Knowledge

Manning formula

Source đź“ť

381:
is one of the properties of a channel that controls water discharge. It also determines how much work the channel can do, for example, in moving sediment. All else equal, a river with a larger hydraulic radius will have a higher flow velocity, and also a larger cross sectional area through which that
582:
was introduced in 1768 while the Gauckler–Manning coefficient was first developed in 1865, well before the classical pipe flow resistance experiments in the 1920–1930s. Historically both the Chézy and the Gauckler–Manning coefficients were expected to be constant and functions of the roughness only.
577:
is valid using the hydraulic diameter as equivalent pipe diameter. It is the only best and sound method to estimate the energy loss in human made open channels. For various reasons (mainly historical reasons), empirical resistance coefficients (e.g. Chézy, Gauckler–Manning–Strickler) were and are
569:
values are lower for individual shrubs with leaves than for the shrubs without leaves. This is due to the ability of the plant's leaves to streamline and flex as the flow passes them thus lowering the resistance to flow. High velocity flows will cause some vegetation (such as grasses and forbs) to
594:
varies with the flow depth in partially filled circular pipes. A complete set of explicit equations that can be used to calculate the depth of flow and other unknown variables when applying the Manning equation to circular pipes is available. These equations account for the variation of
176: 583:
But it is now well recognised that these coefficients are only constant for a range of flow rates. Most friction coefficients (except perhaps the Darcy–Weisbach friction factor) are estimated
590:
One of the most important applications of the Manning equation is its use in sewer design. Sewers are often constructed as circular pipes. It has long been accepted that the value of
434: 473:
For channels of a given width, the hydraulic radius is greater for deeper channels. In wide rectangular channels, the hydraulic radius is approximated by the flow depth.
632: 47: 484:
as the name may suggest, but one quarter in the case of a full pipe. It is a function of the shape of the pipe, channel, or river in which the water is flowing.
561:
values for a given reach will vary greatly depending on the time of year and the velocity of flow. Summer vegetation will typically have a significantly higher
76:
The Gauckler–Manning formula is used to estimate the average velocity of water flowing in an open channel in locations where it is not practical to construct a
954:
Freeman, Gary E.; Copeland, Ronald R.; Rahmeyer, William; Derrick, David L. (1998). "Field Determination of Manning'snValue for Shrubs and Woody Vegetation".
535: 844: 35:(flowing in a conduit that does not completely enclose the liquid). However, this equation is also used for calculation of flow variables in case of 320:, having dimension of L/T and units of m/s; it varies from 20 m/s (rough stone and rough surface) to 80 m/s (smooth concrete and cast iron). 530:, will likely vary along a natural channel. Accordingly, more error is expected in estimating the average velocity by assuming a Manning's 1171: 1210: 84:
to measure flow with greater accuracy. Manning's equation is also commonly used as part of a numerical step method, such as the
389:
at the boundary' assumption, hydraulic radius is defined as the ratio of the channel's cross-sectional area of the flow to its
1140: 1119: 1095: 971: 938: 102: 1237: 1205: 382:
faster water can travel. This means the greater the hydraulic radius, the larger volume of water the channel can carry.
39:, as they also possess a free surface like that of open channel flow. All flow in so-called open channels is driven by 1423: 36: 1469: 1428: 996:, Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, p. 94 1196: 1181: 670: 507:, is an empirically derived coefficient, which is dependent on many factors, including surface roughness and 641: 637: 52: 399: 1306: 1296: 697: 574: 1042:
Akgiray, Ă–mer (2005). "Explicit solutions of the Manning equation for partially filled circular pipes".
748: 487:
Hydraulic radius is also important in determining a channel's efficiency (its ability to move water and
1433: 1186: 1311: 1301: 744: 649: 58: 990:
WinXSPRO, A Channel Cross Section Analyzer, User's Manual, Version 3.0. Gen. Tech. Rep. RMRS-GTR-147
722: 1291: 1230: 549:
values vary greatly along its reach, and will even vary in a given reach of channel with different
386: 1454: 1382: 1151: 1479: 1474: 1402: 1367: 626: 526:
along a natural (earthen, stone or vegetated) channel reach. Cross sectional area, as well as
28: 1347: 1326: 1275: 324: 869: 791: 359:. In the 2000s this formula was derived theoretically using the phenomenological theory of 356: 349: 85: 845:"Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory" 579: 8: 1342: 1223: 242: 873: 795: 614: 1459: 1372: 1362: 1191: 1016: 909: 859: 782:
Gioia, G.; Bombardelli, F. A. (2001). "Scaling and Similarity in Rough Channel Flows".
587:
and they apply only to fully rough turbulent water flows under steady flow conditions.
492: 481: 372: 238: 1357: 1316: 1136: 1115: 1091: 1059: 1024: 967: 934: 901: 893: 825: 817: 550: 32: 282:. It can be left off, as long as you make sure to note and correct the units in the 1051: 959: 913: 885: 877: 807: 799: 676: 466: 390: 70: 881: 803: 692: 1464: 1387: 1377: 1352: 1265: 1175: 1130: 1109: 1085: 928: 88:, for delineating the free surface profile of water flowing in an open channel. 1407: 1392: 1081: 988: 725:[Theoretical and practical studies on the flow and movement of water]. 664: 570:
lay flat, where a lower velocity of flow through the same vegetation will not.
565:
value due to leaves and seasonal vegetation. Research has shown, however, that
1448: 1397: 1063: 963: 897: 821: 608: 522:
The friction coefficients across weirs and orifices are less subjective than
308:
for English units. (Note: (1 m)/s = (3.2808399 ft)/s = 1.4859 ft/s)
279: 1028: 905: 829: 234: 723:"Etudes théoriques et pratiques sur l'ecoulement et le mouvement des eaux" 539: 312:
Note: the Strickler coefficient is the reciprocal of Manning coefficient:
1270: 1105: 769: 658: 620: 340:, can be used to rewrite Gauckler–Manning's equation by substitution for 246: 1020: 864: 599:
with the depth of flow in accordance with the curves presented by Camp.
1260: 1246: 812: 702: 360: 511:. When field inspection is not possible, the best method to determine 491:), and is one of the properties used by water engineers to assess the 245:
loss (dimension of L/L, units of m/m or ft/ft); it is the same as the
508: 1055: 889: 488: 352:(discharge) without knowing the limiting or actual flow velocity. 40: 450: 214:
is not dimensionless, having dimension of T/L and units of s/m.
189: 953: 393:(the portion of the cross-section's perimeter that is "wet"): 1215: 753:
Transactions of the Institution of Civil Engineers of Ireland
557:
will decrease with stage, at least up to bank-full. Overbank
81: 1007:
Camp, T. R. (1946). "Design of Sewers to Facilitate Flow".
193: 77: 61:
in 1890. Thus, the formula is also known in Europe as the
294:
is just the dimensional analysis to convert to English.
275: 57:
in 1867, and later re-developed by the Irish engineer
1192:
Manning formula calculator for several channel shapes
519:
has been determined using Gauckler–Manning's formula.
188:
is the cross-sectional average velocity (dimension of
171:{\displaystyle V={\frac {k}{n}}{R_{h}}^{2/3}\,S^{1/2}} 1182:
Hydraulic Radius Design Equations Formulas Calculator
402: 105: 1129:
Grant, Douglas M. (1989). Diane K. Walkowiak (ed.).
987:
Hardy, Thomas; Panja, Palavi; Mathias, Dean (2005),
836: 775: 503:The Gauckler–Manning coefficient, often denoted as 947: 428: 170: 31:estimating the average velocity of a liquid in an 1159:. Vol. 21. US: National Bureau of Standards. 986: 749:"On the flow of water in open channels and pipes" 1446: 930:An Introduction to Hydrodynamics and Water Waves 842: 781: 956:Engineering Approaches to Ecosystem Restoration 498: 515:is to use photographs of river channels where 46:It was first presented by the French engineer 1231: 1172:Scaling and Similarity in Rough Channel Flows 1132:Isco Open Channel Flow Measurement Handbook 602: 538:), or measuring it across weirs, flumes or 1238: 1224: 980: 926: 920: 16:Estimate of velocity in open channel flows 863: 811: 249:slope when the water depth is constant. ( 149: 1149: 720: 534:, than by direct sampling (i.e., with a 459:is the cross sectional area of flow (L); 1153:Laws of turbulent flow in open channels 1080: 1041: 1035: 843:Gioia, G.; Chakraborty, Pinaki (2006). 743: 708: 1447: 1211:Interactive demo of Manning's equation 355:The formula can be obtained by use of 1219: 1128: 1044:Canadian Journal of Civil Engineering 96:The Gauckler–Manning formula states: 1104: 1006: 429:{\displaystyle R_{h}={\frac {A}{P}}} 1087:The hydraulics of open channel flow 1000: 366: 13: 1150:Keulegan, Garbis Hovannes (1938). 1090:. Elsevier Butterworth Heinemann. 1073: 553:of flow. Most research shows that 67:Gauckler–Manning–Strickler formula 14: 1491: 1165: 682:Cyril Frank Colebrook (1910–1997) 655:Wilhelm Rudolf Kutter (1818–1888) 348:then allows an estimate of the 274:is a conversion factor between 37:flow in partially full conduits 1245: 1206:Table of values of Manning's n 1187:History of the Manning Formula 763: 737: 714: 91: 1: 1201:values associated with photos 1178: (archived July 16, 2011) 882:10.1103/PhysRevLett.96.044502 804:10.1103/PhysRevLett.88.014501 671:Paul Richard Heinrich Blasius 290:in the traditional SI units, 927:Le Mehaute, Bernard (2013). 499:Gauckler–Manning coefficient 204:Gauckler–Manning coefficient 7: 686: 210:are often omitted, however 10: 1496: 370: 1416: 1335: 1312:Hydrological optimization 1302:Groundwater flow equation 1284: 1253: 633:Philippe Gaspard Gauckler 449:is the hydraulic radius ( 48:Philippe Gaspard Gauckler 933:. Springer. p. 84. 603:Authors of flow formulas 476:The hydraulic radius is 196:; units of ft/s or m/s); 63:Gauckler–Manning formula 1307:Hazen–Williams equation 1297:Darcy–Weisbach equation 1111:Open-channel Hydraulics 852:Physical Review Letters 784:Physical Review Letters 698:Darcy–Weisbach equation 575:Darcy–Weisbach equation 385:Based on the 'constant 721:Gauckler, Ph. (1867). 627:Julius Ludwig Weisbach 573:In open channels, the 430: 172: 1470:Hydraulic engineering 1327:Pipe network analysis 1292:Bernoulli's principle 1276:Hydraulic engineering 431: 371:Further information: 173: 1009:Sewage Works Journal 964:10.1061/40382(1998)7 709:Notes and references 545:In natural streams, 400: 357:dimensional analysis 350:volumetric flow rate 103: 86:standard step method 1114:. Blackburn Press. 874:2006PhRvL..96d4502G 796:2002PhRvL..88a4501G 286:term. If you leave 243:hydraulic head loss 772:(1959) pp. 262-267 493:channel's capacity 482:hydraulic diameter 426: 373:Hydraulic diameter 301:for SI units, and 239:hydraulic gradient 168: 25:Manning's equation 1442: 1441: 1317:Open-channel flow 1142:978-0-9622757-3-9 1135:. Teledyne Isco. 1121:978-1-932846-18-8 1097:978-0-7506-5978-9 973:978-0-7844-0382-2 940:978-3-642-85567-2 580:ChĂ©zy coefficient 536:current flowmeter 424: 120: 33:open channel flow 29:empirical formula 1487: 1240: 1233: 1226: 1217: 1216: 1200: 1160: 1158: 1146: 1125: 1101: 1068: 1067: 1039: 1033: 1032: 1004: 998: 997: 995: 984: 978: 977: 951: 945: 944: 924: 918: 917: 867: 849: 840: 834: 833: 815: 779: 773: 767: 761: 760: 741: 735: 734: 718: 677:Albert Strickler 645: 615:Antoine de ChĂ©zy 598: 593: 585:100% empirically 578:still used. The 568: 564: 560: 556: 548: 533: 529: 525: 518: 514: 506: 467:wetted perimeter 464: 458: 448: 435: 433: 432: 427: 425: 417: 412: 411: 391:wetted perimeter 379:hydraulic radius 367:Hydraulic radius 347: 343: 339: 319: 315: 307: 300: 293: 289: 285: 273: 267: 232: 225:hydraulic radius 222: 213: 209: 201: 187: 177: 175: 174: 169: 167: 166: 162: 148: 147: 143: 134: 133: 132: 121: 113: 71:Albert Strickler 56: 1495: 1494: 1490: 1489: 1488: 1486: 1485: 1484: 1445: 1444: 1443: 1438: 1417:Public networks 1412: 1331: 1321:Manning formula 1280: 1266:Hydraulic fluid 1249: 1244: 1198: 1176:Wayback Machine 1168: 1163: 1156: 1143: 1122: 1098: 1082:Chanson, Hubert 1076: 1074:Further reading 1071: 1056:10.1139/l05-001 1040: 1036: 1005: 1001: 993: 985: 981: 974: 952: 948: 941: 925: 921: 865:physics/0507066 847: 841: 837: 780: 776: 768: 764: 745:Manning, Robert 742: 738: 719: 715: 711: 689: 635: 605: 596: 591: 566: 562: 558: 554: 546: 531: 527: 523: 516: 512: 504: 501: 462: 456: 447: 443: 416: 407: 403: 401: 398: 397: 375: 369: 345: 344:. Solving for 341: 328: 317: 313: 302: 295: 291: 287: 283: 271: 262: 250: 230: 221: 217: 211: 207: 199: 185: 158: 154: 150: 139: 135: 128: 124: 123: 122: 112: 104: 101: 100: 94: 50: 21:Manning formula 17: 12: 11: 5: 1493: 1483: 1482: 1477: 1472: 1467: 1462: 1457: 1455:Fluid dynamics 1440: 1439: 1437: 1436: 1431: 1426: 1420: 1418: 1414: 1413: 1411: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1339: 1337: 1333: 1332: 1330: 1329: 1324: 1314: 1309: 1304: 1299: 1294: 1288: 1286: 1282: 1281: 1279: 1278: 1273: 1268: 1263: 1257: 1255: 1251: 1250: 1243: 1242: 1235: 1228: 1220: 1214: 1213: 1208: 1203: 1194: 1189: 1184: 1179: 1167: 1166:External links 1164: 1162: 1161: 1147: 1141: 1126: 1120: 1102: 1096: 1077: 1075: 1072: 1070: 1069: 1050:(3): 490–499. 1034: 999: 979: 972: 946: 939: 919: 835: 774: 762: 736: 727:Comptes Rendus 712: 710: 707: 706: 705: 700: 695: 688: 685: 684: 683: 680: 674: 668: 665:Ludwig Prandtl 662: 656: 653: 650:Robert Manning 647: 630: 624: 618: 612: 604: 601: 500: 497: 471: 470: 460: 454: 445: 437: 436: 423: 420: 415: 410: 406: 368: 365: 310: 309: 269: 258: 228: 219: 215: 197: 179: 178: 165: 161: 157: 153: 146: 142: 138: 131: 127: 119: 116: 111: 108: 93: 90: 59:Robert Manning 15: 9: 6: 4: 3: 2: 1492: 1481: 1480:Geomorphology 1478: 1476: 1475:Sedimentology 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1452: 1450: 1435: 1432: 1430: 1427: 1425: 1422: 1421: 1419: 1415: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1383:Power network 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1340: 1338: 1334: 1328: 1325: 1322: 1318: 1315: 1313: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1289: 1287: 1283: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1258: 1256: 1252: 1248: 1241: 1236: 1234: 1229: 1227: 1222: 1221: 1218: 1212: 1209: 1207: 1204: 1202: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1177: 1173: 1170: 1169: 1155: 1154: 1148: 1144: 1138: 1134: 1133: 1127: 1123: 1117: 1113: 1112: 1107: 1103: 1099: 1093: 1089: 1088: 1083: 1079: 1078: 1065: 1061: 1057: 1053: 1049: 1045: 1038: 1030: 1026: 1022: 1018: 1014: 1010: 1003: 992: 991: 983: 975: 969: 965: 961: 957: 950: 942: 936: 932: 931: 923: 915: 911: 907: 903: 899: 895: 891: 887: 883: 879: 875: 871: 866: 861: 858:(4): 044502. 857: 853: 846: 839: 831: 827: 823: 819: 814: 809: 805: 801: 797: 793: 790:(1): 014501. 789: 785: 778: 771: 766: 758: 754: 750: 746: 740: 732: 729:(in French). 728: 724: 717: 713: 704: 701: 699: 696: 694: 693:ChĂ©zy formula 691: 690: 681: 678: 675: 672: 669: 666: 663: 660: 657: 654: 651: 648: 643: 639: 634: 631: 628: 625: 622: 619: 616: 613: 610: 609:Albert Brahms 607: 606: 600: 588: 586: 581: 576: 571: 552: 543: 541: 537: 520: 510: 496: 494: 490: 485: 483: 479: 474: 468: 461: 455: 452: 442: 441: 440: 421: 418: 413: 408: 404: 396: 395: 394: 392: 388: 383: 380: 374: 364: 362: 358: 353: 351: 338: 335: 331: 326: 321: 305: 298: 281: 280:English units 277: 270: 266: 261: 257: 253: 248: 244: 241:, the linear 240: 236: 229: 226: 216: 205: 198: 195: 191: 184: 183: 182: 163: 159: 155: 151: 144: 140: 136: 129: 125: 117: 114: 109: 106: 99: 98: 97: 89: 87: 83: 79: 74: 72: 68: 64: 60: 54: 49: 44: 42: 38: 34: 30: 26: 22: 1403:Rescue tools 1368:Drive system 1336:Technologies 1320: 1152: 1131: 1110: 1106:Chow, Ven Te 1086: 1047: 1043: 1037: 1012: 1008: 1002: 989: 982: 955: 949: 929: 922: 855: 851: 838: 787: 783: 777: 765: 756: 752: 739: 730: 726: 716: 589: 584: 572: 544: 521: 502: 486: 477: 475: 472: 438: 387:shear stress 384: 378: 376: 354: 336: 333: 329: 322: 311: 303: 296: 264: 259: 255: 251: 235:stream slope 224: 203: 180: 95: 75: 66: 62: 45: 24: 20: 18: 1348:Accumulator 1271:Fluid power 1015:(1): 3–16. 813:2142/112681 679:(1887–1963) 673:(1883–1970) 667:(1875–1953) 661:(1843–1917) 659:Henri Bazin 652:(1816–1897) 646:(1826–1905) 636: [ 629:(1806-1871) 623:(1803–1858) 621:Henry Darcy 617:(1718–1798) 611:(1692–1758) 247:channel bed 227:(L; ft, m); 206:. Units of 92:Formulation 51: [ 1449:Categories 1434:Manchester 1261:Hydraulics 1247:Hydraulics 759:: 161–207. 733:: 818–822. 703:Hydraulics 361:turbulence 1460:Hydrology 1424:Liverpool 1343:Machinery 1064:0315-1468 958:: 48–53. 898:0031-9007 822:0031-9007 509:sinuosity 480:half the 327:formula, 325:discharge 1373:Manifold 1363:Cylinder 1285:Modeling 1254:Concepts 1197:Manning 1108:(2009). 1084:(2004). 1029:21011592 1021:25030187 906:16486828 890:2142/984 830:11800954 747:(1891). 687:See also 540:orifices 489:sediment 1358:Circuit 1174:at the 914:7439208 870:Bibcode 792:Bibcode 465:is the 439:where: 233:is the 223:is the 202:is the 181:where: 69:(after 41:gravity 1465:Piping 1429:London 1139:  1118:  1094:  1062:  1027:  1019:  970:  937:  912:  904:  896:  828:  820:  551:stages 306:= 1.49 27:is an 1388:Press 1378:Motor 1353:Brake 1157:(PDF) 1017:JSTOR 994:(PDF) 910:S2CID 860:arXiv 848:(PDF) 644:] 82:flume 55:] 1408:Seal 1393:Pump 1137:ISBN 1116:ISBN 1092:ISBN 1060:ISSN 1025:PMID 968:ISBN 935:ISBN 902:PMID 894:ISSN 826:PMID 818:ISSN 770:Chow 469:(L). 377:The 323:The 278:and 78:weir 19:The 1398:Ram 1052:doi 960:doi 886:hdl 878:doi 808:hdl 800:doi 542:. 478:not 316:=1/ 299:= 1 237:or 80:or 73:). 65:or 43:. 23:or 1451:: 1058:. 1048:32 1046:. 1023:. 1013:18 1011:. 966:. 908:. 900:. 892:. 884:. 876:. 868:. 856:96 854:. 850:. 824:. 816:. 806:. 798:. 788:88 786:. 757:20 755:. 751:. 731:64 642:fr 640:; 638:de 495:. 453:); 363:. 332:= 314:Ks 276:SI 268:). 254:= 53:fr 1323:) 1319:( 1239:e 1232:t 1225:v 1199:n 1145:. 1124:. 1100:. 1066:. 1054:: 1031:. 976:. 962:: 943:. 916:. 888:: 880:: 872:: 862:: 832:. 810:: 802:: 794:: 597:n 592:n 567:n 563:n 559:n 555:n 547:n 532:n 528:n 524:n 517:n 513:n 505:n 463:P 457:A 451:L 446:h 444:R 422:P 419:A 414:= 409:h 405:R 346:Q 342:V 337:V 334:A 330:Q 318:n 304:k 297:k 292:k 288:n 284:n 272:k 265:L 263:/ 260:f 256:h 252:S 231:S 220:h 218:R 212:n 208:n 200:n 194:T 192:/ 190:L 186:V 164:2 160:/ 156:1 152:S 145:3 141:/ 137:2 130:h 126:R 118:n 115:k 110:= 107:V

Index

empirical formula
open channel flow
flow in partially full conduits
gravity
Philippe Gaspard Gauckler
fr
Robert Manning
Albert Strickler
weir
flume
standard step method
L
T
stream slope
hydraulic gradient
hydraulic head loss
channel bed
SI
English units
discharge
volumetric flow rate
dimensional analysis
turbulence
Hydraulic diameter
shear stress
wetted perimeter
L
wetted perimeter
hydraulic diameter
sediment

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑