246: 11241: 11237: 11227: 11224: 11222: 11219: 11217: 11214: 11212: 11209: 11207: 11204: 11202: 11199: 11197: 11194: 11192: 11189: 11187: 11184: 11182: 11179: 11177: 11174: 11172: 11169: 11167: 11164: 11162: 11161:Erdős–Nicolas 11159: 11157: 11154: 11152: 11149: 11148: 11145: 11140: 11136: 11130: 11126: 11112: 11109: 11107: 11104: 11103: 11101: 11099: 11095: 11089: 11086: 11084: 11081: 11079: 11076: 11074: 11071: 11070: 11068: 11066: 11062: 11056: 11053: 11051: 11048: 11046: 11043: 11041: 11038: 11036: 11033: 11031: 11028: 11027: 11025: 11023: 11019: 11013: 11010: 11008: 11005: 11004: 11002: 11000: 10996: 10990: 10987: 10985: 10982: 10980: 10979:Superabundant 10977: 10975: 10972: 10970: 10967: 10965: 10962: 10960: 10957: 10955: 10952: 10950: 10947: 10945: 10942: 10940: 10937: 10935: 10932: 10930: 10927: 10925: 10922: 10920: 10917: 10915: 10912: 10910: 10907: 10905: 10902: 10900: 10897: 10895: 10892: 10890: 10887: 10885: 10882: 10881: 10879: 10877: 10873: 10869: 10865: 10861: 10856: 10852: 10842: 10839: 10837: 10834: 10832: 10829: 10827: 10824: 10822: 10819: 10817: 10814: 10812: 10809: 10807: 10804: 10802: 10799: 10797: 10794: 10792: 10789: 10787: 10784: 10783: 10780: 10776: 10771: 10767: 10757: 10754: 10752: 10749: 10747: 10744: 10742: 10739: 10738: 10735: 10731: 10726: 10722: 10712: 10709: 10707: 10704: 10702: 10699: 10697: 10694: 10692: 10689: 10687: 10684: 10682: 10679: 10677: 10674: 10672: 10669: 10667: 10664: 10662: 10659: 10657: 10654: 10652: 10649: 10647: 10644: 10642: 10639: 10637: 10634: 10632: 10629: 10627: 10624: 10622: 10619: 10617: 10614: 10613: 10610: 10603: 10599: 10581: 10578: 10576: 10573: 10571: 10568: 10567: 10565: 10561: 10558: 10556: 10555:4-dimensional 10552: 10542: 10539: 10538: 10536: 10534: 10530: 10524: 10521: 10519: 10516: 10514: 10511: 10509: 10506: 10504: 10501: 10499: 10496: 10495: 10493: 10491: 10487: 10481: 10478: 10476: 10473: 10471: 10468: 10466: 10465:Centered cube 10463: 10461: 10458: 10457: 10455: 10453: 10449: 10446: 10444: 10443:3-dimensional 10440: 10430: 10427: 10425: 10422: 10420: 10417: 10415: 10412: 10410: 10407: 10405: 10402: 10400: 10397: 10395: 10392: 10390: 10387: 10385: 10382: 10381: 10379: 10377: 10373: 10367: 10364: 10362: 10359: 10357: 10354: 10352: 10349: 10347: 10344: 10342: 10339: 10337: 10334: 10332: 10329: 10327: 10324: 10323: 10321: 10319: 10315: 10312: 10310: 10309:2-dimensional 10306: 10302: 10298: 10293: 10289: 10279: 10276: 10274: 10271: 10269: 10266: 10264: 10261: 10259: 10256: 10254: 10253:Nonhypotenuse 10251: 10250: 10247: 10240: 10236: 10226: 10223: 10221: 10218: 10216: 10213: 10211: 10208: 10206: 10203: 10202: 10199: 10192: 10188: 10178: 10175: 10173: 10170: 10168: 10165: 10163: 10160: 10158: 10155: 10153: 10150: 10148: 10145: 10143: 10140: 10139: 10136: 10131: 10126: 10122: 10112: 10109: 10107: 10104: 10102: 10099: 10097: 10094: 10092: 10089: 10088: 10085: 10078: 10074: 10064: 10061: 10059: 10056: 10054: 10051: 10049: 10046: 10044: 10041: 10039: 10036: 10034: 10031: 10030: 10027: 10022: 10016: 10012: 10002: 9999: 9997: 9994: 9992: 9991:Perfect power 9989: 9987: 9984: 9982: 9981:Seventh power 9979: 9977: 9974: 9972: 9969: 9967: 9964: 9962: 9959: 9957: 9954: 9952: 9949: 9947: 9944: 9942: 9939: 9937: 9934: 9933: 9930: 9925: 9920: 9916: 9912: 9904: 9899: 9897: 9892: 9890: 9885: 9884: 9881: 9871: 9866: 9860: 9857: 9855: 9852: 9850: 9847: 9845: 9842: 9840: 9837: 9835: 9832: 9830: 9827: 9825: 9822: 9820: 9817: 9815: 9812: 9810: 9807: 9805: 9802: 9800: 9797: 9795: 9792: 9790: 9787: 9785: 9782: 9780: 9777: 9775: 9772: 9770: 9767: 9765: 9762: 9760: 9757: 9755: 9752: 9750: 9747: 9745: 9742: 9740: 9737: 9735: 9732: 9730: 9727: 9725: 9722: 9720: 9717: 9715: 9712: 9710: 9707: 9705: 9702: 9700: 9697: 9695: 9692: 9690: 9687: 9685: 9682: 9680: 9677: 9675: 9672: 9670: 9667: 9665: 9662: 9660: 9657: 9655: 9652: 9650: 9647: 9645: 9642: 9640: 9637: 9635: 9632: 9630: 9627: 9625: 9622: 9620: 9617: 9615: 9612: 9610: 9607: 9605: 9602: 9600: 9597: 9595: 9592: 9590: 9587: 9585: 9582: 9580: 9577: 9575: 9572: 9570: 9567: 9565: 9562: 9561: 9559: 9555: 9549: 9546: 9544: 9541: 9539: 9538:Illegal prime 9536: 9534: 9531: 9529: 9526: 9525: 9523: 9519: 9513: 9510: 9508: 9505: 9503: 9500: 9498: 9495: 9493: 9490: 9488: 9485: 9481: 9478: 9476: 9473: 9471: 9468: 9466: 9463: 9461: 9458: 9456: 9453: 9451: 9448: 9446: 9443: 9441: 9438: 9436: 9433: 9432: 9431: 9428: 9427: 9425: 9423: 9419: 9413: 9410: 9408: 9405: 9404: 9402: 9400: 9396: 9389: 9386: 9385: 9384: 9383:Largest known 9381: 9379: 9376: 9374: 9370: 9364: 9360: 9356: 9352: 9348: 9342: 9340: 9336: 9332: 9326: 9324: 9321: 9319: 9315: 9311: 9307: 9301: 9300: 9291: 9288: 9285: +  9284: 9280: 9276: 9273: −  9272: 9265: 9263: 9259: 9255: 9252: +  9251: 9245: 9243: 9239: 9235: 9229: 9227: 9223: 9219: 9213: 9211: 9207: 9203: 9199: 9195: 9189: 9187: 9183: 9179: 9175: 9171: 9165: 9163: 9159: 9155: 9149: 9148: 9146: 9144: 9142: 9137: 9134: 9130: 9124: 9121: 9119: 9116: 9114: 9111: 9109: 9106: 9104: 9101: 9099: 9096: 9094: 9091: 9089: 9086: 9084: 9081: 9079: 9076: 9074: 9071: 9069: 9066: 9064: 9061: 9059: 9056: 9054: 9048: 9046: 9043: 9041: 9038: 9037: 9035: 9032: 9028: 9022: 9019: 9017: 9014: 9012: 9009: 9007: 9004: 9002: 8999: 8997: 8994: 8992: 8989: 8987: 8984: 8982: 8979: 8977: 8974: 8972: 8969: 8967: 8964: 8962: 8959: 8957: 8954: 8952: 8949: 8947: 8944: 8942: 8939: 8936: 8932: 8929: 8928: 8926: 8922: 8916: 8913: 8911: 8908: 8906: 8903: 8901: 8898: 8896: 8893: 8892: 8890: 8886: 8880: 8874: 8865: 8863: 8859: 8855: 8848: 8846: 8839: 8837: 8834: 8831: +  8830: 8824: 8822: 8819: 8816: −  8815: 8811: 8808: −  8807: 8801: 8799: 8795: 8789: 8787: 8783: 8777: 8775: 8768: 8766: 8763: 8760: +  8759: 8753: 8751: 8744: 8742: 8738: 8733:Pythagorean ( 8731: 8729: 8725: 8716: 8714: 8710: 8701: 8699: 8695: 8689: 8687: 8683: 8677: 8675: 8669: 8667: 8660: 8658: 8651: 8649: 8642: 8641: 8639: 8635: 8630: 8623: 8618: 8616: 8611: 8609: 8604: 8603: 8600: 8591: 8590: 8585: 8582: 8577: 8572: 8571: 8566: 8563: 8558: 8557: 8549: 8545: 8542: 8539: 8537: 8533: 8530: 8527: 8525: 8522: 8518: 8512: 8510: 8507: 8503: 8497: 8489: 8483: 8481: 8477: 8474: 8471: 8469: 8465: 8462: 8459: 8457: 8454: 8452: 8449: 8447: 8444: 8441: 8438: 8436: 8433: 8427: 8424: 8421: 8418: 8408:on 2013-05-31 8407: 8403: 8399: 8395: 8390: 8387: 8383: 8379: 8375: 8370: 8366: 8362: 8359: 8354: 8350: 8345: 8341: 8337: 8335: 8332: 8329: 8326: 8324: 8321: 8317: 8313: 8312: 8307: 8303: 8302: 8292: 8289: 8285: 8265: 8261: 8252: 8248: 8244: 8239: 8235: 8218: 8212: 8209: 8205: 8185: 8181: 8172: 8168: 8164: 8159: 8155: 8138: 8132: 8124: 8116: 8110: 8102: 8098: 8090: 8084: 8076: 8072: 8064: 8058: 8050: 8046: 8038: 8032: 8024: 8016: 8010: 8002: 7994: 7988: 7980: 7972: 7964: 7955: 7950: 7943: 7936: 7933:(part of the 7932: 7926: 7918: 7912: 7908: 7904: 7900: 7893: 7885: 7881: 7875: 7867: 7861: 7846: 7839: 7825: 7821: 7814: 7806: 7800: 7796: 7789: 7774: 7770: 7764: 7750: 7744: 7729: 7725: 7719: 7705: 7698: 7690: 7684: 7680: 7676: 7672: 7665: 7657: 7656: 7651: 7644: 7638: 7634: 7631: 7626: 7611: 7607: 7601: 7587: 7581: 7573: 7567: 7559: 7555: 7549: 7535: 7531: 7525: 7517: 7513: 7507: 7492: 7491: 7486: 7479: 7464: 7463: 7462:New Scientist 7458: 7451: 7436: 7432: 7425: 7411: 7410: 7405: 7398: 7384: 7380: 7373: 7366: 7360: 7352: 7348: 7344: 7337: 7329: 7325: 7321: 7315: 7305: 7304: 7295: 7286: 7281: 7277: 7273: 7269: 7262: 7254: 7250: 7249:Wright, E. M. 7246: 7240: 7233: 7227: 7221: 7215: 7207: 7200: 7184: 7180: 7174: 7158: 7154: 7148: 7144: 7126: 7122: 7114: 7110: 7096: 7088: 7069: 7061: 7057: 7046: 7042: 7035: 7031: 7023: 7019: 7011: 7007: 7003: 6999: 6991: 6987: 6979: 6975: 6964: 6955: 6951: 6947: 6943: 6939: 6935: 6931: 6917: 6913: 6909: 6905: 6898: 6892: 6888: 6877: 6874: 6872: 6869: 6867: 6866:Solinas prime 6864: 6862: 6859: 6857: 6856:Woodall prime 6854: 6852: 6849: 6847: 6844: 6842: 6839: 6837: 6834: 6831: 6828: 6825: 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6805: 6802: 6800: 6797: 6795: 6794:Fermat number 6792: 6790: 6787: 6786: 6776: 6771: 6765: 6764: 6763: 6762:is prime are 6760: 6756: 6742: 6737: 6731: 6730: 6729: 6728:is prime are 6726: 6722: 6711: 6708: 6704: 6697: 6687: 6683: 6673: 6669: 6661: 6657: 6651: 6639: 6629: 6626: 6623: 6620: 6617: 6616: 6613: 6610: 6607: 6604: 6603: 6600: 6597: 6594: 6591: 6588: 6587: 6584: 6581: 6578: 6575: 6572: 6571: 6568: 6565: 6562: 6559: 6556: 6555: 6552: 6549: 6546: 6543: 6540: 6539: 6536: 6533: 6530: 6527: 6524: 6523: 6520: 6517: 6514: 6511: 6508: 6507: 6504: 6501: 6498: 6495: 6492: 6491: 6488: 6485: 6482: 6479: 6478: 6475: 6472: 6469: 6466: 6465: 6462: 6459: 6456: 6453: 6452: 6449: 6446: 6443: 6440: 6439: 6436: 6433: 6430: 6427: 6424: 6423: 6420: 6417: 6414: 6411: 6408: 6407: 6404: 6401: 6398: 6395: 6392: 6391: 6388: 6385: 6382: 6379: 6376: 6375: 6372: 6369: 6366: 6363: 6360: 6359: 6356: 6353: 6350: 6347: 6344: 6343: 6340: 6337: 6334: 6331: 6328: 6327: 6324: 6321: 6318: 6315: 6312: 6311: 6308: 6305: 6302: 6299: 6296: 6295: 6292: 6289: 6286: 6283: 6280: 6279: 6276: 6273: 6270: 6267: 6264: 6263: 6260: 6257: 6254: 6251: 6248: 6247: 6244: 6241: 6238: 6235: 6232: 6231: 6228: 6225: 6222: 6219: 6216: 6215: 6212: 6209: 6206: 6203: 6200: 6199: 6196: 6193: 6190: 6187: 6184: 6183: 6180: 6177: 6174: 6171: 6170: 6167: 6164: 6161: 6158: 6155: 6154: 6151: 6148: 6145: 6142: 6139: 6138: 6135: 6132: 6129: 6126: 6123: 6122: 6119: 6116: 6113: 6110: 6107: 6106: 6103: 6100: 6097: 6094: 6091: 6090: 6087: 6084: 6081: 6078: 6075: 6074: 6071: 6068: 6065: 6062: 6059: 6058: 6055: 6052: 6049: 6046: 6043: 6042: 6039: 6036: 6033: 6030: 6027: 6026: 6023: 6020: 6017: 6014: 6011: 6010: 6007: 6004: 6001: 5998: 5995: 5994: 5991: 5988: 5985: 5982: 5979: 5978: 5975: 5972: 5969: 5966: 5965: 5962: 5959: 5956: 5953: 5950: 5949: 5946: 5943: 5940: 5937: 5936: 5933: 5930: 5927: 5924: 5921: 5920: 5917: 5914: 5911: 5908: 5905: 5904: 5901: 5898: 5895: 5892: 5889: 5888: 5885: 5882: 5879: 5876: 5873: 5872: 5869: 5866: 5863: 5860: 5857: 5856: 5853: 5850: 5847: 5844: 5841: 5840: 5837: 5834: 5831: 5828: 5827: 5824: 5821: 5818: 5815: 5814: 5811: 5808: 5805: 5802: 5799: 5798: 5795: 5792: 5789: 5786: 5783: 5782: 5779: 5776: 5773: 5770: 5767: 5766: 5763: 5760: 5757: 5754: 5751: 5750: 5747: 5744: 5741: 5738: 5735: 5734: 5731: 5728: 5725: 5722: 5719: 5718: 5715: 5712: 5709: 5706: 5703: 5702: 5699: 5696: 5693: 5690: 5687: 5686: 5683: 5680: 5677: 5674: 5671: 5670: 5667: 5664: 5661: 5658: 5655: 5654: 5651: 5648: 5645: 5642: 5639: 5638: 5635: 5632: 5629: 5626: 5623: 5622: 5619: 5616: 5613: 5610: 5607: 5606: 5603: 5600: 5597: 5594: 5591: 5590: 5587: 5584: 5581: 5578: 5575: 5574: 5571: 5568: 5565: 5562: 5559: 5558: 5555: 5552: 5549: 5546: 5543: 5542: 5539: 5536: 5533: 5530: 5527: 5526: 5523: 5520: 5517: 5514: 5511: 5510: 5507: 5504: 5501: 5498: 5495: 5494: 5491: 5488: 5485: 5482: 5479: 5478: 5475: 5472: 5469: 5466: 5463: 5462: 5459: 5456: 5453: 5450: 5447: 5446: 5443: 5440: 5437: 5434: 5431: 5430: 5427: 5424: 5421: 5418: 5415: 5414: 5411: 5408: 5405: 5402: 5399: 5398: 5395: 5392: 5389: 5386: 5383: 5382: 5379: 5376: 5373: 5370: 5367: 5366: 5363: 5360: 5357: 5354: 5353: 5350: 5347: 5344: 5341: 5340: 5337: 5334: 5331: 5328: 5325: 5324: 5321: 5318: 5315: 5312: 5309: 5308: 5305: 5302: 5299: 5296: 5293: 5292: 5289: 5286: 5283: 5280: 5277: 5276: 5273: 5270: 5267: 5264: 5261: 5260: 5257: 5254: 5250: 5247: 5244: 5243: 5240: 5237: 5233: 5230: 5227: 5226: 5222: 5219: 5213: 5208: 5204:5 < | 5193: 5188: 5176: 5158: 5146: 5142: 5134: 5130: 5114: 5107: 5100: 5099: 5093: 5089: 5085: 5074: 5070: 5062: 5058: 5045: 5040: 5016: 5012: 5005: 5001: 4994: 4990: 4972: 4968: 4962: 4958: 4952: 4948: 4944: 4936: 4931: 4901: 4898: 4895: 4888: 4884: 4880: 4875: 4871: 4860: 4859: 4858: 4847: 4842: 4836: 4835: 4834: 4831: 4822: 4817: 4811: 4810: 4809: 4808:is prime are 4801: 4792: 4782: 4771: 4766: 4761: 4755: 4754: 4753: 4750: 4739: 4733: 4724: 4719: 4713: 4712: 4711: 4708: 4697: 4686: 4677: 4667: 4661: 4653: 4644: 4634: 4628: 4617: 4608: 4598: 4593: 4592:perfect power 4588: 4577: 4572: 4567: 4566: 4565: 4562: 4555: 4546: 4541: 4534: 4529: 4524: 4523: 4522: 4519: 4512: 4506: 4483: 4480: 4477: 4472: 4469: 4464: 4460: 4449: 4448: 4447: 4444: 4437: 4430: 4423: 4405: 4400: 4395: 4394: 4393: 4387: 4382: 4377: 4376: 4375: 4372: 4365: 4359: 4357: 4352: 4348: 4342: 4338: 4333: 4320: 4315: 4310: 4309: 4308: 4306: 4301: 4295: 4290: 4284: 4283: 4282: 4279: 4272: 4266: 4264: 4260: 4254: 4247: 4242: 4237: 4233: 4227: 4223: 4218: 4208: 4206: 4202: 4198: 4194: 4188: 4174: 4169: 4163: 4158: 4154: 4144: 4142: 4138: 4132: 4125: 4120: 4114: 4107: 4100: 4090: 4086: 4082: 4078: 4074: 4067: 4056: 4052: 4048: 4044: 4037: 4028: 4024: 4018: 4014: 4007: 4000: 3990: 3988: 3983: 3976: 3969: 3965: 3948: 3947: 3946: 3942: 3937: 3936:Fermat number 3931: 3924: 3919: 3916: 3912: 3904: 3898: 3881: 3872: 3862: 3852: 3840: 3832: 3828: 3825:, an integer 3824: 3819: 3817: 3813: 3812:31 Euphrosyne 3809: 3805: 3801: 3800:8191 Mersenne 3797: 3793: 3788: 3785: 3777: 3772: 3763: 3758: 3748: 3746: 3741: 3730: 3727: 3724: 3723: 3719: 3716: 3713: 3712: 3708: 3705: 3702: 3701: 3697: 3694: 3691: 3690: 3686: 3683: 3680: 3679: 3675: 3672: 3669: 3668: 3664: 3661: 3658: 3657: 3653: 3650: 3647: 3646: 3642: 3639: 3636: 3635: 3631: 3628: 3625: 3624: 3620: 3617: 3614: 3613: 3609: 3606: 3603: 3602: 3598: 3595: 3592: 3591: 3587: 3584: 3581: 3580: 3576: 3573: 3570: 3569: 3565: 3562: 3559: 3558: 3554: 3552:137438953471 3551: 3548: 3547: 3543: 3540: 3537: 3536: 3533:47 × 178,481 3532: 3529: 3526: 3525: 3521: 3518: 3515: 3514: 3510: 3502: 3499: 3492: 3489: 3485: 3484: 3481: 3479: 3474: 3468: 3463: 3448: 3444: 3439: 3431: 3418: 3413: 3407: 3406: 3405: 3403: 3397: 3379: 3369: 3361: 3357: 3351: 3347: 3342: 3338: 3331: 3324: 3320: 3315: 3308: 3290: 3284: 3280: 3277: 3273: 3259: 3242:. Also since 3215: 3207: 3199: 3191: 3183: 3173: 3170: 3159: 3156: 3155: 3147: 3137: 3129: 3119: 3109: 3106: 3094: 3074: 3064: 3056: 3027: 3021: 3017: 3010: 3006: 2999: 2991: 2987:: We show if 2986: 2983: 2982: 2980: 2976: 2967: 2962: 2950: 2944: 2941: 2940: 2931:that divides 2922: 2904: 2896: 2891: 2876: 2872: 2867: 2863: 2844: 2840: 2833: 2773:is prime and 2759: 2738: 2734: 2731: 2709:For example, 2708: 2707: 2700: 2691:that divides 2682: 2677: 2643: 2633: 2629: 2620: 2617: 2616: 2606: 2599: 2588: 2581: 2574: 2567: 2560: 2554: 2550: 2543: 2536: 2532: 2528:is prime, so 2525: 2518: 2514: 2507: 2504:− 1 ≡ 0 (mod 2503: 2496: 2492: 2485: 2482: 2478: 2473: 2470: 2469: 2465: 2458: 2451: 2441: 2436: 2435: 2434: 2432: 2427: 2416: 2414: 2409: 2407: 2398: 2392: 2387: 2380: 2373: 2367: 2363: 2362:Curtis Cooper 2358: 2351: 2349: 2348:Dell OptiPlex 2344: 2340: 2335: 2331: 2319: 2313: 2301: 2294: 2282: 2273: 2264: 2255: 2246: 2237: 2228: 2223: 2219: 2215: 2211: 2208: 2200: 2195: 2191: 2165: 2159: 2156: 2150: 2147: 2138: 2134: 2130: 2126: 2117: 2113: 2109: 2096: 2088: 2084: 2078: 2071: 2065: 2055: 2050: 2045: 2043: 2035: 2026: 2021: 2013: 2008: 2007:Édouard Lucas 2000: 1995: 1987: 1982: 1974: 1965: 1955: 1945: 1935: 1925: 1915: 1909: 1907: 1897: 1886: 1878: 1873: 1865: 1848: 1844: 1837: 1834: 1829: 1825: 1809: 1804: 1803:Édouard Lucas 1800: 1794: 1785: 1776: 1767: 1758: 1747: 1746: 1745: 1744: 1743: 1741: 1737: 1726: 1722: 1719: 1716: 1713: 1710: 1707: 1704: 1701: 1700: 1696: 1693: 1690: 1687: 1684: 1681: 1678: 1675: 1674: 1670: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1648: 1644: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1622: 1618: 1615: 1612: 1609: 1606: 1603: 1600: 1597: 1596: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1570: 1566: 1563: 1560: 1557: 1554: 1551: 1548: 1545: 1544: 1540: 1537: 1534: 1531: 1528: 1525: 1522: 1519: 1518: 1510: 1496: 1492: 1485: 1482: 1479: 1473: 1470: 1467: 1444: 1441: 1436: 1432: 1428: 1425: 1413: 1411: 1407: 1403: 1391: 1387: 1381: 1377: 1370: 1360: 1358: 1354: 1350: 1346: 1342: 1339:. To find a 1338: 1334: 1329: 1327: 1323: 1319: 1315: 1310: 1270: 1266: 1265: 1264: 1250: 1243: 1222: 1218: 1212: 1206: 1203: 1200: 1193: 1189: 1186: 1183: 1178: 1175: 1171: 1167: 1162: 1159: 1155: 1151: 1146: 1142: 1138: 1135: 1131: 1127: 1121: 1118: 1113: 1109: 1102: 1100: 1091: 1085: 1079: 1076: 1073: 1066: 1062: 1059: 1056: 1051: 1048: 1044: 1040: 1035: 1032: 1028: 1024: 1019: 1015: 1011: 1008: 1004: 1000: 994: 991: 986: 982: 975: 973: 968: 965: 960: 957: 953: 939: 927: 922: 916: 910: 901: 891: 882: 872: 862: 852: 842: 823: 819: 815: 812: 809: 804: 800: 779: 776: 771: 767: 763: 757: 749: 734: 724: 723:prime factors 721:and 1 has no 708: 705: 699: 691: 658: 655: 650: 646: 643: 637: 634: 631: 628: 612: 606: 600: 594: 588: 578: 573: 564: 554: 544: 534: 524: 514: 504: 494: 479: 469: 465: 462: 458: 453: 437: 433: 424: 405: 399: 394: 390: 386: 381: 377: 368: 364: 359: 354: 335: 333: 329: 321: 316: 314: 310: 305: 299: 294: 289: 283: 274: 272: 267: 262: 258: 254: 250: 246: 242: 237: 231: 227: 222: 219: 212: 200: 195: 190: 186: 181: 177: 171: 164: 160: 156: 152: 148: 135: 131: 127: 125: 122: 121: 119: 116: 112: 105: 101: 97: 93: 89: 85: 82: 78: 74: 71: 67: 63: 55: 51: 44: 41: 38: 34: 19: 12234:Power of two 12224:Number names 11959:Ten thousand 11864: 11535:Transposable 11399:Narcissistic 11306:Digital root 11226:Super-Poulet 11186:Jordan–Pólya 11135:prime factor 11040:Noncototient 11007:Almost prime 10989:Superperfect 10964:Refactorable 10959:Quasiperfect 10934:Hyperperfect 10775:Pseudoprimes 10746:Wall–Sun–Sun 10681:Ordered Bell 10651:Fuss–Catalan 10563:non-centered 10513:Dodecahedral 10490:non-centered 10376:non-centered 10278:Wolstenholme 10047: 10023:× 2 ± 1 10020: 10019:Of the form 9986:Eighth power 9966:Fourth power 9492:Almost prime 9450:Euler–Jacobi 9358: 9354: 9350: 9346: 9344:Cunningham ( 9334: 9330: 9313: 9309: 9305: 9286: 9282: 9278: 9274: 9270: 9269:consecutive 9257: 9253: 9249: 9237: 9233: 9221: 9217: 9205: 9201: 9197: 9193: 9191:Quadruplet ( 9181: 9177: 9173: 9169: 9157: 9153: 9140: 9088:Full reptend 8946:Wolstenholme 8941:Wall–Sun–Sun 8872: 8857: 8853: 8832: 8828: 8817: 8813: 8809: 8805: 8793: 8781: 8761: 8757: 8736: 8720: 8705: 8693: 8681: 8652: 8629:Prime number 8587: 8568: 8520: 8516: 8501: 8492: 8410:. Retrieved 8406:the original 8397: 8381: 8377: 8373: 8368: 8364: 8352: 8348: 8343: 8339: 8309: 8287: 8283: 8217: 8207: 8203: 8137: 8122: 8115: 8100: 8096: 8089: 8074: 8070: 8063: 8048: 8044: 8037: 8022: 8015: 8000: 7993: 7978: 7970: 7963: 7942: 7925: 7898: 7892: 7884:the original 7874: 7860: 7849:. Retrieved 7838: 7827:. Retrieved 7823: 7813: 7794: 7788: 7776:. Retrieved 7772: 7763: 7752:. Retrieved 7743: 7731:. Retrieved 7727: 7718: 7707:. Retrieved 7697: 7670: 7664: 7653: 7643: 7625: 7613:. Retrieved 7609: 7600: 7589:. Retrieved 7580: 7566: 7557: 7548: 7537:. Retrieved 7533: 7524: 7516:the original 7512:"Milestones" 7506: 7494:. Retrieved 7488: 7478: 7466:. Retrieved 7460: 7450: 7438:. Retrieved 7434: 7424: 7413:. Retrieved 7407: 7397: 7386:. Retrieved 7382: 7372: 7359: 7350: 7346: 7336: 7328:the original 7323: 7314: 7302: 7294: 7275: 7271: 7261: 7252: 7245:Hardy, G. H. 7239: 7226: 7214: 7199: 7187:. Retrieved 7183:Mersenne.org 7182: 7173: 7161:. Retrieved 7156: 7147: 7124: 7120: 7112: 7108: 7094: 7086: 7068: 7044: 7040: 7033: 7029: 7021: 7017: 7009: 7005: 7001: 6997: 6989: 6985: 6977: 6973: 6963: 6953: 6949: 6945: 6941: 6937: 6915: 6911: 6907: 6900: 6897:Lucas number 6891: 6851:Cullen prime 6799:Power of two 6758: 6754: 6746: 6724: 6720: 6712: 6706: 6702: 6695: 6685: 6681: 6671: 6667: 6659: 6655: 6652: 6637: 6634: 5211: 5210:| < 5206: 5191: 5186: 5174: 5144: 5140: 5132: 5128: 5087: 5083: 5072: 5068: 5060: 5056: 5044:fourth power 5038: 5014: 5010: 5003: 4999: 4992: 4988: 4970: 4966: 4960: 4956: 4950: 4946: 4942: 4934: 4919: 4856: 4829: 4826: 4799: 4790: 4780: 4777: 4769: 4748: 4737: 4731: 4728: 4706: 4695: 4684: 4675: 4665: 4662: 4651: 4642: 4632: 4626: 4615: 4606: 4596: 4586: 4583: 4560: 4553: 4550: 4517: 4510: 4504: 4501: 4442: 4435: 4428: 4425: 4391: 4370: 4363: 4360: 4355: 4350: 4346: 4340: 4336: 4331: 4329: 4302: 4299: 4277: 4270: 4267: 4262: 4252: 4245: 4243:) for which 4235: 4231: 4225: 4221: 4214: 4197:real numbers 4186: 4172: 4161: 4157:real numbers 4150: 4140: 4130: 4123: 4112: 4105: 4098: 4091: 4084: 4080: 4076: 4072: 4065: 4054: 4050: 4046: 4042: 4035: 4027:coefficients 4016: 4012: 4005: 4002: 3981: 3971: 3967: 3963: 3959: 3940: 3929: 3922: 3914: 3910: 3907: 3902: 3896: 3880: 3870: 3868: 3820: 3796:minor planet 3789: 3780: 3767: 3761: 3754: 3736: 3505: 3494: 3487: 3469: 3461: 3427: 3401: 3399: 3377: 3367: 3359: 3355: 3349: 3345: 3340: 3336: 3329: 3313: 3306: 3288: 3257: 3213: 3205: 3204:2 ≡ −1 (mod 3197: 3194:, so either 3189: 3181: 3171: 3157: 3145: 3117: 3062: 3054: 3030:, therefore 3025: 3019: 3015: 3008: 3004: 2997: 2989: 2984: 2960: 2948: 2942: 2902: 2894: 2865: 2861: 2842: 2838: 2831: 2757: 2732: 2698: 2675: 2641: 2631: 2627: 2618: 2597: 2586: 2579: 2572: 2565: 2558: 2552: 2548: 2541: 2534: 2530: 2523: 2516: 2512: 2505: 2501: 2494: 2490: 2483: 2476: 2471: 2463: 2456: 2449: 2439: 2422: 2410: 2399: 2388: 2381: 2374: 2359: 2352: 2336: 2326: 2316:denotes the 2311: 2299: 2289: 2280: 2271: 2262: 2253: 2244: 2235: 2226: 2218:D. H. Lehmer 2198: 2187: 2131: 2124: 2115: 2111: 2104: 2094: 2086: 2082: 2073: 2060: 2053: 2046: 2042:R. E. Powers 2033: 2024: 2011: 1998: 1985: 1972: 1963: 1953: 1943: 1933: 1923: 1913: 1910: 1903: 1876: 1863: 1807: 1801: 1792: 1783: 1774: 1765: 1756: 1753: 1733: 1414: 1379: 1375: 1372: 1347:are used in 1330: 1311: 1279: 1268: 1251: 1241: 937: 923: 914: 899: 889: 880: 870: 860: 850: 840: 732: 615:must divide 610: 598: 586: 562: 552: 542: 532: 522: 512: 502: 492: 477: 454: 422: 360: 357: 317: 306: 297: 292: 287: 278: 275: 229: 223: 217: 207: 193: 179: 166: 159:power of two 155:prime number 150: 144: 133: 129: 57:Conjectured 12244:Power of 10 12184:Busy beaver 11989:Quintillion 11984:Quadrillion 11556:Extravagant 11551:Equidigital 11506:permutation 11465:Palindromic 11439:Automorphic 11337:Sum-product 11316:Sum-product 11271:Persistence 11166:Erdős–Woods 11088:Untouchable 10969:Semiperfect 10919:Hemiperfect 10580:Tesseractic 10518:Icosahedral 10498:Tetrahedral 10429:Dodecagonal 10130:Recursively 10001:Prime power 9976:Sixth power 9971:Fifth power 9951:Power of 10 9909:Classes of 9475:Somer–Lucas 9430:Pseudoprime 9068:Truncatable 9040:Palindromic 8924:By property 8703:Primorial ( 8691:Factorial ( 8505:up to 1280) 8430:(in German) 8402:Brady Haran 8398:Numberphile 8386:math thesis 8280:, that is, 8200:, that is, 7935:Prime Pages 7733:5 September 7655:Prime Pages 7402:Tia Ghose. 7163:21 December 7053:must be in 6861:Proth prime 4833:, they are 4778:Least base 4746:if no such 4704:if no such 4564:values of: 4521:values of: 4249:the number 4195:instead of 3816:127 Johanna 3196:2 ≡ 1 (mod 3188:2 ≡ 1 (mod 3057:mod (2 − 1) 2996:2 ≡ 1 (mod 2947:2 ≡ 2 (mod 2591:, however, 2521:. However, 2190:Alan Turing 2005:, found by 457:conjectures 452:is prime. 201:then so is 189:Minim friar 187:, a French 163:of the form 147:mathematics 136:is a prime) 80:First terms 70:Subsequence 36:Named after 12282:Categories 12249:Sagan Unit 12083:Expression 12034:Googolplex 11999:Septillion 11994:Sextillion 11940:numerical 11768:Graphemics 11641:Pernicious 11495:Undulating 11470:Pandigital 11444:Trimorphic 11045:Nontotient 10894:Arithmetic 10508:Octahedral 10409:Heptagonal 10399:Pentagonal 10384:Triangular 10225:Sierpiński 10147:Jacobsthal 9946:Power of 3 9941:Power of 2 9512:Pernicious 9507:Interprime 9267:Balanced ( 9058:Permutable 9033:-dependent 8850:Williams ( 8746:Pierpont ( 8671:Wagstaff 8653:Mersenne ( 8637:By formula 8435:GIMPS wiki 8412:2013-04-06 8131:= 2 to 200 8109:= 1 to 107 8057:= 1 to 160 8031:= 2 to 160 8009:= 2 to 160 7954:1503.07688 7851:2011-05-21 7829:2023-02-11 7754:2021-07-21 7709:2022-09-05 7591:2019-01-01 7539:2018-01-03 7496:22 January 7468:19 January 7440:22 January 7415:2013-02-07 7388:2011-05-21 7353:: 122–131. 7189:5 December 7140:References 6751:such that 6717:such that 5178:| ≤ 5 5121:such that 5050:such that 5019:such that 4932:integers, 4784:such that 4669:such that 4660:is prime) 4600:such that 4023:polynomial 3934:, it is a 3851:hypotenuse 3541:536870911 3105:pernicious 2970:±1 (mod 8) 2937:±1 (mod 8) 2864:≡ 1 (mod 2 2789:such that 2711:2 − 1 = 31 2706:is prime. 2615:is prime. 2384:37,156,667 603:, and the 569:(sequence 261:2147483647 132:− 1 where 12140:Pentation 12135:Tetration 12123:Operators 12092:Notations 12014:Decillion 12009:Nonillion 12004:Octillion 11936:Examples 11525:Parasitic 11374:Factorion 11301:Digit sum 11293:Digit sum 11111:Fortunate 11098:Primorial 11012:Semiprime 10949:Practical 10914:Descartes 10909:Deficient 10899:Betrothed 10741:Wieferich 10570:Pentatope 10533:pyramidal 10424:Decagonal 10419:Nonagonal 10414:Octagonal 10404:Hexagonal 10263:Practical 10210:Congruent 10142:Fibonacci 10106:Loeschian 9548:Prime gap 9497:Semiprime 9460:Frobenius 9167:Triplet ( 8966:Ramanujan 8961:Fortunate 8931:Wieferich 8895:Fibonacci 8826:Leyland ( 8791:Woodall ( 8770:Solinas ( 8755:Quartan ( 8589:MathWorld 8570:MathWorld 8316:EMS Press 8165:− 8083:= 1 to 40 7987:= 2 to 50 6635:Note: if 5223:sequence 5190:| = 4954:. (Since 4899:− 4881:− 4558:, we get 4515:, we get 4481:− 4470:− 4061:2 − 2 − 1 4031:2 − 2 + 1 3960:In fact, 3954:MF(59, 2) 3835:≥ 4 3831:primitive 3248:3 (mod 4) 3236:7 (mod 8) 3228:3 (mod 4) 3140:3 (mod 4) 3136:congruent 2841:≡ 1 (mod 2678:is prime. 2657:= (2 − 1) 2654:= (2) − 1 2493:≡ 1 (mod 2284:6,972,593 2160:⁡ 2151:⁡ 2068:is prime 1442:− 1204:− 1187:⋯ 1128:⋅ 1119:− 1077:− 1060:⋯ 1001:⋅ 992:− 966:− 810:− 777:− 746:Φ 729:. Hence, 688:Φ 644:− 607:of 2 mod 464:congruent 400:⁡ 387:⋅ 382:γ 226:exponents 174:for some 12172:articles 12170:Related 12074:Infinity 11979:Trillion 11954:Thousand 11597:Friedman 11530:Primeval 11475:Repdigit 11432:-related 11379:Kaprekar 11353:Meertens 11276:Additive 11263:dynamics 11171:Friendly 11083:Sociable 11073:Amicable 10884:Abundant 10864:dynamics 10686:Schröder 10676:Narayana 10646:Eulerian 10636:Delannoy 10631:Dedekind 10452:centered 10318:centered 10205:Amenable 10162:Narayana 10152:Leonardo 10048:Mersenne 9996:Powerful 9936:Achilles 9440:Elliptic 9215:Cousin ( 9132:Patterns 9123:Tetradic 9118:Dihedral 9083:Primeval 9078:Delicate 9063:Circular 9050:Repunit 8841:Thabit ( 8779:Cullen ( 8718:Euclid ( 8644:Fermat ( 8544:Archived 8532:Archived 8476:Archived 8464:Archived 8105:for odd 7633:Archived 7324:BBC News 7251:(1959). 7091:or when 7026:must be 6928:are the 6920:, since 6826:/ MPrime 6782:See also 6693:must be 6664:, it is 5159:, these 5153:is prime 5115:numbers 4752:exists) 4710:exists) 4010:, where 3979:, where 3839:inradius 3829:that is 3823:geometry 3792:asteroid 3530:8388607 3522:23 × 89 3456:, where 3325:. It is 3287:2 − 1 = 3262:divides 3150:divides 3059:. Hence 2769:. Since 2747:. Since 2721:, where 2556:, hence 2544:− 1 = ±1 2308:, where 2092:, where 2080:divides 1738:scholar 924:A basic 913:≥ 737:divides 671:. Since 64:Infinite 61:of terms 12267:History 12085:methods 12059:SSCG(3) 12054:TREE(3) 11974:Billion 11969:Million 11949:Hundred 11770:related 11734:related 11698:related 11696:Sorting 11581:Vampire 11566:Harshad 11508:related 11480:Repunit 11394:Lychrel 11369:Dudeney 11221:Størmer 11216:Sphenic 11201:Regular 11139:divisor 11078:Perfect 10974:Sublime 10944:Perfect 10671:Motzkin 10626:Catalan 10167:Padovan 10101:Leyland 10096:Idoneal 10091:Hilbert 10063:Woodall 9435:Catalan 9372:By size 9143:-tuples 9073:Minimal 8976:Regular 8867:Mills ( 8803:Cuban ( 8679:Proth ( 8631:classes 8318:, 2001 8278:⁠ 8224:⁠ 8198:⁠ 8144:⁠ 7778:24 June 7615:29 June 7309:p. 228. 7129:⁠ 7105:⁠ 7060:A027861 7058::  6994:⁠ 6970:⁠ 6932:of the 6832:(GIMPS) 6824:Prime95 6789:Repunit 6773:in the 6770:A222119 6757:+ 1) − 6739:in the 6736:A058013 6723:+ 1) − 6670:+ 1) − 6628:A213216 6599:A128341 6583:A057178 6567:A004064 6551:A128348 6535:A273814 6519:A062578 6503:A185239 6435:A128340 6419:A224501 6403:A128070 6387:A125957 6371:A057177 6355:A005808 6339:A210506 6323:A128027 6307:A216181 6291:A128347 6275:A273598 6259:A273599 6243:A273600 6227:A273601 6211:A062577 6195:A217095 6166:A128069 6150:A001562 6134:A004023 6118:A128026 6102:A273403 6086:A062576 6070:A187819 6054:A301369 6038:A128339 6022:A211409 6006:A125956 5990:A057175 5973:(none) 5961:A173718 5932:A128346 5916:A273010 5900:A059803 5884:A181141 5868:A128338 5852:A128068 5810:A128025 5794:A128345 5778:A062574 5762:A187805 5746:A128337 5730:A218373 5714:A128067 5698:A125955 5682:A057173 5666:A004063 5650:A215487 5634:A128024 5618:A213073 5602:A128344 5586:A062573 5570:A128336 5554:A057172 5538:A004062 5522:A062572 5506:A128335 5490:A122853 5474:A082387 5458:A057171 5442:A004061 5426:A082182 5410:A121877 5394:A059802 5378:A128066 5336:A059801 5320:A057469 5304:A007658 5288:A028491 5272:A057468 5256:A000978 5239:A000043 5149:⁠ 5125:⁠ 5077:⁠ 5053:⁠ 4930:coprime 4844:in the 4841:A103795 4819:in the 4816:A066180 4805:⁠ 4787:⁠ 4763:in the 4760:A084742 4721:in the 4718:A084740 4690:⁠ 4672:⁠ 4657:⁠ 4639:⁠ 4621:⁠ 4603:⁠ 4574:in the 4571:A057178 4543:in the 4540:A004022 4531:in the 4528:A004023 4422:Repunit 4402:in the 4399:A066413 4384:in the 4381:A066408 4317:in the 4314:A182300 4292:in the 4289:A057429 4199:, like 4170:, then 4151:In the 3985:is the 3920:. When 3900:prime, 3891:⁠ 3876:⁠ 3743:in the 3740:A046800 3476:in the 3473:A244453 3415:in the 3412:A000043 3158:Example 3142:, then 3130:), and 3093:coprime 3046:⁠ 3034:⁠ 3028:| 2 − 1 2992:= 2 − 1 2651:= 2 − 1 2646:. Then 2510:. Thus 2488:. Then 2429:in the 2426:A000225 2296:equals 2066:= 2 − 1 1513:History 1398:2(2 − 1 926:theorem 575:in the 572:A002515 284:= 2 − 1 269:in the 266:A000668 239:in the 236:A000043 213:= 2 − 1 176:integer 172:= 2 − 1 124:A000668 12176:order) 12024:Googol 11636:Odious 11561:Frugal 11515:Cyclic 11504:Digit- 11211:Smooth 11196:Pronic 11156:Cyclic 11133:Other 11106:Euclid 10756:Wilson 10730:Primes 10389:Square 10258:Polite 10220:Riesel 10215:Knödel 10177:Perrin 10058:Thabit 10043:Fermat 10033:Cullen 9956:Square 9924:Powers 9480:Strong 9470:Perrin 9455:Fermat 9231:Sexy ( 9151:Twin ( 9093:Unique 9021:Unique 8981:Strong 8971:Pillai 8951:Wilson 8915:Perrin 8351:) − (3 8073:+ 1, − 7913:  7801:  7685:  7089:> 1 7032:+ 1, − 6967:Since 6747:Least 6713:Least 6640:< 0 5184:| 5172:| 5167:100000 4937:> 1 4663:Least 4349:= 1 − 4339:= 1 + 4234:= 1 − 4224:= 1 + 4189:> 0 4159:), if 4115:> 1 4070:, and 4040:, and 3943:> 1 3853:to be 3849:, the 3808:7 Iris 3804:3 Juno 3316:> 1 3309:> 1 3300:, and 3174:: Let 3018:− 1 = 2964:. By 2959:2 mod 2897:> 2 2644:> 1 2561:= 0, 1 2533:− 1 = 2515:− 1 | 2306:2⌋ + 1 2275:44,497 2251:, and 2127:> 0 2056:> 2 1959:= 8191 1790:, and 1736:French 1390:Euclid 561:503 | 559:, and 551:479 | 541:383 | 531:359 | 521:263 | 511:167 | 466:to 3 ( 311:: the 98:, 8191 12262:Names 12064:BH(3) 11942:order 11677:Prime 11672:Lucky 11661:sieve 11590:Other 11576:Smith 11456:Digit 11414:Happy 11389:Keith 11362:Other 11206:Rough 11176:Giuga 10641:Euler 10503:Cubic 10157:Lucas 10053:Proth 9465:Lucas 9445:Euler 9098:Happy 9045:Emirp 9011:Higgs 9006:Super 8986:Stern 8956:Lucky 8900:Lucas 8519:± 1, 8360:(PDF) 8125:, −1) 8099:+ 2, 8047:+ 1, 8025:, −1) 7981:, −1) 7949:arXiv 7072:When 6930:roots 6883:Notes 6653:When 5199:20000 4949:< 4945:< 4920:with 4556:= −12 4446:make 4366:) − 1 4362:(1 + 4305:norms 4273:) − 1 4269:(1 + 4257:is a 4255:) − 1 4251:(1 + 4182:0 − 1 4178:2 − 1 4166:is a 4103:(for 4094:2 − 1 3894:with 3888:2 − 1 3794:with 3519:2047 3434:2 − 1 3365:with 3172:Proof 3166:2 − 1 3152:2 − 1 3126:is a 3101:2 − 1 3097:2 − 1 3043:2 − 1 3037:2 − 1 2985:Proof 2953:, so 2943:Proof 2933:2 − 1 2883:2 − 1 2853:2 − 1 2823:2 − 1 2807:2 − 1 2795:2 − 1 2779:2 − 1 2767:2 − 1 2753:2 − 1 2745:2 − 1 2735:: By 2733:Proof 2704:2 − 1 2693:2 − 1 2672:2 − 1 2668:2 − 1 2648:2 − 1 2635:with 2619:Proof 2609:2 − 1 2584:. If 2499:, so 2479:≡ 1 ( 2472:Proof 2402:2 − 1 2395:2 − 1 2377:2 − 1 2370:2 − 1 2355:2 − 1 2332:⌋ + 1 2302:× log 2266:4,423 2120:) − 2 1949:= 127 1394:2 − 1 876:= 127 501:47 | 491:23 | 468:mod 4 324:2 − 1 203:2 − 1 197:is a 153:is a 117:index 107:2 − 1 11880:List 11631:Evil 11311:Self 11261:and 11151:Blum 10862:and 10666:Lobb 10621:Cake 10616:Bell 10366:Star 10273:Ulam 10172:Pell 9961:Cube 9388:list 9323:Chen 9103:Self 9031:Base 9001:Good 8935:pair 8905:Pell 8856:−1)· 8485:OEIS 8388:(PS) 8347:= (8 8127:for 8079:for 8053:for 8027:for 8005:for 8003:, 1) 7983:for 7975:and 7973:, 1) 7911:ISBN 7799:ISBN 7780:2022 7735:2022 7683:ISBN 7617:2021 7498:2016 7470:2016 7442:2016 7191:2020 7165:2018 7076:and 7056:OEIS 7047:+ 1) 7038:and 6924:and 6775:OEIS 6741:OEIS 6642:and 6621:−11 6496:−10 5221:OEIS 5201:for 5169:for 5035:and 5023:and 4997:and 4939:and 4928:any 4846:OEIS 4821:OEIS 4765:OEIS 4740:= −2 4723:OEIS 4576:OEIS 4545:OEIS 4533:OEIS 4513:= 10 4404:OEIS 4386:OEIS 4344:and 4319:OEIS 4294:OEIS 4241:WLOG 4229:and 4203:and 4168:unit 4153:ring 4137:unit 4110:and 4079:) = 4068:= 64 4049:) = 4038:= 32 3970:) = 3952:and 3945:are 3814:and 3790:The 3745:OEIS 3725:131 3714:113 3703:109 3692:103 3681:101 3478:OEIS 3465:1277 3417:OEIS 3375:and 3311:and 3114:and 3099:and 3091:are 3087:and 3079:and 3061:p | 3032:0 ≡ 2725:and 2639:and 2568:= 1. 2508:− 1) 2497:− 1) 2486:− 1) 2443:and 2431:OEIS 2339:UCLA 2322:⌊log 2257:2281 2248:2203 2239:1279 2122:for 2102:and 2031:and 1970:and 1941:and 1939:= 31 1763:and 1723:311 1720:307 1717:293 1714:283 1711:281 1708:277 1705:271 1702:269 1697:263 1694:257 1691:251 1688:241 1685:239 1682:233 1679:229 1676:227 1671:223 1668:211 1665:199 1662:197 1659:193 1656:191 1653:181 1650:179 1645:173 1642:167 1639:163 1636:157 1633:151 1630:149 1627:139 1624:137 1619:131 1616:127 1613:113 1610:109 1607:107 1604:103 1601:101 897:and 868:and 866:= 31 792:and 595:mod 577:OEIS 361:The 330:, a 271:OEIS 241:OEIS 224:The 149:, a 115:OEIS 11749:Ban 11137:or 10656:Lah 9859:281 9854:277 9849:271 9844:269 9839:263 9834:257 9829:251 9824:241 9819:239 9814:233 9809:229 9804:227 9799:223 9794:211 9789:199 9784:197 9779:193 9774:191 9769:181 9764:179 9759:173 9754:167 9749:163 9744:157 9739:151 9734:149 9729:139 9724:137 9719:131 9714:127 9709:113 9704:109 9699:107 9694:103 9689:101 9349:, 2 9333:, 2 9254:a·n 8812:)/( 8286:, − 7903:doi 7675:doi 7280:doi 7043:+ ( 6996:= ( 6956:= 0 6940:− ( 6698:+ 1 6662:+ 1 6618:12 6608:−7 6605:12 6592:−5 6589:12 6576:−1 6573:12 6557:12 6541:12 6525:12 6512:11 6509:12 6493:11 6483:−9 6480:11 6470:−8 6467:11 6457:−7 6454:11 6444:−6 6441:11 6428:−5 6425:11 6412:−4 6409:11 6396:−3 6393:11 6380:−2 6377:11 6364:−1 6361:11 6345:11 6329:11 6313:11 6297:11 6281:11 6265:11 6249:11 6233:11 6217:11 6204:10 6201:11 6188:−9 6185:10 6175:−7 6172:10 6159:−3 6156:10 6143:−1 6140:10 6124:10 6108:10 6092:10 6076:10 6063:−8 6047:−7 6031:−5 6015:−4 5999:−2 5983:−1 5877:−7 5861:−5 5845:−3 5832:−1 5755:−6 5739:−5 5723:−4 5707:−3 5691:−2 5675:−1 5563:−5 5547:−1 5499:−4 5483:−3 5467:−2 5451:−1 5371:−3 5358:−1 5313:−2 5297:−1 5248:−1 5214:− 1 5194:− 1 5181:or 4995:= 1 4802:− 1 4793:− 1 4772:= 2 4698:= 2 4687:− 1 4678:− 1 4654:− 1 4645:− 1 4618:− 1 4609:− 1 4438:− 1 4431:− 1 4164:− 1 4133:− 1 4126:− 1 4121:), 4108:≠ 2 4101:− 1 4087:− 1 4057:+ 1 4008:(2) 3977:(2) 3962:MF( 3932:= 2 3925:= 1 3909:MF( 3882:− 1 3821:In 3778:is 3747:). 3670:97 3659:83 3648:79 3637:73 3626:71 3615:67 3604:59 3593:53 3582:47 3571:43 3560:41 3549:37 3538:29 3527:23 3516:11 3480:). 3383:= 1 3373:= 0 3354:- 2 3344:= 3 3260:+ 1 3202:or 3184:+ 1 3178:be 3148:+ 1 3138:to 3134:is 3120:+ 1 3110:If 3075:If 3011:− 1 2923:If 2836:so 2834:− 1 2683:If 2666:so 2607:If 2600:= 2 2589:= 0 2582:= 0 2577:or 2575:= 2 2539:or 2537:− 1 2526:− 1 2519:− 1 2481:mod 2466:= 1 2461:or 2459:= 2 2452:− 1 2437:If 2433:). 2334:). 2230:607 2202:521 2157:log 2148:log 2118:− 1 2110:= ( 2100:= 4 2089:− 2 2037:107 2018:by 2002:127 1929:= 7 1919:= 3 1830:148 1811:127 1796:107 1769:257 1598:97 1593:89 1590:83 1587:79 1584:73 1581:71 1578:67 1575:61 1572:59 1567:53 1564:47 1561:43 1558:41 1555:37 1552:31 1549:29 1546:23 1541:19 1538:17 1535:13 1532:11 905:= 1 895:= 0 856:= 7 846:= 3 735:+ 1 613:+ 1 601:+ 1 589:+ 1 566:251 556:239 546:191 536:179 526:131 480:+ 1 391:log 300:is 273:). 257:127 145:In 96:127 59:no. 47:No. 12284:: 11938:in 9684:97 9679:89 9674:83 9669:79 9664:73 9659:71 9654:67 9649:61 9644:59 9639:53 9634:47 9629:43 9624:41 9619:37 9614:31 9609:29 9604:23 9599:19 9594:17 9589:13 9584:11 9281:, 9277:, 9256:, 9236:, 9220:, 9196:, 9172:, 9156:, 8586:. 8567:. 8400:. 8396:. 8376:+ 8372:= 8353:qy 8314:, 8308:, 8206:, 7909:. 7822:. 7771:. 7726:. 7681:. 7652:. 7608:. 7556:. 7532:. 7487:. 7459:. 7433:. 7406:. 7381:. 7351:18 7349:. 7345:. 7322:. 7276:10 7274:. 7270:. 7247:; 7181:. 7155:. 7123:− 7111:− 7095:ab 7093:−4 7020:, 7008:+ 7004:)( 7000:+ 6988:− 6976:− 6954:ab 6952:+ 6944:+ 6916:ab 6914:, 6910:+ 6710:. 6705:− 6684:− 6658:= 6560:1 6544:5 6528:7 6348:1 6332:2 6316:3 6300:4 6284:5 6268:6 6252:7 6236:8 6220:9 6127:1 6111:3 6095:7 6079:9 6060:9 6044:9 6028:9 6012:9 5996:9 5980:9 5970:1 5967:9 5954:2 5951:9 5941:4 5938:9 5925:5 5922:9 5909:7 5906:9 5893:8 5890:9 5874:8 5858:8 5842:8 5829:8 5819:1 5816:8 5803:3 5800:8 5787:5 5784:8 5771:7 5768:8 5752:7 5736:7 5720:7 5704:7 5688:7 5672:7 5659:1 5656:7 5643:2 5640:7 5627:3 5624:7 5611:4 5608:7 5595:5 5592:7 5579:6 5576:7 5560:6 5544:6 5531:1 5528:6 5515:5 5512:6 5496:5 5480:5 5464:5 5448:5 5435:1 5432:5 5419:2 5416:5 5403:3 5400:5 5387:4 5384:5 5368:4 5355:4 5345:1 5342:4 5329:3 5326:4 5310:3 5294:3 5281:1 5278:3 5265:2 5262:3 5245:2 5231:1 5228:2 5217:) 5197:, 5143:− 5131:− 5092:. 5086:, 5071:− 5059:− 5039:ab 5037:−4 5013:, 5002:+ 4991:+ 4969:− 4959:− 4924:, 4742:, 4700:, 4578:), 4547:). 4535:), 4374:: 4358:. 4321:). 4281:: 4265:. 4207:. 4089:. 4083:− 4053:− 3989:. 3966:, 3913:, 3869:A 3861:. 3810:, 3806:, 3787:. 3783:64 3404:: 3362:-2 3352:-1 3296:, 3230:, 3154:. 3053:≡ 3020:mλ 3007:| 2981:. 2945:: 2939:. 2905:+1 2903:kp 2825:, 2801:, 2781:, 2761:, 2739:, 2632:ab 2630:= 2551:= 2474:: 2468:. 2324:10 2304:10 2242:, 2129:. 2058:, 2028:89 2015:61 1989:31 1976:19 1967:17 1957:13 1931:, 1921:, 1880:67 1867:61 1849:17 1787:89 1781:, 1778:61 1760:67 1529:7 1526:5 1523:3 1520:2 1412:. 1359:. 1328:. 1272:11 1249:. 858:, 848:, 583:, 549:, 539:, 529:, 519:, 516:83 509:, 506:23 499:, 496:11 474:, 406:10 322:, 304:. 255:, 253:31 251:, 247:, 221:. 94:, 92:31 90:, 86:, 72:of 52:51 11921:e 11914:t 11907:v 11836:e 11829:t 11822:v 10021:a 9902:e 9895:t 9888:v 9579:7 9574:5 9569:3 9564:2 9363:) 9359:p 9355:p 9351:p 9347:p 9339:) 9335:p 9331:p 9318:) 9314:n 9310:n 9306:n 9290:) 9287:n 9283:p 9279:p 9275:n 9271:p 9262:) 9258:n 9250:p 9242:) 9238:p 9234:p 9226:) 9222:p 9218:p 9210:) 9206:p 9202:p 9198:p 9194:p 9186:) 9182:p 9178:p 9174:p 9170:p 9162:) 9158:p 9154:p 9141:k 8937:) 8933:( 8879:) 8876:⌋ 8873:A 8870:⌊ 8862:) 8858:b 8854:b 8852:( 8845:) 8836:) 8833:y 8829:x 8821:) 8818:y 8814:x 8810:y 8806:x 8798:) 8794:n 8786:) 8782:n 8774:) 8765:) 8762:y 8758:x 8750:) 8741:) 8737:n 8735:4 8728:) 8723:n 8721:p 8713:) 8708:n 8706:p 8698:) 8694:n 8686:) 8682:k 8666:) 8657:) 8648:) 8621:e 8614:t 8607:v 8592:. 8573:. 8521:b 8517:b 8502:n 8499:( 8495:n 8493:M 8415:. 8382:y 8380:· 8378:d 8374:x 8369:q 8365:M 8355:) 8349:x 8344:q 8340:M 8290:) 8288:b 8284:a 8282:( 8266:c 8262:/ 8258:) 8253:n 8249:b 8245:+ 8240:n 8236:a 8232:( 8210:) 8208:b 8204:a 8202:( 8186:c 8182:/ 8178:) 8173:n 8169:b 8160:n 8156:a 8152:( 8129:x 8123:x 8121:( 8107:x 8103:) 8101:x 8097:x 8095:( 8081:x 8077:) 8075:x 8071:x 8069:( 8055:x 8051:) 8049:x 8045:x 8043:( 8029:x 8023:x 8021:( 8007:x 8001:x 7999:( 7985:x 7979:x 7977:( 7971:x 7969:( 7957:. 7951:: 7937:) 7919:. 7905:: 7854:. 7832:. 7807:. 7782:. 7757:. 7737:. 7712:. 7691:. 7677:: 7658:. 7619:. 7594:. 7542:. 7500:. 7472:. 7444:. 7418:. 7391:. 7367:. 7288:. 7282:: 7234:. 7208:. 7193:. 7167:. 7125:b 7121:a 7117:/ 7113:b 7109:a 7100:n 7087:r 7082:r 7078:b 7074:a 7063:. 7051:x 7045:x 7041:x 7036:) 7034:x 7030:x 7028:( 7024:) 7022:b 7018:a 7016:( 7012:) 7010:b 7006:a 7002:b 6998:a 6990:b 6986:a 6982:/ 6978:b 6974:a 6958:. 6950:x 6948:) 6946:b 6942:a 6938:x 6926:b 6922:a 6918:) 6912:b 6908:a 6906:( 6903:n 6901:U 6777:) 6759:b 6755:b 6753:( 6749:b 6743:) 6725:b 6721:b 6719:( 6715:n 6707:b 6703:a 6696:b 6691:a 6686:b 6682:a 6677:n 6672:b 6668:b 6666:( 6660:b 6656:a 6648:n 6644:n 6638:b 5212:a 5207:b 5192:a 5187:b 5175:b 5162:n 5145:b 5141:a 5137:/ 5133:b 5129:a 5118:n 5110:b 5103:a 5090:) 5088:b 5084:a 5082:( 5073:b 5069:a 5065:/ 5061:b 5057:a 5048:n 5033:r 5029:r 5025:b 5021:a 5017:) 5015:b 5011:a 5009:( 5004:b 5000:a 4993:b 4989:a 4984:n 4980:n 4976:n 4971:b 4967:a 4961:b 4957:a 4951:a 4947:b 4943:a 4941:− 4935:a 4926:b 4922:a 4902:b 4896:a 4889:n 4885:b 4876:n 4872:a 4848:) 4830:b 4823:) 4800:b 4796:/ 4791:b 4781:b 4774:) 4770:n 4749:n 4744:0 4738:b 4732:b 4725:) 4707:n 4702:0 4696:b 4685:b 4681:/ 4676:b 4666:n 4652:b 4648:/ 4643:b 4633:n 4627:b 4616:b 4612:/ 4607:b 4597:n 4587:b 4561:n 4554:b 4518:n 4511:b 4505:b 4484:1 4478:b 4473:1 4465:n 4461:b 4443:n 4436:b 4429:b 4406:) 4388:) 4371:n 4364:ω 4351:ω 4347:b 4341:ω 4337:b 4296:) 4278:n 4271:i 4253:i 4246:n 4236:i 4232:b 4226:i 4222:b 4187:n 4173:b 4162:b 4141:b 4131:b 4124:b 4113:n 4106:b 4099:b 4085:x 4081:x 4077:x 4075:( 4073:f 4066:n 4055:x 4051:x 4047:x 4045:( 4043:f 4036:n 4019:) 4017:x 4015:( 4013:f 4006:f 3982:Φ 3974:p 3972:Φ 3968:r 3964:p 3956:. 3941:r 3930:p 3923:r 3917:) 3915:r 3911:p 3903:r 3897:p 3885:/ 3879:2 3843:2 3781:M 3770:n 3768:M 3762:n 3508:p 3506:M 3497:p 3495:M 3488:p 3462:M 3458:q 3453:q 3419:) 3402:p 3385:. 3381:1 3378:m 3371:0 3368:m 3360:n 3356:m 3350:n 3346:m 3341:n 3337:m 3330:n 3327:U 3318:. 3314:k 3307:m 3302:k 3298:n 3294:m 3289:n 3269:. 3266:p 3264:M 3258:p 3256:2 3252:q 3244:q 3240:q 3232:q 3224:p 3220:q 3216:) 3214:q 3208:) 3206:q 3200:) 3198:q 3192:) 3190:q 3182:p 3180:2 3176:q 3168:. 3146:p 3144:2 3132:p 3124:p 3118:p 3116:2 3112:p 3089:n 3085:m 3081:n 3077:m 3063:λ 3055:λ 3040:/ 3026:p 3016:p 3009:p 3005:m 3000:) 2998:p 2990:p 2972:. 2961:q 2955:2 2951:) 2949:q 2929:q 2925:p 2918:. 2916:k 2911:p 2909:M 2901:2 2895:p 2887:p 2879:p 2870:. 2868:) 2866:p 2862:q 2857:q 2849:q 2845:) 2843:p 2839:q 2832:q 2827:p 2819:q 2815:x 2811:p 2803:q 2799:x 2791:q 2787:x 2783:p 2775:q 2771:p 2763:q 2758:c 2749:q 2741:q 2729:. 2699:p 2697:2 2689:q 2685:p 2676:p 2663:) 2659:( 2642:b 2637:a 2628:p 2623:p 2613:p 2602:. 2598:a 2587:a 2580:a 2573:a 2566:p 2559:a 2553:a 2549:a 2542:a 2535:a 2531:a 2524:a 2517:a 2513:a 2506:a 2502:a 2495:a 2491:a 2484:a 2477:a 2464:p 2457:a 2450:a 2445:p 2440:a 2329:n 2327:M 2314:⌋ 2312:x 2310:⌊ 2300:n 2298:⌊ 2292:n 2290:M 2281:M 2272:M 2263:M 2254:M 2245:M 2236:M 2227:M 2199:M 2172:) 2169:) 2166:y 2163:( 2154:( 2125:k 2116:k 2112:S 2107:k 2105:S 2098:0 2095:S 2087:p 2083:S 2076:p 2074:M 2063:p 2061:M 2054:p 2034:M 2025:M 2012:M 1999:M 1986:M 1973:M 1964:M 1954:M 1947:7 1944:M 1937:5 1934:M 1927:3 1924:M 1917:2 1914:M 1877:M 1864:M 1845:/ 1841:) 1838:1 1835:+ 1826:2 1822:( 1808:M 1793:M 1784:M 1775:M 1766:M 1757:M 1497:2 1493:/ 1489:) 1486:1 1483:+ 1480:M 1477:( 1474:M 1471:= 1468:P 1448:) 1445:1 1437:n 1433:2 1429:= 1426:M 1423:( 1380:p 1376:M 1306:p 1304:M 1299:p 1297:M 1293:p 1289:p 1284:p 1282:M 1276:. 1269:M 1261:p 1256:p 1254:M 1245:4 1242:M 1223:. 1219:) 1213:b 1210:) 1207:1 1201:a 1198:( 1194:2 1190:+ 1184:+ 1179:b 1176:3 1172:2 1168:+ 1163:b 1160:2 1156:2 1152:+ 1147:b 1143:2 1139:+ 1136:1 1132:( 1125:) 1122:1 1114:b 1110:2 1106:( 1103:= 1092:) 1086:a 1083:) 1080:1 1074:b 1071:( 1067:2 1063:+ 1057:+ 1052:a 1049:3 1045:2 1041:+ 1036:a 1033:2 1029:2 1025:+ 1020:a 1016:2 1012:+ 1009:1 1005:( 998:) 995:1 987:a 983:2 979:( 976:= 969:1 961:b 958:a 954:2 938:p 932:p 930:M 918:2 915:M 903:1 900:M 893:0 890:M 884:2 881:M 874:7 871:M 864:5 861:M 854:3 851:M 844:2 841:M 824:p 820:M 816:= 813:1 805:p 801:2 780:1 772:p 768:2 764:= 761:) 758:2 755:( 750:p 733:p 731:2 727:p 709:1 706:= 703:) 700:2 697:( 692:1 677:p 673:p 659:p 656:= 651:2 647:1 641:) 638:1 635:+ 632:p 629:2 626:( 611:p 609:2 599:p 597:2 587:p 585:2 581:p 563:M 553:M 543:M 533:M 523:M 513:M 503:M 493:M 486:p 484:M 478:p 476:2 472:p 438:p 434:M 423:p 409:) 403:( 395:2 378:e 346:: 298:n 293:n 281:n 279:M 249:7 245:3 230:n 218:p 210:p 208:M 194:n 180:n 169:n 167:M 134:p 130:p 88:7 84:3 20:)

Index

Mersenne number
Marin Mersenne
Subsequence
3
7
31
127
OEIS
A000668
mathematics
prime number
power of two
of the form
integer
Marin Mersenne
Minim friar
composite number
exponents
A000043
OEIS
3
7
31
127
2147483647
A000668
OEIS
connection to perfect numbers
Euclid–Euler theorem
largest known prime number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.