Knowledge

Maxwell's demon

Source đź“ť

530:
operation of the one-way wall relies on an irreversible atomic and molecular process of absorption of a photon at a specific wavelength, followed by spontaneous emission to a different internal state. The irreversible process is coupled to a conservative force created by magnetic fields and/or light. Raizen and collaborators proposed using the one-way wall in order to reduce the entropy of an ensemble of atoms. In parallel, Gonzalo Muga and Andreas Ruschhaupt independently developed a similar concept. Their "atom diode" was not proposed for cooling, but rather for regulating the flow of atoms. The Raizen Group demonstrated significant cooling of atoms with the one-way wall in a series of experiments in 2008. Subsequently, the operation of a one-way wall for atoms was demonstrated by Daniel Steck and collaborators later in 2008. Their experiment was based on the 2005 scheme for the one-way wall, and was not used for cooling. The cooling method realized by the Raizen Group was called "single-photon cooling", because only one photon on average is required in order to bring an atom to near-rest. This is in contrast to other
554:
entropy by applying feedback. The demon is based on two capacitively coupled single-electron devices, both integrated on the same electronic circuit. The operation of the demon is directly observed as a temperature drop in the system, with a simultaneous temperature rise in the demon arising from the thermodynamic cost of generating the mutual information. In 2016, Pekola et al. demonstrated a proof-of-principle of an autonomous demon in coupled single-electron circuits, showing a way to cool critical elements in a circuit with information as a fuel. Pekola et al. have also proposed that a simple qubit circuit, e.g., made of a superconducting circuit, could provide a basis to study a quantum Szilard's engine.
171:... if we conceive of a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose attributes are as essentially finite as our own, would be able to do what is impossible to us. For we have seen that molecules in a vessel full of air at uniform temperature are moving with velocities by no means uniform, though the mean velocity of any great number of them, arbitrarily selected, is almost exactly uniform. Now let us suppose that such a vessel is divided into two portions, 338:. Szilárd pointed out that a real-life Maxwell's demon would need to have some means of measuring molecular speed, and that the act of acquiring information would require an expenditure of energy. Since the demon and the gas are interacting, we must consider the total entropy of the gas and the demon combined. The expenditure of energy by the demon will cause an increase in the entropy of the demon, which will be larger than the lowering of the entropy of the gas. 20: 546:, does not result in a net decrease in entropy, and cannot be used to produce useful energy. This is because the process requires more energy from the laser beams than could be produced by the temperature difference generated. The atoms absorb low entropy photons from the laser beam and emit them in a random direction, thus increasing the entropy of the environment. 353:, this also meant that the recorded measurement must not be erased. In other words, to determine whether to let a molecule through, the demon must acquire information about the state of the molecule and either discard it or store it. Discarding it leads to immediate increase in entropy, but the demon cannot store it indefinitely. In 1982, 91:. Most scientists argue that, on theoretical grounds, no practical device can violate the second law in this way. Other researchers have implemented forms of Maxwell's demon in experiments, though they all differ from the thought experiment to some extent and none has been shown to violate the second law. 314:
will not actually be violated, if a more complete analysis is made of the whole system including the demon. The essence of the physical argument is to show, by calculation, that any demon must "generate" more entropy segregating the molecules than it could ever eliminate by the method described. That
537:
In 2006, Raizen, Muga, and Ruschhaupt showed in a theoretical paper that as each atom crosses the one-way wall, it scatters one photon, and information is provided about the turning point and hence the energy of that particle. The entropy increase of the radiation field scattered from a directional
421:
for each subsystem should be modified, and for the case of external control a second-law like inequality and a generalized fluctuation theorem with mutual information are satisfied. For more general information processes including biological information processing, both inequality and equality with
357:
showed that, however well prepared, eventually the demon will run out of information storage space and must begin to erase the information it has previously gathered. Erasing information is a thermodynamically irreversible process that increases the entropy of a system. Although Bennett had reached
392:
cannot be violated by the demon, and derive further properties of the demon from this assumption, including the necessity of consuming energy when erasing information, etc. It would therefore be circular to invoke these derived properties to defend the second law from the demonic argument. Bennett
55:
In the thought experiment, a demon controls a door between two chambers containing gas. As individual gas molecules (or atoms) approach the door, the demon quickly opens and closes the door to allow only fast-moving molecules to pass through in one direction, and only slow-moving molecules to pass
449:
exists, Zurab Silagadze proposes that demons can be envisaged, "which can act like perpetuum mobiles of the second kind: extract heat energy from only one reservoir, use it to do work and be isolated from the rest of ordinary world. Yet the Second Law is not violated because the demons pay their
553:
et al. demonstrated an experimental realization of a Szilárd engine. Only a year later and based on an earlier theoretical proposal, the same group presented the first experimental realization of an autonomous Maxwell's demon, which extracts microscopic information from a system and reduces its
529:
developed a laser atomic cooling technique which realizes the process Maxwell envisioned of sorting individual atoms in a gas into different containers based on their energy. The new concept is a one-way wall for atoms or molecules that allows them to move in one direction, but not go back. The
594:
pre-eminent in this class) as tending to reverse this process, a Maxwell's demon of history. Adams made many attempts to respond to the criticism of his formulation from his scientific colleagues, but the work remained incomplete at his death in 1918 and was published posthumously.
541:
This technique is widely described as a "Maxwell's demon" because it realizes Maxwell's process of creating a temperature difference by sorting high and low energy atoms into different containers. However, scientists have pointed out that it does not violate the
156:, when brought into contact with each other and isolated from the rest of the Universe, will evolve to a thermodynamic equilibrium in which both bodies have approximately the same temperature. The second law is also expressed as the assertion that in an 417:) between the engine and the demon increases, decreasing the entropy of the system in an amount given by the mutual information. If the correlation changes, thermodynamic relations such as the second law of thermodynamics and the 1119: 1017:
Szilard, Leo (1929). "Ăśber die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen (On the reduction of entropy in a thermodynamic system by the intervention of intelligent beings)".
508:
Leigh made a minor change to the axle so that if a light is shone on the device, the center of the axle will thicken, restricting the motion of the ring. It keeps the ring from moving, however, only if it is at
1102: 521:
and get stuck there, creating an imbalance in the system. In his experiments, Leigh was able to take a pot of "billions of these devices" from 50:50 equilibrium to a 70:30 imbalance within a few minutes.
413:
for small fluctuating systems has provided deeper insight on each information process with each subsystem. From this viewpoint, the measurement process is regarded as a process where the correlation (
438:
have their entropy-lowering effects duly balanced by increase of entropy elsewhere. Molecular-sized mechanisms are no longer found only in biology; they are also the subject of the emerging field of
497:. Particles from either site would bump into the ring and move it from end to end. If a large collection of these devices were placed in a system, half of the devices had the ring at site 358:
the same conclusion as Szilard's 1929 paper, that a Maxwellian demon could not violate the second law because entropy would be created, he had reached it for different reasons. Regarding
179:, by a division in which there is a small hole, and that a being, who can see the individual molecules, opens and closes this hole, so as to allow only the swifter molecules to pass from 126:
In his letters and books, Maxwell described the agent opening the door between the chambers as a "finite being". Being a deeply religious man, he never used the word "demon". Instead,
60:
of a gas depends on the velocities of its constituent molecules, the demon's actions cause one chamber to warm up and the other to cool down. This would decrease the total
405:
Although the argument by Landauer and Bennett only answers the consistency between the second law of thermodynamics and the whole cyclic process of the entire system of a
406: 290:
The demon must allow molecules to pass in both directions in order to produce only a temperature difference; one-way passage only of faster-than-average molecules from
1099: 1168: 882: 3094: 2002:
Bissell, Richard A; CĂłrdova, Emilio; Kaifer, Angel E.; Stoddart, J. Fraser (12 May 1994). "A chemically and electrochemically switchable molecular shuttle".
2418:
Koski, J.V.; Kutvonen, A.; Khaymovich, I.M.; Ala-Nissila, T.; Pekola, J.P. (2015). "On-Chip Maxwell's Demon as an Information-Powered Refrigerator".
442:. Single-atom traps used by particle physicists allow an experimenter to control the state of individual quanta in a way similar to Maxwell's demon. 349:. He suggested these "reversible" measurements could be used to sort the molecules, violating the Second Law. However, due to the connection between 167:
Maxwell conceived a thought experiment as a way of furthering the understanding of the second law. His description of the experiment is as follows:
627: 350: 550: 42:
in 1867. In his first letter, Maxwell referred to the entity as a "finite being" or a "being who can play a game of skill with the molecules".
345:
raised an exception to this argument. He realized that some measuring processes need not increase thermodynamic entropy as long as they were
1223: 315:
is, it would take more thermodynamic work to gauge the speed of the molecules and selectively allow them to pass through the opening between
3000: 1232: 1067: 3049: 370:
confirmed that in order to approach the Landauer's limit, the system must asymptotically approach zero processing speed. Recently,
2912: 3099: 538:
laser into a random direction is exactly balanced by the entropy reduction of the atoms as they are trapped by the one-way wall.
423: 354: 263:
they will have slowed down on average. Since average molecular speed corresponds to temperature, the temperature decreases in
2901: 2882: 2720: 2701: 2678: 647: 574: 3036: 3025: 1663:
Armen E Allahverdyan, Dominik Janzing and Guenter Mahler (2009). "Thermodynamic efficiency of information and heat flow".
2737: 346: 426:
of measurements, which takes into account the reduction of information due to the correlation between the measurements.
971: 422:
mutual information hold. When repeated measurements are performed, the entropy reduction of the system is given by the
2944: 1890: 913: 743: 127: 1602:
Takahiro Sagawa & Masahito Ueda (2010). "Generalized Jarzynski Equality under Nonequilibrium Feedback Control".
1716:
Naoto Shiraishi & Takahiro Sagawa (2015). "Fluctuation theorem for partially masked nonequilibrium dynamics".
2189: 1353:
Bennett, Charles H. (2002–2003). "Notes on Landauer's principle, reversible computation, and Maxwell's demon".
410: 2221:"Experimental Observation of the Role of Mutual Information in the Nonequilibrium Dynamics of a Maxwell Demon" 3079: 687: 543: 389: 311: 35: 2130: 988: 718: 3069: 3043: 2959:
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
2838:
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
2802:
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
1824:
Ruiz-Pino, Natalia; Villarrubia-Moreno, Daniel; Prados, Antonio; Cao-GarcĂ­a, Francisco J. (2023-09-12).
152:
The second law of thermodynamics ensures (through statistical probability) that two bodies of different
726: 224: 48: 3089: 3074: 2979: 1147: 2520:
Pekola, J.P.; Golubev, D.S.; Averin, D.V. (5 Jan 2016). "Maxwell's demon based on a single qubit".
652: 622: 388:
have argued that Szilárd and Landauer's explanations of Maxwell's demon begin by assuming that the
3084: 2951: 2830: 2794: 1312: 1270: 459: 394: 375: 371: 362:, the minimum energy dissipated by deleting information was experimentally measured by Eric Lutz 359: 2874: 682: 2974: 1142: 662: 2573: 565:, generally processes that run on servers to respond to users, are named for Maxwell's demon. 397:
explains the mechanism by which real systems do not violate the second law of thermodynamics.
961: 76: 69: 1951:
Serreli, V; Lee, CF; Kay, ER; Leigh, DA (February 2007). "A molecular information ratchet".
534:
techniques which use the momentum of the photon and require a two-level cycling transition.
2966: 2845: 2809: 2539: 2492: 2437: 2376: 2307: 2242: 2142: 2087: 2011: 1960: 1933: 1847: 1790: 1735: 1694: 1682: 1621: 1560: 1499: 1434: 1372: 1327: 1285: 1241: 1134: 1027: 897: 813: 761: 672: 616: 471: 65: 2831:"Exorcist XIV: The Wrath of Maxwell's Demon. Part II. From Szilard to Landauer and Beyond" 1477: 1313:"Exorcist XIV: The Wrath of Maxwell's Demon. Part II. From Szilard to Landauer and Beyond" 8: 3012: 2924: 2744: 692: 418: 374:
has also been invoked to resolve an apparently unrelated paradox of statistical physics,
112: 104: 80: 57: 39: 2970: 2916: 2849: 2813: 2543: 2496: 2441: 2380: 2311: 2246: 2146: 2091: 2015: 1964: 1937: 1851: 1794: 1739: 1686: 1662: 1625: 1564: 1503: 1438: 1376: 1331: 1289: 1245: 1138: 1031: 901: 817: 765: 393:
later acknowledged the validity of Earman and Norton's argument, while maintaining that
2992: 2867: 2781: 2657: 2555: 2529: 2461: 2427: 2400: 2366: 2330: 2297: 2285: 2266: 2232: 2111: 2060: 2027: 1984: 1923: 1837: 1825: 1759: 1725: 1698: 1672: 1645: 1611: 1584: 1550: 1523: 1489: 1424: 1388: 1362: 1205: 1160: 1043: 909: 677: 657: 569: 562: 414: 108: 100: 88: 31: 2857: 2821: 2154: 1778: 1412: 1384: 1339: 1297: 2940: 2932: 2897: 2878: 2773: 2716: 2697: 2674: 2661: 2453: 2392: 2335: 2270: 2258: 2158: 2103: 2064: 1976: 1896: 1886: 1863: 1806: 1751: 1702: 1637: 1576: 1515: 1458: 1450: 1047: 967: 667: 450:
entropy cost in the hidden (mirror) sector of the world by emitting mirror photons."
83:, which continues to the present day. It stimulated work on the relationship between 2996: 2785: 2559: 2115: 2031: 1588: 1527: 1164: 335: 2984: 2853: 2817: 2765: 2649: 2547: 2500: 2465: 2449: 2445: 2404: 2388: 2384: 2325: 2315: 2254: 2250: 2220: 2150: 2095: 2052: 2047: 2019: 1988: 1968: 1855: 1798: 1763: 1743: 1690: 1649: 1633: 1629: 1568: 1541:
Hugo Touchette & Seth Lloyd (2000). "Information-Theoretic Limits of Control".
1511: 1507: 1442: 1392: 1380: 1335: 1293: 1249: 1209: 1197: 1152: 1082: 1035: 905: 821: 769: 752: 605: 582:, though he misunderstood and misapplied the original principle. Adams interpreted 463: 331: 132: 227:
guards a trapdoor between the two parts. When a faster-than-average molecule from
144:, a supernatural being working in the background, rather than a malevolent being. 1106: 1053: 846: 482: 467: 435: 409:(a composite system of the engine and the demon), a recent approach based on the 157: 137: 2988: 1859: 1572: 3050:"Breaking the Law – Can quantum mechanics + thermodynamics = perpetual motion?" 2640: 2577: 2551: 2505: 2480: 2290:
Proceedings of the National Academy of Sciences of the United States of America
1802: 1747: 1446: 1254: 526: 439: 385: 284: 231:
flies towards the trapdoor, the demon opens it, and the molecule will fly from
116: 84: 1201: 3063: 2952:"Eaters of the lotus: Landauer's principle and the return of Maxwell's demon" 2795:"Exorcist XIV: The Wrath of Maxwell's Demon. Part I. From Maxwell to Szilard" 1900: 1454: 1271:"Exorcist XIV: The Wrath of Maxwell's Demon. Part I. From Maxwell to Szilard" 637: 531: 446: 434:
Real-life versions of Maxwellian demons occur, but all such "real demons" or
342: 2769: 2320: 2099: 3010:
Raizen, Mark G. (2011) "Demons, Entropy, and the Quest for Absolute Zero",
2777: 2457: 2396: 2339: 2262: 2197: 2162: 2107: 2078:
Raizen, Mark G. (June 12, 2009). "Comprehensive Control of Atomic Motion".
1980: 1867: 1823: 1810: 1755: 1641: 1580: 1519: 1462: 330:
One of the most famous responses to this question was suggested in 1929 by
2354: 2056: 1555: 697: 642: 632: 381: 272: 153: 115:
in 1871, before it was presented to the public in Maxwell's 1872 book on
43: 2690:
Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing
1972: 1928: 1367: 1156: 1086: 1039: 587: 207:
In other words, Maxwell imagines one container divided into two parts,
2353:
Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. (24 Jan 2013).
195:. He will thus, without expenditure of work, raise the temperature of 75:
The concept of Maxwell's demon has provoked substantial debate in the
2693: 2286:"Experimental realization of a Szilard engine with a single electron" 2023: 1914:
Silagadze, Z. K (2007). "Maxwell's demon through the looking glass".
1478:"Second Law of Thermodynamics with Discrete Quantum Feedback Control" 1192:
Ball, Philip (2012). "The unavoidable cost of computation revealed".
826: 801: 774: 747: 610: 2284:
Koski, J.V.; Maisi, V.F.; Pekola, J.P.; Averin, D.V. (23 Sep 2014).
19: 2653: 2534: 2432: 2219:
Koski, J.V.; Maisi, V.F.; Sagava, T.; Pekola, J.P. (14 July 2014).
1842: 1777:
Jarillo, Javier; Tangarife, Tomás; Cao, Francisco J. (2016-01-22).
579: 486: 220: 219:
at equal temperatures and placed next to each other. Observing the
2417: 2371: 2302: 2237: 1730: 1677: 1616: 1494: 1429: 310:
Several physicists have presented calculations that show that the
2355:"Thermodynamics of a Physical Model Implementing a Maxwell Demon" 591: 583: 161: 61: 2352: 2927:" The Stanford Encyclopedia of Philosophy (Autumn 2009 Edition) 1228:"The reversibility paradox: Role of the velocity reversal step" 324: 141: 2045:
Katharine Sanderson (31 January 2007). "A demon of a device".
1715: 1068:"Irreversibility and heat generation in the computing process" 130:
was the first to use it for Maxwell's concept, in the journal
478:
in this case) and therefore does not violate thermodynamics.
475: 298:
will cause higher temperature and pressure to develop on the
252: 2742:
Bennett, C. H. (1987) "Demons, Engines and the Second Law",
2001: 1779:"Efficiency at maximum power of a discrete feedback ratchet" 1601: 327:
gained by the difference of temperature caused by doing so.
243:
flies towards the trapdoor, the demon will let it pass from
470:. Leigh's device is able to drive a chemical system out of 987:
Bennett, Charles H.; Schumacher, Benjamin (August 2011).
963:
Thermodynamics of Information Processing in Small Systems
843:
Nineteenth Century Science: a Selection of Original Texts
216: 2756:
Binder, P.-M. (2008). "Reflections on a Wall of Light".
1540: 1227: 1052:
cited in Bennett 1987. English translation available as
1665:
Journal of Statistical Mechanics: Theory and Experiment
489:
which could be placed on an axle connecting two sites,
203:, in contradiction to the second law of thermodynamics. 2283: 2218: 966:. Springer Science and Business Media. pp. 9–14. 586:
as a process moving towards "equilibrium", but he saw
513:. Over time, therefore, the rings will be bumped from 111:
on 11 December 1867. It appeared again in a letter to
72:, thereby violating the second law of thermodynamics. 23:
Schematic figure of Maxwell's demon thought experiment
716: 481:
Previously, researchers including Nobel Prize winner
462:
announced the creation of a nano-device based on the
239:. Likewise, when a slower-than-average molecule from 2828: 2792: 3037:
Does Nature Break the Second Law of Thermodynamics?
2738:
How Maxwell's Demon Continues to Startle Scientists
2572: 2519: 2044: 1776: 1355:
Studies in History and Philosophy of Modern Physics
1320:
Studies in History and Philosophy of Modern Physics
1278:
Studies in History and Philosophy of Modern Physics
578:, attempted to use Maxwell's demon as a historical 271:, contrary to the second law of thermodynamics. A 2866: 2638:Daub, E. E. (1967). "Atomism and Thermodynamics". 2599:, pp. 640–647; see also Daub (1970), reprinted in 2481:"Maxwell's demons realized in electronic circuits" 2131:"Demons, Entropy, and the Quest for Absolute Zero" 1950: 1883:Physics in mind : a quantum view of the brain 2925:"Information Processing and Thermodynamic Entropy 2688:Leff, Harvey S. & Andrew F. Rex, ed. (2002). 2669:Leff, Harvey S. & Andrew F. Rex, ed. (1990). 986: 94: 3061: 2671:Maxwell's Demon: Entropy, Information, Computing 980: 719:"Quote from undated letter from Maxwell to Tait" 628:Entropy in thermodynamics and information theory 474:, but it must be powered by an external source ( 351:entropy in thermodynamics and information theory 2346: 2190:"Single-Photon Cooling: Making Maxwell's Demon" 1476:Sagawa, Takahiro; Ueda, Masahito (2008-02-26). 1413:"Thermodynamics of feedback controlled systems" 2930: 2864: 2479:Koski, J.V.; Pekola, J.P. (16 December 2016). 723:Life and Scientific Work of Peter Guthrie Tait 147: 3095:Philosophy of thermal and statistical physics 2755: 748:"Kinetic theory of the dissipation of energy" 187:, and only the slower molecules to pass from 2891: 1352: 1310: 1268: 1233:International Journal of Theoretical Physics 1127:International Journal of Theoretical Physics 1120:"The thermodynamics of computation—a review" 876: 305: 3039:"; Scientific American, October 2008 : 2478: 1880: 1311:Earman, John & Norton, John D. (1999). 1269:Earman, John & Norton, John D. (1998). 874: 872: 870: 868: 866: 864: 862: 860: 858: 856: 2949: 2122: 2071: 1475: 136:in 1874, and implied that he intended the 3044:Historical development of Maxwell's demon 2978: 2533: 2504: 2431: 2370: 2329: 2319: 2301: 2236: 1927: 1913: 1841: 1729: 1676: 1615: 1554: 1493: 1428: 1366: 1253: 1146: 1111: 825: 773: 485:had created ring-shaped molecules called 275:operating between the thermal reservoirs 2910: 2513: 2472: 2411: 2277: 2212: 2183: 2181: 2179: 1410: 1065: 1059: 955: 953: 951: 949: 947: 853: 18: 2713:The Degradation of the Democratic Dogma 1117: 1075:IBM Journal of Research and Development 1016: 1010: 880: 742: 738: 736: 3062: 2128: 2077: 1222: 959: 215:. Both parts are filled with the same 2606: 2590: 2566: 2187: 2176: 2038: 1995: 1944: 1907: 1881:Loewenstein, Werner R. (2013-01-29). 1874: 1709: 1656: 1595: 1534: 1406: 1404: 1402: 1346: 1304: 1262: 1185: 944: 883:"Demons, Engines, and the Second Law" 881:Bennett, Charles H. (November 1987). 840: 2939:, reprinted (2001) New York: Dover, 2937:. London, New York Longmans, Green. 2865:Feynman, R. P.; et al. (1996). 2829:Earman, J. & Norton, J. (1999). 2793:Earman, J. & Norton, J. (1998). 1411:Cao, F. J.; Feito, M. (2009-04-10). 1191: 1100:Vol. 44, No. 1, January 2000, p. 261 989:"Maxwell's demons appear in the lab" 931: 834: 794: 733: 710: 575:The Rule of Phase Applied to History 453: 782: 38:. It was proposed by the physicist 13: 1826:"Information in feedback ratchets" 1399: 910:10.1038/scientificamerican1187-108 648:Heisenberg's uncertainty principle 400: 287:from this temperature difference. 56:through in the other. Because the 14: 3111: 2894:Henry Adams: Scientific Historian 2731: 2155:10.1038/scientificamerican0311-54 68:, seemingly without applying any 3006:from the original on 2006-09-01. 2687: 2668: 2600: 2188:Orzel, Chad (January 25, 2010). 1695:10.1088/1742-5468/2009/09/P09011 938: 788: 2869:Feynman Lectures on Computation 1817: 1770: 1469: 1216: 505:, at any given moment in time. 429: 3100:Thought experiments in physics 3026:"Scientists build nanomachine" 2450:10.1103/PhysRevLett.115.260602 2389:10.1103/PhysRevLett.110.040601 2255:10.1103/PhysRevLett.113.030601 2129:Raizen, Mark G. (March 2011). 1634:10.1103/PhysRevLett.104.090602 1512:10.1103/PhysRevLett.100.080403 802:"The sorting demon of Maxwell" 717:Cargill Gilston Knott (1911). 557: 411:non-equilibrium thermodynamics 95:Origin and history of the idea 1: 2858:10.1016/s1355-2198(98)00026-4 2822:10.1016/S1355-2198(98)00023-9 2621: 1385:10.1016/S1355-2198(03)00039-X 1340:10.1016/s1355-2198(98)00026-4 1298:10.1016/s1355-2198(98)00023-9 937:Maxwell (1871), reprinted in 259:will have increased while in 128:William Thomson (Lord Kelvin) 34:that appears to disprove the 688:Second law of thermodynamics 544:second law of thermodynamics 390:second law of thermodynamics 347:thermodynamically reversible 312:second law of thermodynamics 223:on both sides, an imaginary 36:second law of thermodynamics 7: 2989:10.1016/j.shpsb.2004.12.002 2873:. Addison-Wesley. pp.  2631:Henry Adams and his Friends 1860:10.1103/PhysRevE.108.034112 1573:10.1103/PhysRevLett.84.1156 598: 366:in 2012. Furthermore, Lutz 148:Original thought experiment 103:first appeared in a letter 10: 3116: 2923:Maroney, O. J. E. (2009) " 2710: 2629:Cater, H. D., ed. (1947). 2628: 2612: 2596: 2552:10.1103/PhysRevB.93.024501 2506:10.1016/j.crhy.2016.08.011 1803:10.1103/PhysRevE.93.012142 1748:10.1103/PhysRevE.91.012130 1447:10.1103/PhysRevE.79.041118 1255:10.1007/s10773-023-05458-x 727:Cambridge University Press 16:Thought experiment of 1867 2637: 1885:. New York: Basic Books. 1202:10.1038/nature.2012.10186 960:Sagawa, Takahiro (2012). 306:Criticism and development 2673:. Bristol: Adam-Hilger. 2361:(Submitted manuscript). 1129:(Submitted manuscript). 1054:NASA document TT F-16723 704: 623:Dispersive mass transfer 2931:Maxwell, J. C. (1871). 2770:10.1126/science.1166681 2715:. New York: Kessinger. 2485:Comptes Rendus Physique 2420:Physical Review Letters 2359:Physical Review Letters 2321:10.1073/pnas.1406966111 2225:Physical Review Letters 2100:10.1126/science.1171506 1916:Acta Physica Polonica B 1604:Physical Review Letters 1543:Physical Review Letters 1482:Physical Review Letters 1118:Bennett, C. H. (1982). 841:Weber, Alan S. (2000). 424:entropy of the sequence 46:would later call it a " 2578:"Take Our Word for It" 1020:Zeitschrift fĂĽr Physik 663:Laws of thermodynamics 205: 24: 2892:Jordy, W. H. (1952). 2601:Leff & Rex (1990) 2057:10.1038/news070129-10 1066:Landauer, R. (1961). 939:Leff & Rex (1990) 789:Leff & Rex (2002) 283:could extract useful 169: 77:philosophy of science 22: 2194:Uncertain Principles 673:Photoelectric effect 653:Joule–Thomson effect 617:Chance and Necessity 572:, in his manuscript 563:Daemons in computing 395:Landauer's principle 372:Landauer's principle 360:Landauer's principle 255:of the molecules in 140:interpretation of a 3080:James Clerk Maxwell 3013:Scientific American 2971:2005SHPMP..36..375N 2950:Norton, J. (2005). 2850:1999SHPMP..30....1E 2814:1998SHPMP..29..435E 2764:(5906): 1334–1335. 2745:Scientific American 2574:Fernando J. CorbatĂł 2544:2016PhRvB..93b4501P 2497:2016CRPhy..17.1130K 2442:2015PhRvL.115z0602K 2381:2013PhRvL.110d0601S 2312:2014PNAS..11113786K 2247:2014PhRvL.113c0601K 2147:2011SciAm.304c..54R 2135:Scientific American 2092:2009Sci...324.1403R 2086:(5933): 1403–1406. 2016:1994Natur.369..133B 1973:10.1038/nature05452 1965:2007Natur.445..523S 1938:2007AcPPB..38..101S 1852:2023PhRvE.108c4112R 1795:2016PhRvE..93a2142J 1740:2015PhRvE..91a2130S 1687:2009JSMTE..09..011A 1626:2010PhRvL.104i0602S 1565:2000PhRvL..84.1156T 1504:2008PhRvL.100h0403S 1439:2009PhRvE..79d1118C 1377:2003SHPMP..34..501B 1332:1999SHPMP..30....1E 1290:1998SHPMP..29..435E 1246:2023IJTP...62..200B 1139:1982IJTP...21..905B 1032:1929ZPhy...53..840S 919:on December 3, 2020 902:1987SciAm.257e.108B 890:Scientific American 818:1879Natur..20Q.126. 766:1874Natur...9..441T 729:. pp. 213–215. 693:Thermionic emission 419:fluctuation theorem 376:Loschmidt’s paradox 323:than the amount of 113:John William Strutt 81:theoretical physics 58:kinetic temperature 40:James Clerk Maxwell 3070:1867 introductions 3032:, February 1, 2007 3024:Reaney, Patricia. 2711:Adams, H. (1919). 1157:10.1007/BF02084158 1105:2016-03-03 at the 1087:10.1147/rd.53.0183 1040:10.1007/bf01341281 1026:(11–12): 840–856. 812:(501): 126. 1879. 678:Quantum tunnelling 570:Henry Brooks Adams 415:mutual information 199:and lower that of 109:Peter Guthrie Tait 101:thought experiment 89:information theory 32:thought experiment 25: 3056:, October 7, 2000 3042:Splasho (2008) – 3035:Rubi, J Miguel, " 2913:"Maxwell's Demon" 2903:978-0-685-26683-0 2884:978-0-14-028451-5 2722:978-1-4179-1598-9 2703:978-0-7503-0759-8 2680:978-0-7503-0057-5 2522:Physical Review B 2491:(10): 1130–1138. 2010:(6476): 133–137. 1959:(7127): 523–527. 1830:Physical Review E 1783:Physical Review E 1718:Physical Review E 1417:Physical Review E 683:Schrödinger's cat 668:Mass spectrometry 590:nations (he felt 454:Experimental work 267:and increases in 164:never decreases. 3107: 3090:Perpetual motion 3075:Fictional demons 3007: 3005: 2982: 2956: 2938: 2920: 2915:. Archived from 2907: 2888: 2872: 2861: 2835: 2825: 2799: 2789: 2726: 2707: 2684: 2665: 2634: 2616: 2610: 2604: 2594: 2588: 2587: 2585: 2584: 2570: 2564: 2563: 2537: 2517: 2511: 2510: 2508: 2476: 2470: 2469: 2435: 2415: 2409: 2408: 2374: 2350: 2344: 2343: 2333: 2323: 2305: 2281: 2275: 2274: 2240: 2216: 2210: 2209: 2207: 2205: 2185: 2174: 2173: 2171: 2169: 2126: 2120: 2119: 2075: 2069: 2068: 2042: 2036: 2035: 2024:10.1038/369133a0 1999: 1993: 1992: 1948: 1942: 1941: 1931: 1911: 1905: 1904: 1878: 1872: 1871: 1845: 1821: 1815: 1814: 1774: 1768: 1767: 1733: 1713: 1707: 1706: 1680: 1660: 1654: 1653: 1619: 1599: 1593: 1592: 1558: 1556:chao-dyn/9905039 1549:(6): 1156–1159. 1538: 1532: 1531: 1497: 1473: 1467: 1466: 1432: 1408: 1397: 1396: 1370: 1350: 1344: 1343: 1317: 1308: 1302: 1301: 1275: 1266: 1260: 1259: 1257: 1220: 1214: 1213: 1189: 1183: 1182: 1180: 1179: 1173: 1167:. Archived from 1150: 1124: 1115: 1109: 1097: 1095: 1093: 1072: 1063: 1057: 1051: 1014: 1008: 1007: 1005: 1003: 993: 984: 978: 977: 957: 942: 935: 929: 928: 926: 924: 918: 912:. Archived from 887: 878: 851: 850: 838: 832: 831: 829: 827:10.1038/020126a0 798: 792: 786: 780: 779: 777: 775:10.1038/009441c0 760:(232): 441–444. 746:(9 April 1874). 744:Thomson, William 740: 731: 730: 714: 606:Brownian ratchet 464:Brownian ratchet 445:If hypothetical 436:molecular demons 3115: 3114: 3110: 3109: 3108: 3106: 3105: 3104: 3060: 3059: 3003: 2980:10.1.1.468.3017 2954: 2904: 2885: 2833: 2797: 2734: 2729: 2723: 2704: 2681: 2624: 2619: 2611: 2607: 2595: 2591: 2582: 2580: 2571: 2567: 2518: 2514: 2477: 2473: 2416: 2412: 2351: 2347: 2296:(38): 13786–9. 2282: 2278: 2217: 2213: 2203: 2201: 2186: 2177: 2167: 2165: 2127: 2123: 2076: 2072: 2043: 2039: 2000: 1996: 1949: 1945: 1929:physics/0608114 1912: 1908: 1893: 1879: 1875: 1822: 1818: 1775: 1771: 1714: 1710: 1661: 1657: 1600: 1596: 1539: 1535: 1474: 1470: 1409: 1400: 1368:physics/0210005 1351: 1347: 1315: 1309: 1305: 1273: 1267: 1263: 1221: 1217: 1190: 1186: 1177: 1175: 1171: 1148:10.1.1.655.5610 1133:(12): 905–940. 1122: 1116: 1112: 1107:Wayback Machine 1091: 1089: 1070: 1064: 1060: 1015: 1011: 1001: 999: 991: 985: 981: 974: 958: 945: 936: 932: 922: 920: 916: 885: 879: 854: 847:Broadview Press 839: 835: 800: 799: 795: 787: 783: 741: 734: 715: 711: 707: 702: 658:Laplace's demon 601: 560: 483:Fraser Stoddart 468:Richard Feynman 466:popularized by 456: 432: 403: 401:Recent progress 355:Charles Bennett 334:, and later by 308: 158:isolated system 150: 138:Greek mythology 97: 28:Maxwell's demon 17: 12: 11: 5: 3113: 3103: 3102: 3097: 3092: 3087: 3085:Nanotechnology 3082: 3077: 3072: 3058: 3057: 3048:Weiss, Peter. 3046: 3040: 3033: 3022: 3008: 2965:(2): 375–411. 2947: 2934:Theory of Heat 2928: 2921: 2919:on 2010-03-17. 2911:Khan, Salman. 2908: 2902: 2889: 2883: 2862: 2826: 2808:(4): 435–471. 2790: 2753: 2740: 2733: 2732:External links 2730: 2728: 2727: 2721: 2708: 2702: 2685: 2679: 2666: 2654:10.1086/350264 2648:(3): 293–303. 2635: 2625: 2623: 2620: 2618: 2617: 2605: 2589: 2576:(2002-01-23). 2565: 2512: 2471: 2426:(26): 260602. 2410: 2345: 2276: 2211: 2175: 2121: 2070: 2037: 1994: 1943: 1922:(1): 101–126. 1906: 1891: 1873: 1816: 1769: 1708: 1655: 1594: 1533: 1468: 1398: 1361:(3): 501–510. 1345: 1303: 1261: 1215: 1184: 1110: 1081:(3): 183–191. 1058: 1056:published 1976 1009: 996:Nikkei Science 979: 973:978-4431541677 972: 943: 930: 896:(5): 108–116. 852: 849:. p. 300. 833: 793: 781: 732: 708: 706: 703: 701: 700: 695: 690: 685: 680: 675: 670: 665: 660: 655: 650: 645: 640: 635: 630: 625: 620: 613: 608: 602: 600: 597: 559: 556: 527:Mark G. Raizen 455: 452: 440:nanotechnology 431: 428: 407:Szilard engine 402: 399: 386:John D. Norton 336:LĂ©on Brillouin 307: 304: 251:. The average 149: 146: 121:Theory of Heat 117:thermodynamics 96: 93: 85:thermodynamics 15: 9: 6: 4: 3: 2: 3112: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3067: 3065: 3055: 3051: 3047: 3045: 3041: 3038: 3034: 3031: 3027: 3023: 3020: 3016: 3014: 3009: 3002: 2998: 2994: 2990: 2986: 2981: 2976: 2972: 2968: 2964: 2960: 2953: 2948: 2946: 2945:0-486-41735-2 2942: 2936: 2935: 2929: 2926: 2922: 2918: 2914: 2909: 2905: 2899: 2896:. New Haven. 2895: 2890: 2886: 2880: 2876: 2871: 2870: 2863: 2859: 2855: 2851: 2847: 2843: 2839: 2832: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2796: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2754: 2751: 2747: 2746: 2741: 2739: 2736: 2735: 2724: 2718: 2714: 2709: 2705: 2699: 2695: 2691: 2686: 2682: 2676: 2672: 2667: 2663: 2659: 2655: 2651: 2647: 2643: 2642: 2636: 2632: 2627: 2626: 2614: 2609: 2602: 2598: 2593: 2579: 2575: 2569: 2561: 2557: 2553: 2549: 2545: 2541: 2536: 2531: 2528:(2): 024501. 2527: 2523: 2516: 2507: 2502: 2498: 2494: 2490: 2486: 2482: 2475: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2434: 2429: 2425: 2421: 2414: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2373: 2368: 2365:(4): 040601. 2364: 2360: 2356: 2349: 2341: 2337: 2332: 2327: 2322: 2317: 2313: 2309: 2304: 2299: 2295: 2291: 2287: 2280: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2239: 2234: 2231:(3): 030601. 2230: 2226: 2222: 2215: 2199: 2195: 2191: 2184: 2182: 2180: 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2125: 2117: 2113: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2074: 2066: 2062: 2058: 2054: 2050: 2049: 2041: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 1998: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1947: 1939: 1935: 1930: 1925: 1921: 1917: 1910: 1902: 1898: 1894: 1892:9780465029846 1888: 1884: 1877: 1869: 1865: 1861: 1857: 1853: 1849: 1844: 1839: 1836:(3): 034112. 1835: 1831: 1827: 1820: 1812: 1808: 1804: 1800: 1796: 1792: 1789:(1): 012142. 1788: 1784: 1780: 1773: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1732: 1727: 1724:(1): 012130. 1723: 1719: 1712: 1704: 1700: 1696: 1692: 1688: 1684: 1679: 1674: 1671:(9): P09011. 1670: 1666: 1659: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1618: 1613: 1610:(9): 090602. 1609: 1605: 1598: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1557: 1552: 1548: 1544: 1537: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1496: 1491: 1488:(8): 080403. 1487: 1483: 1479: 1472: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1431: 1426: 1423:(4): 041118. 1422: 1418: 1414: 1407: 1405: 1403: 1394: 1390: 1386: 1382: 1378: 1374: 1369: 1364: 1360: 1356: 1349: 1341: 1337: 1333: 1329: 1325: 1321: 1314: 1307: 1299: 1295: 1291: 1287: 1283: 1279: 1272: 1265: 1256: 1251: 1247: 1243: 1239: 1235: 1234: 1229: 1225: 1219: 1211: 1207: 1203: 1199: 1195: 1188: 1174:on 2014-10-14 1170: 1166: 1162: 1158: 1154: 1149: 1144: 1140: 1136: 1132: 1128: 1121: 1114: 1108: 1104: 1101: 1098:reprinted in 1088: 1084: 1080: 1076: 1069: 1062: 1055: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1013: 997: 990: 983: 975: 969: 965: 964: 956: 954: 952: 950: 948: 940: 934: 915: 911: 907: 903: 899: 895: 891: 884: 877: 875: 873: 871: 869: 867: 865: 863: 861: 859: 857: 848: 844: 837: 828: 823: 819: 815: 811: 807: 803: 797: 790: 785: 776: 771: 767: 763: 759: 755: 754: 749: 745: 739: 737: 728: 724: 720: 713: 709: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 638:Gibbs paradox 636: 634: 631: 629: 626: 624: 621: 619: 618: 614: 612: 609: 607: 604: 603: 596: 593: 589: 585: 581: 577: 576: 571: 566: 564: 555: 552: 547: 545: 539: 535: 533: 532:laser cooling 528: 523: 520: 516: 512: 506: 504: 500: 496: 492: 488: 484: 479: 477: 473: 469: 465: 461: 451: 448: 447:mirror matter 443: 441: 437: 427: 425: 420: 416: 412: 408: 398: 396: 391: 387: 383: 379: 377: 373: 369: 365: 361: 356: 352: 348: 344: 343:Rolf Landauer 339: 337: 333: 328: 326: 322: 318: 313: 303: 301: 297: 293: 288: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 204: 202: 198: 194: 190: 186: 182: 178: 174: 168: 165: 163: 159: 155: 145: 143: 139: 135: 134: 129: 124: 122: 118: 114: 110: 106: 102: 92: 90: 86: 82: 78: 73: 71: 67: 63: 59: 53: 51: 50: 45: 41: 37: 33: 29: 21: 3054:Science News 3053: 3029: 3018: 3011: 2962: 2958: 2933: 2917:the original 2893: 2868: 2841: 2837: 2805: 2801: 2761: 2757: 2749: 2748:, November, 2743: 2712: 2689: 2670: 2645: 2639: 2630: 2613:Adams (1919) 2608: 2603:, pp. 37–51. 2597:Cater (1947) 2592: 2581:. Retrieved 2568: 2525: 2521: 2515: 2488: 2484: 2474: 2423: 2419: 2413: 2362: 2358: 2348: 2293: 2289: 2279: 2228: 2224: 2214: 2204:November 14, 2202:. Retrieved 2198:ScienceBlogs 2193: 2168:November 14, 2166:. Retrieved 2141:(3): 54–59. 2138: 2134: 2124: 2083: 2079: 2073: 2046: 2040: 2007: 2003: 1997: 1956: 1952: 1946: 1919: 1915: 1909: 1882: 1876: 1833: 1829: 1819: 1786: 1782: 1772: 1721: 1717: 1711: 1668: 1664: 1658: 1607: 1603: 1597: 1546: 1542: 1536: 1485: 1481: 1471: 1420: 1416: 1358: 1354: 1348: 1323: 1319: 1306: 1281: 1277: 1264: 1237: 1231: 1224:Binder, P.M. 1218: 1193: 1187: 1176:. Retrieved 1169:the original 1130: 1126: 1113: 1092:November 13, 1090:. Retrieved 1078: 1074: 1061: 1023: 1019: 1012: 1002:November 13, 1000:. Retrieved 995: 982: 962: 933: 923:November 13, 921:. Retrieved 914:the original 893: 889: 842: 836: 809: 805: 796: 784: 757: 751: 722: 712: 615: 588:militaristic 573: 567: 561: 548: 540: 536: 524: 518: 514: 510: 507: 502: 501:and half at 498: 494: 490: 480: 457: 444: 433: 430:Applications 404: 380: 367: 363: 340: 329: 320: 316: 309: 299: 295: 291: 289: 280: 276: 268: 264: 260: 256: 248: 244: 240: 236: 232: 228: 212: 208: 206: 200: 196: 192: 188: 184: 180: 176: 172: 170: 166: 151: 131: 125: 120: 98: 74: 54: 47: 27: 26: 2844:(1): 1–40. 698:Vortex tube 643:Hall effect 633:Evaporation 558:As metaphor 472:equilibrium 460:David Leigh 382:John Earman 332:LeĂł Szilárd 273:heat engine 154:temperature 44:Lord Kelvin 3064:Categories 2622:References 2583:2006-08-20 2535:1508.03803 2433:1507.00530 1843:2303.16804 1284:(4): 435. 1240:(9): 200. 1178:2017-12-10 568:Historian 2975:CiteSeerX 2694:CRC Press 2662:143459461 2633:. Boston. 2615:, p. 267. 2372:1210.5661 2303:1402.5907 2271:119311588 2238:1405.1272 2065:121130699 1901:778420640 1731:1403.4018 1703:118440998 1678:0907.3320 1617:0907.4914 1495:0710.0956 1455:1539-3755 1430:0805.4824 1143:CiteSeerX 1048:122038206 791:, p. 370. 611:Catalysis 549:In 2014, 525:In 2009, 487:rotaxanes 458:In 2007, 341:In 1960, 221:molecules 107:wrote to 3001:Archived 2997:21104635 2786:42821883 2778:19039125 2560:55523206 2458:26764980 2397:25166147 2340:25201966 2263:25083623 2163:21438491 2116:10235622 2108:19520950 2032:44926804 1981:17268466 1868:37849167 1811:26871058 1756:25679593 1642:20366975 1589:25507688 1581:11017467 1528:41799543 1520:18352605 1463:19518184 1326:(1): 1. 1226:(2023). 1165:17471991 1103:Archived 941:on p. 4. 599:See also 580:metaphor 3030:Reuters 3017:March, 2967:Bibcode 2875:148–150 2846:Bibcode 2810:Bibcode 2758:Science 2752:108-116 2540:Bibcode 2493:Bibcode 2466:3393380 2438:Bibcode 2405:5782312 2377:Bibcode 2331:4183300 2308:Bibcode 2243:Bibcode 2200:website 2143:Bibcode 2088:Bibcode 2080:Science 2012:Bibcode 1989:4314051 1961:Bibcode 1934:Bibcode 1848:Bibcode 1791:Bibcode 1764:1805888 1736:Bibcode 1683:Bibcode 1650:1549122 1622:Bibcode 1561:Bibcode 1500:Bibcode 1435:Bibcode 1393:9648186 1373:Bibcode 1328:Bibcode 1286:Bibcode 1242:Bibcode 1210:2092541 1135:Bibcode 1028:Bibcode 898:Bibcode 814:Bibcode 762:Bibcode 592:Germany 584:history 162:entropy 119:titled 105:Maxwell 64:of the 62:entropy 2995:  2977:  2943:  2900:  2881:  2784:  2776:  2719:  2700:  2677:  2660:  2558:  2464:  2456:  2403:  2395:  2338:  2328:  2269:  2261:  2161:  2114:  2106:  2063:  2048:Nature 2030:  2004:Nature 1987:  1979:  1953:Nature 1899:  1889:  1866:  1809:  1762:  1754:  1701:  1648:  1640:  1587:  1579:  1526:  1518:  1461:  1453:  1391:  1208:  1194:Nature 1163:  1145:  1046:  970:  806:Nature 753:Nature 551:Pekola 368:et al. 364:et al. 325:energy 302:side. 142:daemon 133:Nature 66:system 3021:54-59 3004:(PDF) 2993:S2CID 2955:(PDF) 2834:(PDF) 2798:(PDF) 2782:S2CID 2658:S2CID 2556:S2CID 2530:arXiv 2462:S2CID 2428:arXiv 2401:S2CID 2367:arXiv 2298:arXiv 2267:S2CID 2233:arXiv 2112:S2CID 2061:S2CID 2028:S2CID 1985:S2CID 1924:arXiv 1838:arXiv 1760:S2CID 1726:arXiv 1699:S2CID 1673:arXiv 1646:S2CID 1612:arXiv 1585:S2CID 1551:arXiv 1524:S2CID 1490:arXiv 1425:arXiv 1389:S2CID 1363:arXiv 1316:(PDF) 1274:(PDF) 1206:S2CID 1172:(PDF) 1161:S2CID 1123:(PDF) 1071:(PDF) 1044:S2CID 998:: 3–6 992:(PDF) 917:(PDF) 886:(PDF) 705:Notes 476:light 253:speed 225:demon 49:demon 30:is a 2941:ISBN 2898:ISBN 2879:ISBN 2774:PMID 2717:ISBN 2698:ISBN 2675:ISBN 2641:Isis 2454:PMID 2393:PMID 2336:PMID 2259:PMID 2206:2014 2170:2014 2159:PMID 2104:PMID 1977:PMID 1897:OCLC 1887:ISBN 1864:PMID 1807:PMID 1752:PMID 1669:2009 1638:PMID 1577:PMID 1516:PMID 1459:PMID 1451:ISSN 1094:2014 1004:2014 968:ISBN 925:2014 493:and 384:and 378:. 319:and 285:work 279:and 211:and 175:and 99:The 87:and 79:and 70:work 52:". 2985:doi 2854:doi 2818:doi 2766:doi 2762:322 2650:doi 2548:doi 2501:doi 2446:doi 2424:115 2385:doi 2363:110 2326:PMC 2316:doi 2294:111 2251:doi 2229:113 2151:doi 2139:304 2096:doi 2084:324 2053:doi 2020:doi 2008:369 1969:doi 1957:445 1856:doi 1834:108 1799:doi 1744:doi 1691:doi 1630:doi 1608:104 1569:doi 1508:doi 1486:100 1443:doi 1381:doi 1336:doi 1294:doi 1250:doi 1198:doi 1153:doi 1083:doi 1036:doi 906:doi 894:257 822:doi 770:doi 517:to 294:to 247:to 235:to 217:gas 191:to 183:to 3066:: 3052:, 3028:, 3019:pp 3015:, 2999:. 2991:. 2983:. 2973:. 2963:36 2961:. 2957:. 2877:. 2852:. 2842:30 2840:. 2836:. 2816:. 2806:29 2804:. 2800:. 2780:. 2772:. 2760:. 2750:pp 2696:. 2692:. 2656:. 2646:58 2644:. 2554:. 2546:. 2538:. 2526:93 2524:. 2499:. 2489:17 2487:. 2483:. 2460:. 2452:. 2444:. 2436:. 2422:. 2399:. 2391:. 2383:. 2375:. 2357:. 2334:. 2324:. 2314:. 2306:. 2292:. 2288:. 2265:. 2257:. 2249:. 2241:. 2227:. 2223:. 2196:. 2192:. 2178:^ 2157:. 2149:. 2137:. 2133:. 2110:. 2102:. 2094:. 2082:. 2059:. 2051:. 2026:. 2018:. 2006:. 1983:. 1975:. 1967:. 1955:. 1932:. 1920:38 1918:. 1895:. 1862:. 1854:. 1846:. 1832:. 1828:. 1805:. 1797:. 1787:93 1785:. 1781:. 1758:. 1750:. 1742:. 1734:. 1722:91 1720:. 1697:. 1689:. 1681:. 1667:. 1644:. 1636:. 1628:. 1620:. 1606:. 1583:. 1575:. 1567:. 1559:. 1547:84 1545:. 1522:. 1514:. 1506:. 1498:. 1484:. 1480:. 1457:. 1449:. 1441:. 1433:. 1421:79 1419:. 1415:. 1401:^ 1387:. 1379:. 1371:. 1359:34 1357:. 1334:. 1324:30 1322:. 1318:. 1292:. 1282:29 1280:. 1276:. 1248:. 1238:62 1236:. 1230:. 1204:. 1196:. 1159:. 1151:. 1141:. 1131:21 1125:. 1077:. 1073:. 1042:. 1034:. 1024:53 1022:. 994:. 946:^ 904:. 892:. 888:. 855:^ 845:. 820:. 810:20 808:. 804:. 768:. 756:. 750:. 735:^ 725:. 721:. 160:, 123:. 2987:: 2969:: 2906:. 2887:. 2860:. 2856:: 2848:: 2824:. 2820:: 2812:: 2788:. 2768:: 2725:. 2706:. 2683:. 2664:. 2652:: 2586:. 2562:. 2550:: 2542:: 2532:: 2509:. 2503:: 2495:: 2468:. 2448:: 2440:: 2430:: 2407:. 2387:: 2379:: 2369:: 2342:. 2318:: 2310:: 2300:: 2273:. 2253:: 2245:: 2235:: 2208:. 2172:. 2153:: 2145:: 2118:. 2098:: 2090:: 2067:. 2055:: 2034:. 2022:: 2014:: 1991:. 1971:: 1963:: 1940:. 1936:: 1926:: 1903:. 1870:. 1858:: 1850:: 1840:: 1813:. 1801:: 1793:: 1766:. 1746:: 1738:: 1728:: 1705:. 1693:: 1685:: 1675:: 1652:. 1632:: 1624:: 1614:: 1591:. 1571:: 1563:: 1553:: 1530:. 1510:: 1502:: 1492:: 1465:. 1445:: 1437:: 1427:: 1395:. 1383:: 1375:: 1365:: 1342:. 1338:: 1330:: 1300:. 1296:: 1288:: 1258:. 1252:: 1244:: 1212:. 1200:: 1181:. 1155:: 1137:: 1096:. 1085:: 1079:5 1050:. 1038:: 1030:: 1006:. 976:. 927:. 908:: 900:: 830:. 824:: 816:: 778:. 772:: 764:: 758:9 519:A 515:B 511:A 503:B 499:A 495:B 491:A 321:B 317:A 300:B 296:B 292:A 281:B 277:A 269:B 265:A 261:A 257:B 249:A 245:B 241:B 237:B 233:A 229:A 213:B 209:A 201:A 197:B 193:A 189:B 185:B 181:A 177:B 173:A

Index


thought experiment
second law of thermodynamics
James Clerk Maxwell
Lord Kelvin
demon
kinetic temperature
entropy
system
work
philosophy of science
theoretical physics
thermodynamics
information theory
thought experiment
Maxwell
Peter Guthrie Tait
John William Strutt
thermodynamics
William Thomson (Lord Kelvin)
Nature
Greek mythology
daemon
temperature
isolated system
entropy
gas
molecules
demon
speed

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑