Knowledge

Soap bubble

Source 📝

419: 651: 443: 469: 343: 707:
elastic properties, and comparative sizing, as well as the more esoteric properties of bubbles listed on this page. Bubbles are useful in teaching concepts starting from 2 years old and into college years. A Swiss university professor, Dr. Natalie Hartzell, has theorized that the usage of artificial bubbles for entertainment purposes of young children has shown a positive effect in the region of the child's brain that controls motor skills and is responsible for coordination with children exposed to bubbles at a young age showing measurably better motion skills than those who were not.
205: 501: 355: 31: 431: 1764: 550: 197: 39: 635: 598: 47: 210: 209: 206: 626:
air cools, and a reduction in volume occurs, there will be a partial collapse of the bubble. A bubble, created successfully at this low temperature, will always be rather small; it will freeze quickly and will shatter if increased further. Freezing of small soap bubbles happens within 2 seconds after setting on snow (at air temperature around –10...–14 °C).
211: 208: 377:
The density of a gas can also be affected by its temperature. As the temperature of a gas increases, the molecules of the gas move faster. This causes them to spread out and become less dense. The opposite is also true. As the temperature of a gas decreases, the molecules of the gas move slower. This
370:
The gas inside a bubble is less dense than air because it is mostly water vapor. Water vapor is a gas that is formed when water molecules evaporate. When water molecules evaporate, they escape from the liquid state and enter the gas state. In the gas state, water molecules are further apart than they
625:
out, causing the bubble to crumble under its own weight. At temperatures below about −25 °C (−13 °F), bubbles will freeze in the air and may shatter when hitting the ground. When a bubble is blown with warm air, the bubble will freeze to an almost perfect sphere at first, but when the warm
545:
Byron, Melody & Enoch Swetland invented a patented non-toxic bubble (Tekno Bubbles) that glow under UV lighting. These bubbles look like ordinary high quality "clear" bubbles under normal lighting, but glow when exposed to true UV light. The brighter the UV lighting, the brighter they glow. The
666:
with artistic achievement. They require a high degree of skill. Some performers use common commercially available bubble liquids while others compose their own solutions. Some artists create giant bubbles or tubes, often enveloping objects or even humans. Others manage to create bubbles forming
231:
At a point where three or more bubbles meet, they sort themselves out so that only three bubble walls meet along a line. Since the surface tension is the same in each of the three surfaces, the three angles between them must be equal to 120°. Only four bubble walls can meet at a point, with the
219:
When two bubbles merge, they adopt a shape which makes the sum of their surface areas as small as possible, compatible with the volume of air each bubble encloses. If the bubbles are of equal size, their common wall is flat. If they are not the same size, their common wall bulges into the larger
706:
Bubbles can be effectively used to teach and explore a wide variety of concepts to even young children. Flexibility, colour formation, reflective or mirrored surfaces, concave and convex surfaces, transparency, a variety of shapes (circle, square, triangle, sphere, cube, tetrahedron, hexagon),
399:
created a famous advertising campaign for its soaps in 1886 using a painting by John Everett Millais of a child playing with bubbles. The Chicago company Chemtoy began selling bubble solution in the 1940s, and bubble solution has been popular with children ever since. According to one industry
174:
The structures that soap films make can not just be enclosed as spheres, but virtually any shape, for example in wire frames. Therefore, many different minimal surfaces can be designed. It is actually sometimes easier to physically make them than to compute them by
381:
The temperature of the gas inside a bubble is affected by the temperature of the water around it. The warmer the water, the warmer the gas inside the bubble. This means that the gas inside a bubble will be less dense if the water is warm than if the water is cold.
207: 1958: 561:
to bubble mixtures fails to produce coloured bubbles, because the dye attaches to the water molecules as opposed to the surfactant. Therefore, a colourless bubble forms with the dye falling to a point at the base. Dye
85:
surface. Soap bubbles usually last for only a few seconds before bursting, either on their own or on contact with another object. They are often used for children's enjoyment, but they are also used in artistic
140:), it was not until 2000 that it was proven that two merged soap bubbles provide the optimum way of enclosing two given volumes of air of different size with the least surface area. This has been dubbed the 260:
Drainage within the soap film: water falls down due to gravity. This can be slowed by increasing the water viscosity, for instance by adding glycerol. Still, there is an ultimate height limit, which is the
524:
which, together with the bubble's spherical shape and fragility, contributes to its magical effect on children and adults alike. Each colour is the result of varying thicknesses of soap bubble film.
374:
The further apart water molecules are, the less dense they are. This is why water vapor is less dense than air. The gas inside a bubble is mostly water vapor, so it is also less dense than air.
395:
Soap bubbles have been used as entertainment for at least 400 years, as evidenced by 17th-century Flemish paintings showing children blowing bubbles with clay pipes. The London-based firm
97:
When light shines onto a bubble it appears to change colour. Unlike those seen in a rainbow, which arise from differential refraction, the colours seen in a soap bubble arise from light
274:
Dirt and fat: When the bubble touches an object, it usually ruptures the soap film. This can be prevented by wetting these surfaces with water (preferably containing some soap).
371:
are in the liquid state. This is because water molecules are attracted to each other. When they evaporate, they break away from these attractions and move further apart.
101:, reflecting off the front and back surfaces of the thin soap film. Depending on the thickness of the film, different colours interfere constructively and destructively. 1251:
Stein, David (2005) "How to Make Monstrous, Huge, Unbelievably Big Bubbles"; (Klutz) Formerly "The Unbelievable Bubble Book" (1987) it started the giant bubble sport.
156:
used soap bubble films to determine the geometry of a sheet of least surface area that spreads between several points, and translated this geometry into revolutionary
577:
is an example. Another man named Tim Kehoe invented a coloured bubble which loses its colour when exposed to pressure or oxygen, which he is now marketing online as
667:
cubes, tetrahedra and other shapes and forms. Bubbles are sometimes handled with bare hands. To add to the visual experience, they are sometimes filled with
1127: 1315: 442: 468: 919: 1057: 342: 418: 815: 2023: 1653: 248:
The longevity of a soap bubble is limited by the ease of rupture of the very thin layer of water which constitutes its surface, namely a
1147: 136:
While it has been known since 1884 that a spherical soap bubble is the least-area way of enclosing a given volume of air (a theorem of
430: 1308: 1099: 1256: 336:. On a liquid surface, the contact angle of the soap bubble depends on its size - smaller bubbles have lower contact angles. 354: 1939: 1301: 1248:
Noddy, Tom (1982) "Tom Noddy's Bubble Magic" Pioneer bubble performer's explanations created the modern performance art.
1242: 1224: 1210: 920:
New Scientist: What’s the best recipe for bubble mixture? Scientists have the answer 22 September 2022 By Chris Simms
265:, very high for soap bubbles: around 13 feet (4 meters). In principle, there is no limit in the length it can reach. 1977: 1646: 1124: 1525: 1473: 17: 1227:. Classic Victorian exposition, based on a series of lectures originally delivered "before a juvenile audience". 1164:
Taylor, J. E. (1976). "The Structure of Singularities in Soap-Bubble-Like and Soap-Film-Like Minimal Surfaces".
474: 129:. A soap bubble is a closed soap film: due to the difference in outside and inside pressure, it is a surface of 1381: 1582: 989:
Arscott, Steve (2013). "Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces".
589:. The reason is that the water molecules are spread evenly around the bubble in the low-gravity environment. 1919: 1466: 1397: 1154:
google+, Regensburg, Germany, 23 January 2017, retrieved 25 January 2017. – Photos, description in German.
542:
map of the bubbles' surface. However, it has become a challenge to produce artificially coloured bubbles.
1639: 1520: 1405: 1053: 751: 149:
Because of these qualities, soap bubble films have been used in practical problem solving applications.
2018: 1078: 225: 232:
lines where triplets of bubble walls meet separated by cos(−1/3) ≈ 109.47°. All these rules, known as
2013: 1743: 650: 534: 812: 169: 142: 1753: 271:: This can be slowed by blowing bubbles in a wet atmosphere, or by adding some sugar to the water. 2008: 479: 1134:
hopecarter.photoshelter.com, Michigan, USA, 2014, retrieved 25 January 2017. – Photo catalogue.
746: 695: 574: 176: 1557: 1478: 736: 121:
possible containing a given volume. A true minimal surface is more properly illustrated by a
1144: 1042: 1008: 947: 867: 517: 1103: 8: 1987: 1947: 1731: 1442: 1283: 1083: 329: 150: 1012: 951: 932: 871: 183:
which can outperform conventional computers, depending on the complexity of the system.
1925: 1825: 1662: 1181: 1024: 998: 971: 401: 292: 1959:
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
328:
of the solid., A soap bubble has a larger contact angle on a solid surface displaying
1952: 1852: 1847: 1788: 1778: 1716: 1498: 1252: 1238: 1220: 1206: 1041:
M.A.C. Teixeira, S. Arscott, S.J. Cox and P.I.C. Teixeira, Langmuir 31, 13708 (2015).
1028: 975: 963: 691: 573:
dye that sticks to the surfactants, enabling brightly coloured bubbles to be formed.
500: 233: 157: 98: 1803: 1604: 1599: 1575: 1561: 1457: 1453: 1409: 1388: 1173: 1016: 955: 902: 875: 840: 793: 783: 529: 448: 305: 262: 30: 788: 771: 1726: 1609: 1586: 1547: 1434: 1151: 1131: 819: 770:
Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio (July 17, 2000).
639: 180: 114: 1914: 1909: 1842: 1462: 1230: 959: 731: 582: 325: 126: 508:
A bubble is made of transparent water enclosing transparent air. However, the
2002: 1904: 1899: 1551: 1293: 663: 321: 137: 1763: 1815: 1738: 1721: 1401: 1100:"Interview with Byron and Melody Swetland - The Inventors of Tekno Bubbles" 967: 586: 549: 539: 396: 118: 1933: 1891: 1810: 1701: 1590: 1438: 721: 680: 659: 606: 521: 268: 87: 679:
lights or fire. Soap bubbles can be filled with a flammable gas such as
1880: 1875: 1793: 1696: 1509: 1392: 1370: 1274:
Gallery of Macro Photographs of bubbles to create photographic art work
1185: 798: 716: 618: 614: 566: 513: 249: 196: 160:. A famous example is his West German Pavilion at Expo 67 in Montreal. 125:, which has equal pressure on both sides, becoming a surface with zero 82: 38: 1020: 906: 879: 844: 634: 1982: 1885: 1631: 1595: 1578: 1516: 1447: 1426: 741: 687: 643: 622: 525: 509: 253: 153: 122: 74: 66: 1177: 597: 581:, which are non-toxic and non-staining. In 2010, Japanese astronaut 1711: 1676: 1613: 1570: 1565: 1504: 1273: 504:
A single light soap bubble photograph taken under macro photography
412:
is used as a popular alternative to a ready made bubble solution.
405: 298: 286: 221: 1003: 316:
When a soap bubble is in contact with a solid or a liquid surface
1837: 1832: 1820: 1798: 1783: 1691: 1377: 933:"Contact angle of a hemispherical bubble: An analytical approach" 610: 578: 570: 563: 333: 317: 278:
After experiments, researchers found that a solution containing:
46: 858:
Isenberg, Cyril (1976). "The Soap Film: An Analogue Computer".
831:
Isenberg, Cyril (2012). "The Soap Film: An Analogue Computer".
672: 585:
demonstrated that it is possible to create coloured bubbles in
215:
Slow motion video of soap bubbles being formed by a bubble wand
78: 1278: 546:
family sold them worldwide, but has since sold their company.
400:
estimate, retailers sell around 200 million bottles annually.
1870: 1268: 676: 668: 409: 1203:
The Mathematics of Soap Films – Explorations with Maple
1748: 1686: 1681: 1540: 726: 237: 163: 110: 91: 70: 51: 558: 1288: 769: 601:
Frozen soap bubble on snow at −7 °C (19 °F)
436:
A woman creating bubbles with a long soap bubble wand
378:
causes them to bunch together and become more dense.
304:
gave the longest lasting results as it minimised the
220:
bubble, since the smaller one has a higher internal
605:If soap bubbles are blown into air that is below a 179:. This is why the soap films can be considered as 109:Soap bubbles are physical examples of the complex 348:A soap bubble wetting an ultrahydrophobic surface 2000: 930: 813:Jonathan Glancey, The Guardian November 28, 2012 1323: 404:with water and additional ingredients such as 1647: 1309: 893:Taylor, Jean E. (1977). "Soap Film Letters". 553:A single soap bubble displaying three layers 77:and water enclosing air that forms a hollow 1289:Performances with bubbles and giant bubbles 1235:The Science of Soap Films and Soap Bubbles 1217:Soap-Bubbles and the Forces that Mould Them 1205:. American Mathematical Society (1st ed.). 1097: 931:Teixeira, M.A.C.; Teixeira, P.I.C. (2009). 1654: 1640: 1535:Giant bubbles, coloured bubbles, freezing 1316: 1302: 1279:Videos of Bubble and Droplet Interactions 1002: 797: 787: 638:Professional 'bubbleologist' at the 2009 224:than the larger one, as predicted by the 940:Journal of Colloid and Interface Science 857: 830: 649: 633: 596: 548: 499: 203: 195: 164:Soap bubbles as unconventional computing 45: 37: 29: 988: 772:"Proof of the double bubble conjecture" 528:(who featured in the second episode of 14: 2001: 1661: 1284:A more detailed scientific explanation 1163: 892: 360:A soap bubble wetting a liquid surface 117:. They will assume the shape of least 27:Thin film of soapy water enclosing air 1635: 1297: 1102:. Inventors.about.com. Archived from 320:is observed. On a solid surface, the 90:. Assembling many bubbles results in 2024:Physical activity and dexterity toys 686:Professional bubble artists include 424:Blowing bubbles through a small wand 332:than on a hydrophilic surface – see 1940:The Chemical Basis of Morphogenesis 538:) gave the analogy of looking at a 24: 1195: 495: 61:(commonly referred to as simply a 25: 2035: 1350:Experiments and characterization 1269:International Awarded Bubble Show 1262: 776:Electronic Research Announcements 654:Soap bubbles in downtown Budapest 256:. It is thus sensitive to : 1762: 621:. The air inside will gradually 512:is as thin as the visible light 467: 441: 429: 417: 353: 341: 1157: 1137: 1117: 1091: 1071: 1060:from the original on 2016-02-12 1046: 617:), they will freeze when they 1035: 982: 924: 913: 886: 851: 824: 806: 763: 390: 104: 13: 1: 1145:Freezing soap bubbles on snow 789:10.1090/S1079-6762-00-00079-2 757: 484: 456: 385: 365: 324:of the bubble depends on the 200:Soap bubbles can easily merge 701: 475:Jean-Baptiste-Siméon Chardin 243: 7: 710: 592: 10: 2040: 1324:Foam scales and properties 1098:Mary Bellis (1999-10-05). 1079:"Blow the Biggest Bubbles" 960:10.1016/j.jcis.2009.05.062 311: 191: 186: 167: 1970: 1920:D'Arcy Wentworth Thompson 1863: 1771: 1760: 1669: 1329: 1166:The Annals of Mathematics 818:January 8, 2017, at the 453:Two Boys Blowing Bubbles 170:Unconventional computing 143:double bubble conjecture 991:Applied Physics Letters 901:(January–February): 1. 752:Weaire–Phelan structure 240:is built from bubbles. 158:tensile roof structures 65:) is an extremely thin 1123:Hope Thurston Carter: 1054:"O despertar da bolha" 747:The Amazing Bubble Man 696:The Amazing Bubble Man 655: 647: 629: 602: 575:Crystal violet lactone 554: 505: 226:Young–Laplace equation 216: 201: 177:mathematical modelling 54: 43: 35: 1754:Widmanstätten pattern 1479:double bubble theorem 1353:Transport properties 737:Stretched grid method 653: 637: 600: 552: 503: 214: 199: 49: 41: 33: 1530:double bubble theory 1201:Oprea, John (2000). 518:optical interference 42:Girl blowing bubbles 1988:Mathematics and art 1978:Pattern recognition 1948:Aristid Lindenmayer 1443:disjoining pressure 1215:Boys, C. V. (1890) 1084:Scientific American 1013:2013ApPhL.102y4103A 952:2009JCIS..338..193T 872:1976AmSci..64..514I 330:ultrahydrophobicity 151:Structural engineer 1926:On Growth and Form 1826:Logarithmic spiral 1663:Patterns in nature 1219:; (Dover reprint) 1150:2017-02-02 at the 1130:2016-02-15 at the 1125:Frozen Frosted Fun 895:American Scientist 860:American Scientist 833:American Scientist 683:and then ignited. 675:and combined with 656: 648: 603: 555: 506: 402:Dishwashing liquid 293:dishwashing liquid 236:, determine how a 217: 202: 55: 50:Many bubbles make 44: 36: 2019:Bubbles (physics) 1996: 1995: 1953:Benoît Mandelbrot 1853:Self-organization 1789:Natural selection 1779:Pattern formation 1629: 1628: 1624: 1623: 1467:Thin film balance 1257:978-1-57054-257-2 1021:10.1063/1.4812710 907:10.1511/2012.96.1 880:10.1511/2012.96.1 845:10.1511/2012.96.1 397:A. & F. Pears 282:85.9 % water 212: 99:wave interference 16:(Redirected from 2031: 2014:Minimal surfaces 1804:Sexual selection 1766: 1656: 1649: 1642: 1633: 1632: 1605:light scattering 1600:light scattering 1589:, bubble model, 1576:light scattering 1458:surface rheology 1410:surface rheology 1389:Surface rheology 1332: 1331: 1318: 1311: 1304: 1295: 1294: 1190: 1189: 1161: 1155: 1143:pilleuspulcher: 1141: 1135: 1121: 1115: 1114: 1112: 1111: 1095: 1089: 1088: 1075: 1069: 1068: 1066: 1065: 1050: 1044: 1039: 1033: 1032: 1006: 986: 980: 979: 937: 928: 922: 917: 911: 910: 890: 884: 883: 855: 849: 848: 828: 822: 810: 804: 803: 801: 791: 767: 569:has developed a 557:Adding coloured 530:Marcus du Sautoy 489: 486: 471: 461: 458: 449:Adriaen Hanneman 445: 433: 421: 357: 345: 306:Marangoni Effect 263:capillary length 213: 181:analog computers 133:mean curvature. 21: 2039: 2038: 2034: 2033: 2032: 2030: 2029: 2028: 1999: 1998: 1997: 1992: 1966: 1859: 1767: 1758: 1665: 1660: 1630: 1625: 1587:Surface Evolver 1548:Liquid fraction 1435:Surface tension 1398:Langmuir trough 1325: 1322: 1265: 1231:Isenberg, Cyril 1198: 1196:Further reading 1193: 1178:10.2307/1970949 1162: 1158: 1152:Wayback Machine 1142: 1138: 1132:Wayback Machine 1122: 1118: 1109: 1107: 1096: 1092: 1077: 1076: 1072: 1063: 1061: 1052: 1051: 1047: 1040: 1036: 987: 983: 935: 929: 925: 918: 914: 891: 887: 856: 852: 829: 825: 820:Wayback Machine 811: 807: 768: 764: 760: 713: 704: 640:Strawberry Fair 632: 619:touch a surface 595: 520:. This creates 516:, resulting in 498: 496:Colored bubbles 491: 487: 472: 463: 459: 446: 437: 434: 425: 422: 393: 388: 368: 361: 358: 349: 346: 314: 246: 204: 194: 189: 172: 166: 115:minimal surface 107: 28: 23: 22: 18:Membrane bubble 15: 12: 11: 5: 2037: 2027: 2026: 2021: 2016: 2011: 2009:Fluid dynamics 1994: 1993: 1991: 1990: 1985: 1980: 1974: 1972: 1968: 1967: 1965: 1964: 1963: 1962: 1950: 1945: 1944: 1943: 1931: 1930: 1929: 1917: 1915:Wilson Bentley 1912: 1910:Joseph Plateau 1907: 1902: 1897: 1896: 1895: 1883: 1878: 1873: 1867: 1865: 1861: 1860: 1858: 1857: 1856: 1855: 1850: 1848:Plateau's laws 1845: 1843:Fluid dynamics 1840: 1830: 1829: 1828: 1823: 1818: 1808: 1807: 1806: 1801: 1796: 1791: 1781: 1775: 1773: 1769: 1768: 1761: 1759: 1757: 1756: 1751: 1746: 1741: 1736: 1735: 1734: 1729: 1724: 1719: 1709: 1704: 1699: 1694: 1689: 1684: 1679: 1673: 1671: 1667: 1666: 1659: 1658: 1651: 1644: 1636: 1627: 1626: 1622: 1621: 1619: 1616: 1607: 1602: 1593: 1573: 1568: 1560:, avalanches, 1555: 1545: 1543: 1537: 1536: 1533: 1531: 1528: 1523: 1514: 1512: 1507: 1501: 1499:Plateau's laws 1495: 1493: 1487: 1486: 1483: 1481: 1476: 1471: 1469: 1463:Interferometry 1460: 1451: 1445: 1432: 1429: 1423: 1422: 1420: 1418: 1416: 1414: 1412: 1395: 1386: 1384: 1375: 1373: 1367: 1366: 1363: 1360: 1357: 1354: 1351: 1348: 1345: 1342: 1339: 1336: 1330: 1327: 1326: 1321: 1320: 1313: 1306: 1298: 1292: 1291: 1286: 1281: 1276: 1271: 1264: 1263:External links 1261: 1260: 1259: 1249: 1246: 1228: 1213: 1197: 1194: 1192: 1191: 1172:(3): 489–539. 1156: 1136: 1116: 1090: 1070: 1045: 1034: 997:(25): 254103. 981: 946:(1): 193–200. 923: 912: 885: 866:(3): 514–518. 850: 823: 805: 761: 759: 756: 755: 754: 749: 744: 739: 734: 732:Joseph Plateau 729: 724: 719: 712: 709: 703: 700: 631: 628: 594: 591: 583:Naoko Yamazaki 567:Dr. Ram Sabnis 497: 494: 493: 492: 473: 466: 464: 447: 440: 438: 435: 428: 426: 423: 416: 392: 389: 387: 384: 367: 364: 363: 362: 359: 352: 350: 347: 340: 326:surface energy 313: 310: 302: 301: 295: 289: 283: 276: 275: 272: 266: 245: 242: 234:Plateau's laws 193: 190: 188: 185: 165: 162: 127:mean curvature 106: 103: 26: 9: 6: 4: 3: 2: 2036: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2006: 2004: 1989: 1986: 1984: 1981: 1979: 1976: 1975: 1973: 1969: 1961: 1960: 1956: 1955: 1954: 1951: 1949: 1946: 1942: 1941: 1937: 1936: 1935: 1932: 1928: 1927: 1923: 1922: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1905:Ernst Haeckel 1903: 1901: 1900:Adolf Zeising 1898: 1894: 1893: 1889: 1888: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1868: 1866: 1862: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1835: 1834: 1831: 1827: 1824: 1822: 1819: 1817: 1814: 1813: 1812: 1809: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1786: 1785: 1782: 1780: 1777: 1776: 1774: 1770: 1765: 1755: 1752: 1750: 1747: 1745: 1744:Vortex street 1742: 1740: 1737: 1733: 1730: 1728: 1725: 1723: 1722:Quasicrystals 1720: 1718: 1715: 1714: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1674: 1672: 1668: 1664: 1657: 1652: 1650: 1645: 1643: 1638: 1637: 1634: 1620: 1617: 1615: 1611: 1608: 1606: 1603: 1601: 1597: 1594: 1592: 1588: 1584: 1583:conductimetry 1580: 1577: 1574: 1572: 1569: 1567: 1563: 1559: 1556: 1553: 1549: 1546: 1544: 1542: 1539: 1538: 1534: 1532: 1529: 1527: 1526:Interferences 1524: 1522: 1518: 1515: 1513: 1511: 1508: 1506: 1502: 1500: 1496: 1494: 1492: 1489: 1488: 1484: 1482: 1480: 1477: 1475: 1474:Interferences 1472: 1470: 1468: 1464: 1461: 1459: 1455: 1452: 1449: 1446: 1444: 1440: 1436: 1433: 1431:Frankel's law 1430: 1428: 1425: 1424: 1421: 1419: 1417: 1415: 1413: 1411: 1407: 1403: 1399: 1396: 1394: 1390: 1387: 1385: 1383: 1379: 1376: 1374: 1372: 1369: 1368: 1364: 1362:Applications 1361: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1333: 1328: 1319: 1314: 1312: 1307: 1305: 1300: 1299: 1296: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1266: 1258: 1254: 1250: 1247: 1244: 1243:0-486-26960-4 1240: 1236: 1232: 1229: 1226: 1225:0-486-20542-8 1222: 1218: 1214: 1212: 1211:0-8218-2118-0 1208: 1204: 1200: 1199: 1187: 1183: 1179: 1175: 1171: 1167: 1160: 1153: 1149: 1146: 1140: 1133: 1129: 1126: 1120: 1106:on 2013-07-04 1105: 1101: 1094: 1086: 1085: 1080: 1074: 1059: 1055: 1049: 1043: 1038: 1030: 1026: 1022: 1018: 1014: 1010: 1005: 1000: 996: 992: 985: 977: 973: 969: 965: 961: 957: 953: 949: 945: 941: 934: 927: 921: 916: 908: 904: 900: 896: 889: 881: 877: 873: 869: 865: 861: 854: 846: 842: 838: 834: 827: 821: 817: 814: 809: 800: 795: 790: 785: 781: 777: 773: 766: 762: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 714: 708: 699: 697: 693: 689: 684: 682: 678: 674: 670: 665: 664:entertainment 661: 652: 645: 641: 636: 627: 624: 620: 616: 612: 608: 599: 590: 588: 584: 580: 576: 572: 568: 565: 560: 551: 547: 543: 541: 537: 536: 531: 527: 523: 519: 515: 511: 502: 482: 481: 476: 470: 465: 454: 450: 444: 439: 432: 427: 420: 415: 414: 413: 411: 407: 403: 398: 383: 379: 375: 372: 356: 351: 344: 339: 338: 337: 335: 331: 327: 323: 322:contact angle 319: 309: 307: 300: 296: 294: 290: 288: 284: 281: 280: 279: 273: 270: 267: 264: 259: 258: 257: 255: 251: 241: 239: 235: 229: 227: 223: 198: 184: 182: 178: 171: 161: 159: 155: 152: 147: 145: 144: 139: 138:H. A. Schwarz 134: 132: 128: 124: 120: 116: 112: 102: 100: 95: 93: 89: 84: 80: 76: 72: 68: 64: 60: 53: 48: 40: 34:A soap bubble 32: 19: 1957: 1938: 1924: 1890: 1816:Chaos theory 1739:Tessellation 1706: 1591:Potts' model 1490: 1485:Giant films 1402:ellipsometry 1234: 1216: 1202: 1169: 1165: 1159: 1139: 1119: 1108:. Retrieved 1104:the original 1093: 1082: 1073: 1062:. Retrieved 1048: 1037: 994: 990: 984: 943: 939: 926: 915: 898: 894: 888: 863: 859: 853: 836: 832: 826: 808: 782:(6): 45–49. 779: 775: 765: 705: 685: 671:, vapour or 660:performances 658:Soap bubble 657: 609:of −15  604: 587:microgravity 556: 544: 533: 507: 480:Soap Bubbles 478: 452: 394: 380: 376: 373: 369: 315: 303: 277: 247: 230: 218: 173: 148: 141: 135: 130: 119:surface area 111:mathematical 108: 96: 88:performances 62: 58: 56: 1934:Alan Turing 1892:Liber Abaci 1811:Mathematics 1717:in crystals 1707:Soap bubble 1702:Phyllotaxis 1558:Coalescence 1371:Surfactants 1356:Irisations 1338:Generation 799:10481/32449 722:Bubble pipe 681:natural gas 607:temperature 522:iridescence 488: 1734 460: 1630 391:Use in play 297:0.1 % 269:Evaporation 113:problem of 105:Mathematics 59:soap bubble 2003:Categories 1881:Empedocles 1876:Pythagoras 1794:Camouflage 1732:in biology 1727:in flowers 1697:Parastichy 1562:coarsening 1552:metastable 1510:T1 process 1450:, bursting 1393:adsorption 1344:Stability 1341:Structure 1237:; (Dover) 1110:2013-10-04 1064:2016-02-09 758:References 717:Antibubble 514:wavelength 386:Recreation 366:Floatation 285:10 % 250:micrometer 168:See also: 83:iridescent 1983:Emergence 1886:Fibonacci 1618:Aquafoams 1596:acoustics 1579:acoustics 1517:acoustics 1454:Marangoni 1448:dewetting 1029:118645574 1004:1303.6414 976:205804300 742:Tom Noddy 702:Education 688:Tom Noddy 644:Cambridge 526:Tom Noddy 510:soap film 291:4 % 254:soap film 244:Stability 154:Frei Otto 123:soap film 75:detergent 1712:Symmetry 1670:Patterns 1614:topology 1571:rheology 1566:drainage 1521:electric 1505:drainage 1378:Micelles 1347:Dynamic 1148:Archived 1128:Archived 1058:Archived 968:19541324 839:(3): 1. 816:Archived 711:See also 692:Fan Yang 662:combine 613:(5  593:Freezing 535:The Code 406:glycerin 299:guar gum 287:glycerol 222:pressure 131:constant 81:with an 1971:Related 1838:Crystal 1833:Physics 1821:Fractal 1799:Mimicry 1784:Biology 1692:Meander 1610:Packing 1564:, foam 1497:shape, 1491:Bubbles 1233:(1992) 1186:1970949 1009:Bibcode 948:Bibcode 868:Bibcode 623:diffuse 579:Zubbles 571:lactone 564:chemist 540:contour 334:Wetting 318:wetting 312:Wetting 252:-thick 192:Merging 187:Physics 1864:People 1772:Causes 1359:Maths 1335:Scale 1255:  1241:  1223:  1209:  1184:  1027:  974:  966:  673:helium 79:sphere 63:bubble 1871:Plato 1677:Crack 1554:state 1503:foam 1427:Films 1182:JSTOR 1025:S2CID 999:arXiv 972:S2CID 936:(PDF) 677:laser 669:smoke 410:sugar 1749:Wave 1687:Foam 1682:Dune 1612:and 1541:Foam 1439:DLVO 1406:Xray 1365:Fun 1253:ISBN 1239:ISBN 1221:ISBN 1207:ISBN 964:PMID 727:Foam 694:and 646:, UK 408:and 238:foam 92:foam 71:soap 67:film 52:foam 1382:HLB 1174:doi 1170:103 1017:doi 995:102 956:doi 944:338 903:doi 899:100 876:doi 841:doi 837:100 794:hdl 784:doi 642:in 630:Art 559:dye 532:'s 73:or 69:of 2005:: 1598:, 1585:, 1581:, 1550:, 1519:, 1465:, 1456:, 1441:, 1437:, 1408:, 1404:, 1400:, 1391:, 1380:, 1180:. 1168:. 1081:. 1056:. 1023:. 1015:. 1007:. 993:. 970:. 962:. 954:. 942:. 938:. 897:. 874:. 864:64 862:. 835:. 792:. 778:. 774:. 698:. 690:, 615:°F 611:°C 485:c. 477:, 457:c. 451:, 308:. 228:. 146:. 94:. 57:A 1655:e 1648:t 1641:v 1317:e 1310:t 1303:v 1245:. 1188:. 1176:: 1113:. 1087:. 1067:. 1031:. 1019:: 1011:: 1001:: 978:. 958:: 950:: 909:. 905:: 882:. 878:: 870:: 847:. 843:: 802:. 796:: 786:: 780:6 490:) 483:( 462:) 455:( 20:)

Index

Membrane bubble



foam
film
soap
detergent
sphere
iridescent
performances
foam
wave interference
mathematical
minimal surface
surface area
soap film
mean curvature
H. A. Schwarz
double bubble conjecture
Structural engineer
Frei Otto
tensile roof structures
Unconventional computing
mathematical modelling
analog computers

pressure
Young–Laplace equation
Plateau's laws

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.