Knowledge

Main sequence

Source šŸ“

1838: 2043:
the star, the core gradually gets compressed. This brings hydrogen-rich material into a shell around the helium-rich core at a depth where the pressure is sufficient for fusion to occur. The high power output from this shell pushes the higher layers of the star further out. This causes a gradual increase in the radius and consequently luminosity of the star over time. For example, the luminosity of the early Sun was only about 70% of its current value. As a star ages it thus changes its position on the HR diagram. This evolution is reflected in a broadening of the main sequence band which contains stars at various evolutionary stages.
733: 947: 2007:) the rate of energy generation by the CNO cycle is very sensitive to temperature, so the fusion is highly concentrated at the core. Consequently, there is a high temperature gradient in the core region, which results in a convection zone for more efficient energy transport. This mixing of material around the core removes the helium ash from the hydrogen-burning region, allowing more of the hydrogen in the star to be consumed during the main-sequence lifetime. The outer regions of a massive star transport energy by radiation, with little or no convection. 2559: 1857: 1969: 2547: 2031: 6934: 1922:, the upper main sequence consists of stars above this mass. Thus, roughly speaking, stars of spectral class F or cooler belong to the lower main sequence, while A-type stars or hotter are upper main-sequence stars. The transition in primary energy production from one form to the other spans a range difference of less than a single solar mass. In the Sun, a one solar-mass star, only 1.5% of the energy is generated by the CNO cycle. By contrast, stars with 1.8 6848: 228: 2115: 6898: 6922: 6886: 527:. The MK classification assigned each star a spectral typeā€”based on the Harvard classificationā€”and a luminosity class. The Harvard classification had been developed by assigning a different letter to each star based on the strength of the hydrogen spectral line before the relationship between spectra and temperature was known. When ordered by temperature and when duplicate classes were removed, the 6910: 38: 6859: 575: 786:(or HR diagram) called the standard main sequence. Astronomers will sometimes refer to this stage as "zero-age main sequence", or ZAMS. The ZAMS curve can be calculated using computer models of stellar properties at the point when stars begin hydrogen fusion. From this point, the brightness and surface temperature of stars typically increase with age. 2149:. The energy output of the helium fusion process per unit mass is only about a tenth the energy output of the hydrogen process, and the luminosity of the star increases. This results in a much shorter length of time in this stage compared to the main-sequence lifetime. (For example, the Sun is predicted to spend 1939:. The theoretical explanation for this limit is that stars above this mass can not radiate energy fast enough to remain stable, so any additional mass will be ejected in a series of pulsations until the star reaches a stable limit. The lower limit for sustained proton-proton nuclear fusion is about 0.08 2042:
As non-fusing helium accumulates in the core of a main-sequence star, the reduction in the abundance of hydrogen per unit mass results in a gradual lowering of the fusion rate within that mass. Since it is fusion-supplied power that maintains the pressure of the core and supports the higher layers of
789:
A star remains near its initial position on the main sequence until a significant amount of hydrogen in the core has been consumed, then begins to evolve into a more luminous star. (On the HR diagram, the evolving star moves up and to the right of the main sequence.) Thus the main sequence represents
503:
As evolutionary models of stars were developed during the 1930s, it was shown that, for stars with the same composition, the star's mass determines its luminosity and radius. Conversely, when a star's chemical composition and its position on the main sequence are known, the star's mass and radius can
2641:
is formed at about the same time, the main-sequence lifespan of these stars will depend on their individual masses. The most massive stars will leave the main sequence first, followed in sequence by stars of ever lower masses. The position where stars in the cluster are leaving the main sequence is
2490:
Although more massive stars have more fuel to burn and might intuitively be expected to last longer, they also radiate a proportionately greater amount with increased mass. This is required by the stellar equation of state; for a massive star to maintain equilibrium, the outward pressure of radiated
760:, the initial composition is homogeneous throughout, consisting of about 70% hydrogen, 28% helium, and trace amounts of other elements, by mass. The initial mass of the star depends on the local conditions within the cloud. (The mass distribution of newly formed stars is described empirically by the 1879:
All main-sequence stars have a core region where energy is generated by nuclear fusion. The temperature and density of this core are at the levels necessary to sustain the energy production that will support the remainder of the star. A reduction of energy production would cause the overlaying mass
491:
Of the red stars observed by Hertzsprung, the dwarf stars also followed the spectra-luminosity relationship discovered by Russell. However, giant stars are much brighter than dwarfs and so do not follow the same relationship. Russell proposed that "giant stars must have low density or great surface
2122:
The total amount of energy that a star can generate through nuclear fusion of hydrogen is limited by the amount of hydrogen fuel that can be consumed at the core. For a star in equilibrium, the thermal energy generated at the core must be at least equal to the energy radiated at the surface. Since
1887:
Main-sequence stars employ two types of hydrogen fusion processes, and the rate of energy generation from each type depends on the temperature in the core region. Astronomers divide the main sequence into upper and lower parts, based on which of the two is the dominant fusion process. In the lower
191:
that produces helium from hydrogen atoms. Main-sequence stars with more than two solar masses undergo convection in their core regions, which acts to stir up the newly created helium and maintain the proportion of fuel needed for fusion to occur. Below this mass, stars have cores that are entirely
2014:
may transport energy primarily by radiation, with a small core convection region. Medium-sized, low-mass stars like the Sun have a core region that is stable against convection, with a convection zone near the surface that mixes the outer layers. This results in a steady buildup of a helium-rich
921:
are indeed much smaller and dimmer than other stars of those colors. However, for hotter blue and white stars, the difference in size and brightness between so-called "dwarf" stars that are on the main sequence and so-called "giant" stars that are not, becomes smaller. For the hottest stars the
459:
noticed that the reddest starsā€”classified as K and M in the Harvard schemeā€”could be divided into two distinct groups. These stars are either much brighter than the Sun or much fainter. To distinguish these groups, he called them "giant" and "dwarf" stars. The following year he began studying
487:
and many of which had been categorized at Harvard. When he plotted the spectral types of these stars against their absolute magnitude, he found that dwarf stars followed a distinct relationship. This allowed the real brightness of a dwarf star to be predicted with reasonable accuracy.
2532:, the luminosity of the star varies as the mass to the power of 2.3, producing a flattening of the slope on a graph of mass versus luminosity. Even these refinements are only an approximation, however, and the mass-luminosity relation can vary depending on a star's composition. 2050:
that can alter the observed stellar parameters. However, even perfect observation would show a fuzzy main sequence because mass is not the only parameter that affects a star's color and luminosity. Variations in chemical composition caused by the initial abundances, the star's
2599:, the hydrogen surrounding the helium core reaches sufficient temperature and pressure to undergo fusion, forming a hydrogen-burning shell and causing the outer layers of the star to expand and cool. The stage as these stars move away from the main sequence is known as the 2554:
When a main-sequence star has consumed the hydrogen at its core, the loss of energy generation causes its gravitational collapse to resume and the star evolves off the main sequence. The path which the star follows across the HR diagram is called an evolutionary track.
1996:
the energy is transported by bulk movement of plasma, with hotter material rising and cooler material descending. Convection is a more efficient mode for carrying energy than radiation, but it will only occur under conditions that create a steep temperature gradient.
1880:
to compress the core, resulting in an increase in the fusion rate because of higher temperature and pressure. Likewise, an increase in energy production would cause the star to expand, lowering the pressure at the core. Thus the star forms a self-regulating system in
1112:, and its extremely slow increase reflects the fact that the rate of energy generation in the core strongly depends on this temperature, whereas it has to fit the mass-luminosity relation. Thus, a too-high or too-low temperature will result in stellar instability. 2622:. They follow approximately horizontal evolutionary tracks from the main sequence across the top of the Hā€“R diagram. Supergiants are relatively rare and do not show prominently on most Hā€“R diagrams. Their cores will eventually collapse, usually leading to a 2610:
When the helium core of low-mass stars becomes degenerate, or the outer layers of intermediate-mass stars cool sufficiently to become opaque, their hydrogen shells increase in temperature and the stars start to become more luminous. This is known as the
2495:
rise to match the titanic inward gravitational pressure of its envelope. Thus, the most massive stars may remain on the main sequence for only a few million years, while stars with less than a tenth of a solar mass may last for over a trillion years.
2385: 2588:
when energy generation by nuclear fusion of hydrogen at their core comes to a halt, but stars in this mass range have main-sequence lifetimes longer than the current age of the universe, so no stars are old enough for this to have occurred.
926:
which indicate whether a star is on or off the main sequence. Nevertheless, very hot main-sequence stars are still sometimes called dwarfs, even though they have roughly the same size and brightness as the "giant" stars of that temperature.
2525:, the opacity becomes dependent on temperature, resulting in the luminosity varying approximately as the fourth power of the star's mass. For very low-mass stars, molecules in the atmosphere also contribute to the opacity. Below about 0.5 97:, and positions of stars on and off the band are believed to indicate their physical properties, as well as their progress through several types of star life-cycles. These are the most numerous true stars in the universe and include the 144:
from the overlying layers. The strong dependence of the rate of energy generation on temperature and pressure helps to sustain this balance. Energy generated at the core makes its way to the surface and is radiated away at the
535:
for memorizing this sequence of stellar classes is "Oh Be A Fine Girl/Guy, Kiss Me".) The luminosity class ranged from I to V, in order of decreasing luminosity. Stars of luminosity class V belonged to the main sequence.
136:. During this stage of the star's lifetime, it is located on the main sequence at a position determined primarily by its mass but also based on its chemical composition and age. The cores of main-sequence stars are in 499:
introduced the term Hertzsprungā€“Russell diagram to denote a luminosity-spectral class diagram. This name reflected the parallel development of this technique by both Hertzsprung and Russell earlier in the century.
1875:
fusion processes at different temperatures (T). The dashed line shows the combined energy generation of the PP and CNO processes within a star. At the Sun's core temperature, the PP process is more efficient.
2231:
The amount of fuel available for nuclear fusion is proportional to the mass of the star. Thus, the lifetime of a star on the main sequence can be estimated by comparing it to solar evolutionary models. The
1054:
The mass, radius, and luminosity of a star are closely interlinked, and their respective values can be approximated by three relations. First is the Stefanā€“Boltzmann law, which relates the luminosity
160:
The main sequence is sometimes divided into upper and lower parts, based on the dominant process that a star uses to generate energy. The Sun, along with main sequence stars below about 1.5 times the
1038: 192:
radiative with convective zones near the surface. With decreasing stellar mass, the proportion of the star forming a convective envelope steadily increases. The Main-sequence stars below 0.4 
2022:) are convective throughout. Thus the helium produced at the core is distributed across the star, producing a relatively uniform atmosphere and a proportionately longer main-sequence lifespan. 2507:. By contrast, a lower opacity means energy escapes more rapidly and the star must burn more fuel to remain in equilibrium. A sufficiently high opacity can result in energy transport via 479:
was following a similar course of research. He was studying the relationship between the spectral classification of stars and their actual brightness as corrected for distanceā€”their
2216: 1892:, which directly fuses hydrogen together in a series of stages to produce helium. Stars in the upper main sequence have sufficiently high core temperatures to efficiently use the 6699: 3338: 2485: 2242: 778:
When nuclear fusion of hydrogen becomes the dominant energy production process and the excess energy gained from gravitational contraction has been lost, the star lies along a
2102:. Main-sequence stars in this region experience only small changes in magnitude, so this variation is difficult to detect. Other classes of unstable main-sequence stars, like 2236:
has been a main-sequence star for about 4.5 billion years and it will become a red giant in 6.5 billion years, for a total main-sequence lifetime of roughly 10 years. Hence:
2454: 2423: 2090:. These stars vary in magnitude at regular intervals, giving them a pulsating appearance. The strip intersects the upper part of the main sequence in the region of class 1915:, the PP process and CNO cycle are equally efficient, and each type generates half of the star's net luminosity. As this is the core temperature of a star with about 1.5 877:. A star's energy emission as a function of wavelength is influenced by both its temperature and composition. A key indicator of this energy distribution is given by the 4691: 1191:) are relative to the Sunā€”a dwarf star with a spectral classification of G2 V. The actual values for a star may vary by as much as 20ā€“30% from the values listed below. 2618:
The most massive stars do not become red giants; instead, their cores quickly become hot enough to fuse helium and eventually heavier elements and they are known as
2098:
stars, which are between one and two solar masses. Pulsating stars in this part of the instability strip intersecting the upper part of the main sequence are called
3719:
Bahcall, John N.; Pinsonneault, M. H.; Basu, Sarbani (2003). "Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties".
930:
The common use of "dwarf" to mean the main sequence is confusing in another way because there are dwarf stars that are not main-sequence stars. For example, a
4912:
Bahcall, John N.; Pinsonneault, M.H.; Basu, Sarbani (2001). "Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties".
2118:
This plot gives an example of the mass-luminosity relationship for zero-age main-sequence stars. The mass and luminosity are relative to the present-day Sun.
2075:. These stars are fusing hydrogen in their cores and so they mark the lower edge of the main sequence fuzziness caused by variance in chemical composition. 909:
Main-sequence stars are called dwarf stars, but this terminology is partly historical and can be somewhat confusing. For the cooler stars, dwarfs such as
768:
generates energy through gravitational contraction. Once sufficiently dense, stars begin converting hydrogen into helium and giving off energy through an
57:(represented as Bāˆ’V). The main sequence is visible as a prominent diagonal band from upper left to lower right. This plot shows 22,000 stars from the 4716:
Girardi, L.; Bressan, A.; Bertelli, G.; Chiosi, C. (2000). "Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 M
4174: 740:
in star-forming regions. These are all regions of star formation that contain many hot young stars including several bright stars of spectral type O.
199:
undergo convection throughout their mass. When core convection does not occur, a helium-rich core develops surrounded by an outer layer of hydrogen.
464:; large groupings of stars that are co-located at approximately the same distance. For these stars, he published the first plots of color versus 4774: 2046:
Other factors that broaden the main sequence band on the HR diagram include uncertainty in the distance to stars and the presence of unresolved
3529:. At metallicity Z=0.01 the luminosity is 1.34 times solar luminosity. At metallicity Z=0.04 the luminosity is 0.89 times the solar luminosity. 2674:
By measuring the difference between these values, eliminates the need to correct the magnitudes for distance. However, this can be affected by
2615:; it is a relatively long-lived stage and it appears prominently in Hā€“R diagrams. These stars will eventually end their lives as white dwarfs. 512:
and Henry Norris Russell. It was subsequently discovered that this relationship breaks down somewhat for stars of the non-uniform composition.
2518:, which is nearly constant with increasing temperature. Thus the luminosity only increases as the cube of the star's mass. For stars below 10 531:
of stars followed, in order of decreasing temperature with colors ranging from blue to red, the sequence O, B, A, F, G, K, and M. (A popular
202:
The more massive a star is, the shorter its lifespan on the main sequence. After the hydrogen fuel at the core has been consumed, the star
3987: 3477: 1992:, where energy is transported by radiation, is stable against convection and there is very little mixing of the plasma. By contrast, in a 2940:
Kelly, Patrick L.; et al. (2 April 2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens".
3334: 2071:(with a very low abundance of elements with higher atomic numbers than helium) that lie just below the main sequence and are known as 934:
is the dead core left over after a star has shed its outer layers, and is much smaller than a main-sequence star, roughly the size of
5169:
Harris, Michael J.; Fowler, William A.; Caughlan, Georgeanne R.; Zimmerman, Barbara A. (1983). "Thermonuclear Reaction Rates, III".
3525:ā€”Compare, for example, the model isochrones generated for a ZAMS of 1.1 solar masses. This is listed in the table as 1.26 times the 3513: 2499:
The exact mass-luminosity relationship depends on how efficiently energy can be transported from the core to the surface. A higher
701: 1051:. As the position of a star on the HR diagram shows its approximate luminosity, this relation can be used to estimate its radius. 4584: 2503:
has an insulating effect that retains more energy at the core, so the star does not need to produce as much energy to remain in
4637:
Adams, Fred C.; Laughlin, Gregory (April 1997). "A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects".
3635: 4799:
Krauss, Lawrence M.; Chaboyer, Brian (2003). "Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology".
6731: 5072: 4986: 4902: 4695: 4621: 4526: 4452: 4424: 4389: 4305: 4255: 4152: 4064: 3943: 3789: 3703: 3550: 3415: 3279: 3244: 2924: 2870: 2772: 2724: 492:
brightness, and the reverse is true of dwarf stars". The same curve also showed that there were very few faint white stars.
986: 862:, as long as it is fusing hydrogen at its coreā€”and that is what almost all stars spend most of their "active" lives doing. 850:
The majority of stars on a typical HR diagram lie along the main-sequence curve. This line is pronounced because both the
3048:
Gloeckler, George; Geiss, Johannes (2004). "Composition of the local interstellar medium as diagnosed with pickup ions".
2573:(yellow). The dots outside the two sequences are mostly foreground and background stars with no relation to the clusters. 2067:
can all slightly change a main-sequence star's HR diagram position, to name just a few factors. As an example, there are
2646:. By knowing the main-sequence lifespan of stars at this point, it becomes possible to estimate the age of the cluster. 6706: 6025: 4413:
For a detailed historical reconstruction of the theoretical derivation of this relationship by Eddington in 1924, see:
2153:
burning helium, compared to about 12 billion years burning hydrogen.) Thus, about 90% of the observed stars above 0.5
62: 2996: 1837: 6418: 2562: 922:
difference is not directly observable and for these stars, the terms "dwarf" and "giant" refer to differences in
783: 232: 102: 42: 6961: 6711: 6348: 6332: 5367: 5131:
Fowler, William A.; Caughlan, Georgeanne R.; Zimmerman, Barbara A. (1975). "Thermonuclear Reaction Rates, II".
665: 6758: 6625: 2764: 2655: 1048: 17: 6956: 6741: 6692: 6667: 5960: 4382:
Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present
2161: 2123:
the luminosity gives the amount of energy radiated per unit time, the total life span can be estimated, to
1070: 694: 2380:{\displaystyle \tau _{\text{MS}}\approx 10^{10}{\text{years}}\left\left=10^{10}{\text{years}}\left^{-2.5}} 2182: 6682: 6662: 437: 6045: 6971: 6876: 6746: 6677: 6647: 4894: 4877: 4272: 3668: 2463: 539:
In April 2018, astronomers reported the detection of the most distant "ordinary" (i.e., main sequence)
509: 901:) light by means of filters. This difference in magnitude provides a measure of a star's temperature. 171:), primarily fuse hydrogen atoms together in a series of stages to form helium, a sequence called the 6753: 6630: 6607: 6189: 5638: 5633: 5628: 5623: 5618: 5613: 5043: 4778: 832: 827: 822: 817: 812: 807: 802: 737: 468:. These plots showed a prominent and continuous sequence of stars, which he named the Main Sequence. 2015:
core, surrounded by a hydrogen-rich outer region. By contrast, cool, very low-mass stars (below 0.4
732: 157:, with the latter occurring in regions with steeper temperature gradients, higher opacity, or both. 5896: 5770: 5405: 2432: 2401: 1147:
is the core temperature. This is suitable for stars at least as massive as the Sun, exhibiting the
977: 727: 650: 548: 505: 6672: 6423: 6222: 6132: 6092: 6074: 6000: 5571: 5497: 5303: 3892: 2504: 1889: 1881: 1864: 1851: 687: 172: 137: 3959:
Bressan, A. G.; Chiosi, C.; Bertelli, G. (1981). "Mass loss and overshooting in massive stars".
3781: 3208: 2887: 6833: 6813: 6585: 6580: 6478: 6373: 6322: 6127: 6117: 5790: 5588: 5556: 5447: 5430: 5099: 4996:
Chabrier, Gilles; Baraffe, Isabelle (2000). "Theory of Low-Mass Stars and Substellar Objects".
4611: 3991: 3484: 2716: 2675: 2160:
will be on the main sequence. On average, main-sequence stars are known to follow an empirical
2124: 2064: 1410: 1200: 859: 851: 765: 723: 634: 619: 516: 441: 239: 175:. Above this mass, in the upper main sequence, the nuclear fusion process mainly uses atoms of 141: 1950:. Below this threshold are sub-stellar objects that can not sustain hydrogen fusion, known as 6687: 6657: 6652: 6642: 6570: 6358: 5524: 4518: 4511: 3234: 967: 761: 753: 655: 520: 31: 5805: 5282: 5211: 5182: 5144: 5115: 5019: 4743: 3972: 3805:
Oey, M. S.; Clarke, C. J. (2005). "Statistical Confirmation of a Stellar Upper Mass Limit".
3312: 3296: 6828: 6726: 6716: 6565: 6533: 6327: 6122: 6107: 5420: 5325: 5278: 5236: 5207: 5178: 5140: 5111: 5015: 4931: 4808: 4739: 4656: 4555: 4481: 4344: 4222: 4183: 4103: 4021: 3968: 3906: 3867: 3824: 3738: 3606: 3308: 3111: 3057: 2961: 2835: 2808: 2760: 2103: 2099: 1872: 1829: 1546: 609: 524: 476: 472: 110: 8: 6966: 6926: 6288: 6271: 5942: 5844: 5667: 4212: 3239:, Astronomy and Astrophysics Library, Springer Science & Business Media, p. 39, 2515: 1098: 757: 675: 589: 433: 140:, where outward thermal pressure from the hot core is balanced by the inward pressure of 6428: 5329: 5290: 5240: 5219: 5190: 5152: 5123: 4935: 4812: 4660: 4559: 4485: 4348: 4226: 4187: 4107: 4081: 4025: 3910: 3871: 3828: 3742: 3610: 3509: 3353: 3115: 3061: 2965: 2839: 2812: 946: 838:
M-type (and, to a lesser extent, K-type) main-sequence stars are usually referred to as
428:
of stars were shown to have distinctive features, which allowed them to be categorized.
6914: 6902: 6823: 6784: 6736: 6721: 6635: 6575: 6498: 6408: 6378: 6368: 6312: 6234: 5925: 5561: 5360: 5057: 5031: 5005: 4947: 4921: 4887: 4832: 4755: 4729: 4672: 4646: 4362: 4334: 4119: 4093: 4037: 3840: 3814: 3774: 3754: 3728: 3268: 3190: 3135: 3101: 2977: 2951: 2709: 890: 670: 480: 402: 86: 50: 4588: 3089: 1972:
This diagram shows a cross-section of a Sun-like star, showing the internal structure.
1167:
The table below shows typical values for stars along the main sequence. The values of
496: 6774: 6199: 6172: 6152: 5952: 5736: 5724: 5551: 5531: 5485: 5467: 5435: 5095: 5068: 4982: 4898: 4824: 4617: 4522: 4448: 4420: 4385: 4357: 4322: 4301: 4251: 4219:
Proceedings of the 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun
4148: 4123: 4060: 4041: 3939: 3785: 3699: 3546: 3431: 3411: 3316: 3275: 3240: 3182: 3127: 2981: 2920: 2866: 2826:
Strƶmgren, Bengt (1933). "On the Interpretation of the Hertzsprung-Russell-Diagram".
2778: 2768: 2720: 2541: 2079: 2052: 1963: 918: 749: 660: 629: 456: 429: 203: 106: 58: 6259: 5035: 4951: 4836: 4759: 4676: 4366: 3758: 3639: 3194: 3139: 2862: 420:
In the early part of the 20th century, information about the types and distances of
6890: 6602: 6555: 6505: 6493: 6471: 6466: 6393: 6353: 6300: 6082: 6005: 5980: 5874: 5795: 5519: 5480: 5286: 5244: 5215: 5186: 5148: 5119: 5027: 5023: 4939: 4816: 4747: 4664: 4563: 4489: 4352: 4191: 4111: 4029: 3914: 3875: 3844: 3832: 3746: 3614: 3526: 3456: 3360:. Center for Astrophysics & Space Sciences, University of California, San Diego 3172: 3119: 3065: 2969: 2942: 2612: 2500: 2457: 2087: 2060: 1317: 1248: 870: 425: 4468:
Sackmann, I.-Juliana; Boothroyd, Arnold I.; Kraemer, Kathleen E. (November 1993).
3177: 3160: 6789: 6592: 6461: 6305: 6276: 6217: 6212: 6087: 5815: 5780: 5714: 5660: 5655: 5600: 5410: 5261: 3090:"The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems" 2604: 2600: 1993: 594: 381: 27:
Continuous band of stars that appears on plots of stellar color versus brightness
5162:
Stellar Interiors: Physical Principles, Structure, and Evolution, Second Edition
4467: 3893:
Burrows, Adam; Hubbard, William B.; Saumon, Didier; Lunine, Jonathan I. (1993).
3718: 1980:, energy is transported outward. The two modes for transporting this energy are 6938: 6851: 6617: 6456: 6283: 6254: 6229: 6162: 5851: 5719: 5605: 5507: 5397: 5387: 2558: 2137:, when the hydrogen supply in its core is exhausted and it expands to become a 1989: 1976:
Because there is a temperature difference between the core and the surface, or
1478: 772: 715: 566: 388: 125: 117: 4668: 4214:
Spitzer Studies of Ultracool Subdwarfs: Metal-poor Late-type M, L and T Dwarfs
4210: 4196: 4169: 3540: 3069: 2973: 6950: 6803: 6597: 6560: 6528: 6403: 6112: 5935: 5906: 5884: 5502: 5452: 5353: 5087: 4211:
Burgasser, Adam J.; Kirkpatrick, J. Davy; LĆ©pine, SĆ©bastien (5ā€“9 July 2004).
3858:
Ziebarth, Kenneth (1970). "On the Upper Mass Limit for Main-Sequence Stars".
3403: 3320: 2748: 2643: 2083: 1727: 1444: 1379: 923: 866: 544: 528: 5198:
Iben, Icko Jr (1967). "Stellar Evolution Within and Off the Main Sequence".
4820: 4715: 3379: 3123: 2855: 2782: 1856: 938:. These represent the final evolutionary stage of many main-sequence stars. 6863: 6538: 6488: 6483: 6383: 6266: 6249: 6207: 6177: 6167: 6102: 5985: 5930: 5911: 5891: 5869: 5861: 5704: 5697: 5536: 5457: 5440: 4828: 4012:
Gough, D. O. (1981). "Solar interior structure and luminosity variations".
3512:. Institut d'astronomie et d'astrophysique, UniversitƩ libre de Bruxelles. 3186: 3131: 3023: 2744: 2638: 2627: 1968: 1929:
or above generate almost their entire energy output through the CNO cycle.
1625: 1348: 1216: 914: 624: 461: 374: 302: 295: 288: 281: 274: 267: 260: 253: 246: 121: 5227:
Iglesias, Carlos A.; Rogers, Forrest J. (1996). "Updated Opal Opacities".
4751: 6779: 6451: 6443: 6433: 6413: 6388: 6317: 6239: 5995: 5970: 5965: 5879: 5839: 5800: 5765: 5748: 5743: 5415: 5010: 4926: 4734: 4651: 4245: 4098: 3819: 3733: 3106: 2585: 2068: 2056: 2047: 2030: 1977: 1951: 1659: 1512: 931: 878: 874: 604: 599: 316: 309: 215: 146: 82: 61:
together with 1,000 low-luminosity stars (red and white dwarfs) from the
54: 4541: 2546: 1105:. This relation is roughly proportional to the star's inner temperature 6363: 6060: 6033: 6010: 5990: 5975: 5827: 5731: 5709: 5687: 5682: 5546: 4417:
How Dwarfs Became Giants. The Discovery of the Mass-Luminosity Relation
4033: 2889:
An atlas of stellar spectra, with an outline of spectral classification
2631: 2619: 2570: 2569:(blue) is older and shows a lower turn off from the main sequence than 2508: 2426: 2114: 1985: 1761: 1232: 1168: 955: 855: 769: 465: 395: 367: 353: 207: 161: 154: 94: 46: 6933: 2607:
in the evolutionary track since few stars are observed at that point.
89:
as a continuous and distinctive band. Stars on this band are known as
6550: 6398: 6182: 6147: 6142: 6137: 6097: 6050: 6040: 5834: 5810: 5785: 5692: 5643: 5576: 5566: 5541: 5514: 5490: 5425: 4221:. Hamburg, Germany: Dordrecht, D. Reidel Publishing Co. p. 237. 3572: 3001: 2623: 2221:
This relationship applies to main-sequence stars in the range 0.1ā€“50
2173: 2138: 1981: 1893: 1868: 1860: 1148: 910: 839: 745: 719: 614: 360: 323: 211: 188: 150: 70: 3958: 227: 6543: 6244: 5918: 5677: 5650: 5248: 5102:; Zimmerman, Barbara A. (1967). "Thermonuclear Reaction Rates, I". 4943: 4568: 4543: 4494: 4469: 4401: 4320: 4115: 3919: 3894: 3879: 3836: 3750: 3619: 3594: 2956: 2072: 1901: 1693: 532: 484: 346: 330: 180: 129: 4339: 1888:
main sequence, energy is primarily generated as the result of the
6818: 6293: 6055: 5822: 5775: 5758: 5753: 5672: 5269:
Liebert, James; Probst, Ronald G. (1987). "Very Low Mass Stars".
5064: 3985: 3478:"A course on stars' physical properties, formation and evolution" 2756: 2566: 2127:, as the total energy produced divided by the star's luminosity. 1947: 1908:
as intermediaries in the process of fusing hydrogen into helium.
452: 5322:
An Introduction to the Theory of Stellar Structure and Evolution
4513:
Stellar Interiors: Physical Principles, Structure, and Evolution
4298:
An Introduction to the Theory of Stellar Structure and Evolution
3236:
Stellar Interiors: Physical Principles, Structure, and Evolution
2511:, which changes the conditions needed to remain in equilibrium. 954:
By treating the star as an idealized energy radiator known as a
6808: 6796: 6015: 5901: 5160:
Hansen, Carl J.; Kawaler, Steven D.; Trimble, Virginia (2004).
4636: 3986:
Lochner, Jim; Gibb, Meredith; Newman, Phil (6 September 2006).
2146: 2142: 2011: 1912: 1905: 1897: 1841:
Representative lifetimes of stars as a function of their masses
1289: 1263: 1207: 1176: 184: 176: 133: 4542:
Laughlin, Gregory; Bodenheimer, Peter; Adams, Fred C. (1997).
3895:"An expanded set of brown dwarf and very low mass star models" 2885: 2514:
In high-mass main-sequence stars, the opacity is dominated by
1884:
that is stable over the course of its main-sequence lifetime.
440:
developed a method of categorization that became known as the
5168: 4397: 4246:
Green, S. F.; Jones, Mark Henry; Burnell, S. Jocelyn (2004).
1932:
The observed upper limit for a main-sequence star is 120ā€“200
1795: 935: 779: 552: 483:. For this purpose, he used a set of stars that had reliable 4959:
Barnes, C. A.; Clayton, D. D.; Schramm, D. N., eds. (1982).
4694:. Australia Telescope Outreach and Education. Archived from 3592: 2852: 37: 6157: 5376: 3595:"Stars within 15 Parsecs: Abundances for a Northern Sample" 2997:"Rare Cosmic Alignment Reveals Most Distant Star Ever Seen" 2711:
The Cosmic Century: A History of Astrophysics and Cosmology
1184: 540: 421: 78: 6858: 798:
Main sequence stars are divided into the following types:
6523: 4419:. Bern Studies in the History and Philosophy of Science. 2233: 2168:) of the star is roughly proportional to the total mass ( 2078:
A nearly vertical region of the HR diagram, known as the
2035: 1590: 790:
the primary hydrogen-burning stage of a star's lifetime.
98: 5345: 4508: 3047: 950:
Comparison of main sequence stars of each spectral class
574: 116:
After condensation and ignition of a star, it generates
5130: 5094: 4911: 4442: 2398:
are the mass and luminosity of the star, respectively,
206:
away from the main sequence on the HR diagram, into a
6874: 4798: 3771: 3638:. Research Consortium on Nearby Stars. Archived from 2466: 2435: 2404: 2245: 2185: 1033:{\displaystyle L=4\pi \sigma R^{2}T_{\text{eff}}^{4}} 989: 5159: 4958: 2892:. Chicago, Illinois: The University of Chicago press 2799:
Russell, H. N. (1913). ""Giant" and "dwarf" stars".
2038:
is the most familiar example of a main-sequence star
5059:
Principles of Stellar Evolution and Nucleosynthesis
4981:. San Francisco: Pearson Education Addison-Wesley. 3270:
Principles of Stellar Evolution and Nucleosynthesis
5056: 4977:Carroll, Bradley W. & Ostlie, Dale A. (2007). 4886: 4510: 4321:Schrƶder, K.-P.; Connon Smith, Robert (May 2008). 3773: 3636:"List of the Nearest Hundred Nearest Star Systems" 3267: 3083: 3081: 3079: 2886:Morgan, W. W.; Keenan, P. C.; Kellman, E. (1943). 2854: 2708: 2479: 2448: 2417: 2379: 2210: 1032: 5255: 5048:An Introduction to the study of stellar Structure 4438: 4436: 4327:Monthly Notices of the Royal Astronomical Society 4175:Monthly Notices of the Royal Astronomical Society 3297:"A spectroscopic survey of red dwarf flare stars" 2939: 6948: 5300:Introduction to Stellar Atmospheres and Interior 4502: 3804: 3351: 2853:Schatzman, Evry L.; Praderie, Francoise (1993). 2742: 2487:is the star's estimated main-sequence lifetime. 4995: 4792: 4323:"Distant future of the Sun and Earth revisited" 4167: 3575:. Centre de DonnĆ©es astronomiques de Strasbourg 3294: 3152: 3076: 2491:energy generated in the core not only must but 1129:, the energy generation rate per unit mass, as 5226: 4616:. Cambridge University Press. pp. 1481ā€“. 4433: 3377: 3337:. Australia Telescope Outreach and Education. 3295:Pettersen, B. R.; Hawley, S. L. (1989-06-01). 2879: 5361: 5268: 5042: 4976: 4967: 4445:Cauldrons in the Cosmos: Nuclear Astrophysics 4291: 4289: 4048: 3232: 2919:. Springer-Verlag New York Inc. p. 268. 2025: 1097:increases by a factor of only three over 2.5 869:via its effect on the physical properties of 695: 5256:Kippenhahn, Rudolf; Weigert, Alfred (1990). 4509:Hansen, Carl J.; Kawaler, Steven D. (1994). 4443:Rolfs, Claus E.; Rodney, William S. (1988). 4404:while helium fusion produces 8Ɨ10 J/kg. 3545:(2nd ed.). Cambridge University Press. 3542:Handbook of Space Astronomy and Astrophysics 3261: 3259: 3257: 3255: 3233:Hansen, Carl J.; Kawaler, Steven D. (1999), 1911:At a stellar core temperature of 18 million 5310: 5271:Annual Review of Astronomy and Astrophysics 5200:Annual Review of Astronomy and Astrophysics 5171:Annual Review of Astronomy and Astrophysics 5133:Annual Review of Astronomy and Astrophysics 5104:Annual Review of Astronomy and Astrophysics 4998:Annual Review of Astronomy and Astrophysics 4968:Bowers, Richard L.; Deeming, Terry (1984). 4054: 3667:Brainerd, Jerome James (16 February 2005). 3662: 3660: 3658: 3656: 3483:. University of St. Andrews. Archived from 3457:"Origin of the Hertzsprung-Russell Diagram" 2988: 2106:, are unrelated to this instability strip. 1258: 858:depends only on a star's mass, at least to 5368: 5354: 4777:. University of Cincinnati. Archived from 4407: 4314: 4286: 4082:"Do We Know of Any Maunder Minimum Stars?" 3776:Evolution of Stars and Stellar Populations 3772:Salaris, Maurizio; Cassisi, Santi (2005). 3765: 3226: 3161:"New Model Shows Sun Was a Hot Young Star" 2933: 2846: 2603:; it is relatively brief and appears as a 1195:Table of main-sequence stellar parameters 702: 688: 558: 5324:. Cambridge: Cambridge University Press. 5009: 4925: 4733: 4683: 4650: 4609: 4576: 4567: 4493: 4356: 4338: 4271:Richmond, Michael W. (10 November 2004). 4195: 4097: 3979: 3918: 3818: 3732: 3693: 3618: 3252: 3176: 3158: 3105: 2955: 2825: 2550:Evolutionary track of a star like the sun 865:The temperature of a star determines its 5319: 5315:. Cambridge: Cambridge University Press. 5081: 4963:. Cambridge: Cambridge University Press. 4603: 4414: 4373: 4295: 4273:"Stellar evolution on the main sequence" 4270: 4161: 4145:The Stars: Their Structure and Evolution 4136: 4073: 3952: 3886: 3857: 3798: 3689: 3687: 3685: 3666: 3653: 3436:COSMOSā€”The SAO Encyclopedia of Astronomy 3371: 3327: 3201: 2700: 2557: 2545: 2113: 2029: 1967: 1896:(see chart). This process uses atoms of 1855: 1836: 945: 731: 36: 5297: 5054: 4884: 4766: 4709: 4582: 4239: 3927: 3593:Luck, R. Earle; Heiter, Ulrike (2005). 3538: 3532: 3501: 3396: 3345: 3265: 3041: 2798: 2794: 2792: 2738: 2736: 2715:. Cambridge University Press. pp.  2706: 14: 6949: 4979:An Introduction to Modern Astrophysics 4871: 4630: 4587:. University of Oregon. Archived from 4535: 4461: 4379: 4264: 4204: 4142: 4079: 3851: 3712: 3627: 3586: 3565: 3424: 3087: 3024:"The Brightest Stars Don't Live Alone" 2994: 2914: 2535: 728:Stellar evolution Ā§ Main sequence 551:), at 9 billion light-years away from 5349: 5336: 4772: 4722:Astronomy and Astrophysics Supplement 4689: 4583:Imamura, James N. (7 February 1995). 4011: 3933: 3682: 3633: 3507: 3402: 2910: 2908: 2906: 2681: 2592:In stars more massive than 0.23  1863:of the relative energy output (Īµ) of 764:.) During the initial collapse, this 504:be deduced. This became known as the 101:. Color-magnitude plots are known as 5197: 4396:ā€”Hydrogen fusion produces 8Ɨ10  4248:An Introduction to the Sun and Stars 4168:Sweet, I. P. A.; Roy, A. E. (1953). 4005: 3449: 2789: 2733: 2211:{\displaystyle L\ \propto \ M^{3.5}} 1845: 1162: 1081:. Finally, the relationship between 904: 5339:The Tapestry of Modern Astrophysics 5291:10.1146/annurev.aa.25.090187.002353 5220:10.1146/annurev.aa.05.090167.003035 5191:10.1146/annurev.aa.21.090183.001121 5153:10.1146/annurev.aa.13.090175.000441 5124:10.1146/annurev.aa.05.090167.002521 4773:Sitko, Michael L. (24 March 2000). 4275:. Rochester Institute of Technology 2819: 2687:The Sun is a typical type G2V star. 424:became more readily available. The 24: 4846: 4470:"Our Sun. III. Present and Future" 3352:Harding E. Smith (21 April 1999). 2995:Howell, Elizabeth (2 April 2018). 2903: 1115:A better approximation is to take 149:. The energy is carried by either 25: 6983: 5082:Cox, J. P.; Giuli, R. T. (1968). 4775:"Stellar Structure and Evolution" 4170:"The structure of rotating stars" 3380:"The Hertzsprung Russell Diagram" 3354:"The Hertzsprung-Russell Diagram" 3213:The SAO Encyclopedia of Astronomy 2584:are predicted to directly become 2480:{\displaystyle \tau _{\text{MS}}} 1089:is close to linear. The ratio of 793: 81:which appear on plots of stellar 6932: 6920: 6908: 6896: 6884: 6857: 6847: 6846: 4358:10.1111/j.1365-2966.2008.13022.x 3341:from the original on 2021-11-25. 2010:Intermediate-mass stars such as 1573: 1564: 1555: 573: 226: 63:Gliese Catalogue of Nearby Stars 5341:. Hoboken: John Wiley and Sons. 5258:Stellar Structure and Evolution 5084:Principles of Stellar Structure 4447:. University of Chicago Press. 3780:. John Wiley and Sons. p.  3516:from the original on 2014-01-10 3470: 3358:Gene Smith's Astronomy Tutorial 3288: 3274:. University of Chicago Press. 3016: 2668: 2577:Stars with less than 0.23  1073:, which relates the luminosity 455:in 1906, the Danish astronomer 5028:10.1146/annurev.astro.38.1.337 4961:Essays in Nuclear Astrophysics 4874:Supernovae and Nucleosynthesis 4861:, Basic Books, New York, 1983. 4720:, and from Z=0.0004 to 0.03". 4610:Icko Iben (29 November 2012). 4585:"Mass-Luminosity Relationship" 4544:"The End of the Main Sequence" 4384:. Princeton University Press. 4300:. Cambridge University Press. 4250:. Cambridge University Press. 4147:. Cambridge University Press. 4059:. Cambridge University Press. 3938:. Cambridge University Press. 3573:"SIMBAD Astronomical Database" 13: 1: 6759:Timeline of stellar astronomy 4972:. Boston: Jones and Bartlett. 3178:10.1126/science.293.5538.2188 2765:American Institute of Physics 2694: 2656:Lists of astronomical objects 2449:{\displaystyle L_{\bigodot }} 2418:{\displaystyle M_{\bigodot }} 2130:For a star with at least 0.5 941: 845: 756:of gas and dust in the local 442:Harvard Classification Scheme 5164:. New York: Springer-Verlag. 4865: 3671:. The Astrophysics Spectator 2707:Longair, Malcolm S. (2006). 2626:and leaving behind either a 2162:massā€“luminosity relationship 1957: 1062:and the surface temperature 889:, which measures the star's 103:Hertzsprungā€“Russell diagrams 7: 6419:Hertzsprungā€“Russell diagram 5055:Clayton, Donald D. (1983). 4143:Tayler, Roger John (1994). 4055:Padmanabhan, Thanu (2001). 3934:Aller, Lawrence H. (1991). 3539:Zombeck, Martin V. (1990). 3510:"Computation of Isochrones" 3266:Clayton, Donald D. (1983). 2828:Zeitschrift fĆ¼r Astrophysik 2649: 2109: 2082:, is occupied by pulsating 2000:In massive stars (above 10 1151:, and gives the better fit 784:Hertzsprungā€“Russell diagram 438:Harvard College Observatory 234:Hertzsprungā€“Russell diagram 43:Hertzsprungā€“Russell diagram 10: 6988: 6333:Kelvinā€“Helmholtz mechanism 4895:Cambridge University Press 4878:Princeton University Press 4851: 4692:"Post-Main Sequence Stars" 4415:Lecchini, Stefano (2007). 3961:Astronomy and Astrophysics 3301:Astronomy and Astrophysics 3159:Schilling, Govert (2001). 3050:Advances in Space Research 2539: 2026:Luminosity-color variation 1961: 1849: 860:zeroth-order approximation 738:O-type main-sequence stars 713: 666:Kelvinā€“Helmholtz mechanism 221: 29: 6842: 6767: 6616: 6514: 6442: 6341: 6198: 6073: 5951: 5860: 5596: 5587: 5466: 5396: 5383: 5375: 5337:Shore, Steven N. (2003). 5229:The Astrophysical Journal 5067:: University of Chicago. 4914:The Astrophysical Journal 4885:Bahcall, John N. (1989). 4690:Staff (12 October 2006). 4669:10.1103/RevModPhys.69.337 4639:Reviews of Modern Physics 4613:Stellar Evolution Physics 4548:The Astrophysical Journal 3936:Atoms, Stars, and Nebulae 3807:The Astrophysical Journal 3721:The Astrophysical Journal 3694:Karttunen, Hannu (2003). 3070:10.1016/j.asr.2003.02.054 2974:10.1038/s41550-018-0430-3 2915:Unsƶld, Albrecht (1969). 2753:Twentieth Century Physics 1049:Stefanā€“Boltzmann constant 833:M-type main-sequence star 828:K-type main-sequence star 823:G-type main-sequence star 818:F-type main-sequence star 813:A-type main-sequence star 808:B-type main-sequence star 803:O-type main-sequence star 519:was published in 1943 by 225: 187:as intermediaries in the 6712:With multiple exoplanets 5313:Theoretical Astrophysics 5311:Padmanabhan, T. (2002). 4086:The Astronomical Journal 4057:Theoretical Astrophysics 3634:Staff (1 January 2008). 3599:The Astronomical Journal 3459:. University of Nebraska 3384:An Atlas of the Universe 3209:"Zero Age Main Sequence" 2661: 1946:or 80 times the mass of 1411:Alpha Coronae Borealis A 1071:massā€“luminosity relation 549:MACS J1149 Lensed Star 1 53:) of a star against its 5498:Asymptotic giant branch 5320:Prialnik, Dina (2000). 5304:Oxford University Press 5283:1987ARA&A..25..473L 5212:1967ARA&A...5..571I 5183:1983ARA&A..21..165H 5145:1975ARA&A..13...69F 5116:1967ARA&A...5..525F 5100:Caughlan, Georgeanne R. 5020:2000ARA&A..38..337C 4821:10.1126/science.1075631 4744:2000A&AS..141..371G 4296:Prialnik, Dina (2000). 4197:10.1093/mnras/113.6.701 3973:1981A&A...102...25B 3378:Richard Powell (2006). 3313:1989A&A...217..187P 3124:10.1126/science.1067524 2676:interstellar extinction 2565:for two open clusters: 2505:hydrostatic equilibrium 2141:, it can start to fuse 1882:hydrostatic equilibrium 1852:Stellar nucleosynthesis 559:Formation and evolution 138:hydrostatic equilibrium 77:is a classification of 30:For the racehorse, see 6834:Tidal disruption event 6323:Circumstellar envelope 5557:Luminous blue variable 4872:Arnett, David (1996). 4517:. BirkhƤuser. p.  4380:Arnett, David (1996). 4080:Wright, J. T. (2004). 3990:. NASA. Archived from 3508:Siess, Lionel (2000). 3438:. Swinburne University 3408:The Amateur Astronomer 3215:. Swinburne University 3088:Kroupa, Pavel (2002). 2574: 2551: 2481: 2450: 2419: 2381: 2212: 2119: 2039: 1973: 1876: 1842: 1034: 966:can be related to the 951: 766:pre-main-sequence star 741: 724:Pre-main-sequence star 620:Pre-main-sequence star 517:stellar classification 142:gravitational collapse 66: 6962:Concepts in astronomy 6359:Effective temperature 5298:Novotny, Eva (1973). 4970:Astrophysics I: Stars 4889:Neutrino Astrophysics 4474:Astrophysical Journal 3899:Astrophysical Journal 3860:Astrophysical Journal 3696:Fundamental Astronomy 3669:"Main-Sequence Stars" 3335:"Main Sequence Stars" 2861:. Springer. pp.  2561: 2549: 2482: 2451: 2420: 2382: 2213: 2117: 2104:Beta Cephei variables 2100:Delta Scuti variables 2055:, interaction with a 2033: 1971: 1859: 1840: 1796:Van Biesbroeck's star 1035: 968:effective temperature 949: 762:initial mass function 754:giant molecular cloud 735: 656:Initial mass function 521:William Wilson Morgan 515:A refined scheme for 40: 32:Main Sequence (horse) 6829:Planet-hosting stars 6707:With resolved images 6678:Historical brightest 6608:Photometric-standard 6534:Solar radio emission 6328:Eddington luminosity 6108:Triple-alpha process 6046:Thorneā€“Å»ytkow object 5421:Young stellar object 5090:: Gordon and Breach. 4857:Kippenhahn, Rudolf, 2761:Institute of Physics 2464: 2433: 2402: 2243: 2183: 1547:Beta Comae Berenices 987: 978:Stefanā€“Boltzmann law 897:) and green-yellow ( 643:Theoretical concepts 610:Young stellar object 525:Philip Childs Keenan 506:Vogtā€“Russell theorem 477:Henry Norris Russell 473:Princeton University 111:Henry Norris Russell 6957:Main-sequence stars 6653:Highest temperature 6424:Colorā€“color diagram 6289:Protoplanetary disk 6093:Protonā€“proton chain 5771:Chemically peculiar 5330:2000itss.book.....P 5241:1996ApJ...464..943I 4936:2001ApJ...555..990B 4813:2003Sci...299...65K 4752:10.1051/aas:2000126 4661:1997RvMP...69..337A 4591:on 14 December 2006 4560:1997ApJ...482..420L 4486:1993ApJ...418..457S 4349:2008MNRAS.386..155S 4227:2005ESASP.560..237B 4188:1953MNRAS.113..701S 4108:2004AJ....128.1273W 4026:1981SoPh...74...21G 3911:1993ApJ...406..158B 3872:1970ApJ...162..947Z 3829:2005ApJ...620L..43O 3743:2001ApJ...555..990B 3611:2005AJ....129.1063L 3171:(5538): 2188ā€“2189. 3116:2002Sci...295...82K 3062:2004AdSpR..34...53G 2966:2018NatAs...2..334K 2840:1933ZA......7..222S 2813:1913Obs....36..324R 2536:Evolutionary tracks 2516:electron scattering 2172:) as the following 2125:first approximation 2053:evolutionary status 1890:protonā€“proton chain 1196: 1133:is proportional to 1099:orders of magnitude 1029: 758:interstellar medium 748:is formed from the 676:Planetary migration 590:Interstellar medium 444:, published in the 434:Edward C. Pickering 214:, or directly to a 173:protonā€“proton chain 91:main-sequence stars 6658:Lowest temperature 6409:Photometric system 6379:Absolute magnitude 6313:Circumstellar dust 5926:Stellar black hole 5562:Stellar population 5448:Herbigā€“Haro object 5096:Fowler, William A. 5050:. New York: Dover. 4698:on 20 January 2013 4034:10.1007/BF00151270 2743:Brown, Laurie M.; 2575: 2552: 2477: 2446: 2415: 2377: 2208: 2164:. The luminosity ( 2120: 2040: 1974: 1877: 1843: 1194: 1030: 1015: 952: 742: 736:Hot and brilliant 671:Nebular hypothesis 635:Herbigā€“Haro object 481:absolute magnitude 67: 51:absolute magnitude 6972:Stellar evolution 6872: 6871: 6775:Substellar object 6754:Planetary nebulae 6173:Luminous red nova 6083:Deuterium burning 6069: 6068: 5552:Instability strip 5532:Wolf-Rayet nebula 5486:Horizontal branch 5431:Pre-main-sequence 5302:. New York City: 5074:978-0-226-10952-7 5044:Chandrasekhar, S. 4988:978-0-8053-0402-2 4904:978-0-521-37975-5 4623:978-1-107-01657-6 4528:978-0-387-94138-7 4454:978-0-226-72457-7 4426:978-3-9522882-6-9 4391:978-0-691-01147-9 4307:978-0-521-65937-6 4257:978-0-521-54622-5 4154:978-0-521-45885-6 4066:978-0-521-56241-6 3945:978-0-521-31040-6 3791:978-0-470-09220-0 3705:978-3-540-00179-9 3552:978-0-521-34787-7 3417:978-1-85233-878-7 3281:978-0-226-10953-4 3246:978-0-387-94138-7 3028:ESO Press Release 2926:978-0-387-90886-1 2872:978-3-540-54196-7 2774:978-0-7503-0310-1 2726:978-0-521-47436-8 2542:Stellar evolution 2474: 2362: 2340: 2318: 2293: 2272: 2253: 2197: 2191: 2151:130 million years 2088:Cepheid variables 2080:instability strip 1964:Stellar structure 1846:Energy generation 1835: 1834: 1163:Sample parameters 1022: 958:, the luminosity 905:Dwarf terminology 712: 711: 661:Jeans instability 630:Herbig Ae/Be star 457:Ejnar Hertzsprung 430:Annie Jump Cannon 107:Ejnar Hertzsprung 59:Hipparcos Catalog 16:(Redirected from 6979: 6937: 6936: 6925: 6924: 6923: 6913: 6912: 6911: 6901: 6900: 6899: 6889: 6888: 6887: 6880: 6864:Stars portal 6862: 6861: 6850: 6849: 6506:Planetary system 6429:Strƶmgren sphere 6301:Asteroseismology 6022:Black hole star 5594: 5593: 5520:Planetary nebula 5481:Red-giant branch 5370: 5363: 5356: 5347: 5346: 5342: 5333: 5316: 5307: 5294: 5265: 5252: 5223: 5194: 5165: 5156: 5127: 5091: 5078: 5062: 5051: 5039: 5013: 5011:astro-ph/0006383 4992: 4973: 4964: 4955: 4929: 4927:astro-ph/0010346 4908: 4892: 4881: 4859:100 Billion Suns 4841: 4840: 4796: 4790: 4789: 4787: 4786: 4781:on 26 March 2005 4770: 4764: 4763: 4737: 4735:astro-ph/9910164 4713: 4707: 4706: 4704: 4703: 4687: 4681: 4680: 4654: 4652:astro-ph/9701131 4634: 4628: 4627: 4607: 4601: 4600: 4598: 4596: 4580: 4574: 4573: 4571: 4539: 4533: 4532: 4516: 4506: 4500: 4499: 4497: 4465: 4459: 4458: 4440: 4431: 4430: 4411: 4405: 4395: 4377: 4371: 4370: 4360: 4342: 4318: 4312: 4311: 4293: 4284: 4283: 4281: 4280: 4268: 4262: 4261: 4243: 4237: 4236: 4234: 4233: 4208: 4202: 4201: 4199: 4165: 4159: 4158: 4140: 4134: 4133: 4131: 4130: 4101: 4099:astro-ph/0406338 4092:(3): 1273ā€“1278. 4077: 4071: 4070: 4052: 4046: 4045: 4009: 4003: 4002: 4000: 3999: 3983: 3977: 3976: 3956: 3950: 3949: 3931: 3925: 3924: 3922: 3890: 3884: 3883: 3855: 3849: 3848: 3822: 3820:astro-ph/0501135 3802: 3796: 3795: 3779: 3769: 3763: 3762: 3736: 3734:astro-ph/0212331 3716: 3710: 3709: 3691: 3680: 3679: 3677: 3676: 3664: 3651: 3650: 3648: 3647: 3631: 3625: 3624: 3622: 3605:(2): 1063ā€“1083. 3590: 3584: 3583: 3581: 3580: 3569: 3563: 3562: 3560: 3559: 3536: 3530: 3527:solar luminosity 3524: 3522: 3521: 3505: 3499: 3498: 3496: 3495: 3489: 3482: 3474: 3468: 3467: 3465: 3464: 3453: 3447: 3446: 3444: 3443: 3428: 3422: 3421: 3400: 3394: 3393: 3391: 3390: 3375: 3369: 3368: 3366: 3365: 3349: 3343: 3342: 3331: 3325: 3324: 3292: 3286: 3285: 3273: 3263: 3250: 3249: 3230: 3224: 3223: 3221: 3220: 3205: 3199: 3198: 3180: 3156: 3150: 3149: 3147: 3146: 3109: 3107:astro-ph/0201098 3085: 3074: 3073: 3045: 3039: 3038: 3036: 3034: 3020: 3014: 3013: 3011: 3009: 2992: 2986: 2985: 2959: 2937: 2931: 2930: 2912: 2901: 2900: 2898: 2897: 2883: 2877: 2876: 2860: 2850: 2844: 2843: 2823: 2817: 2816: 2796: 2787: 2786: 2767:. p. 1696. 2740: 2731: 2730: 2714: 2704: 2688: 2685: 2679: 2672: 2639:cluster of stars 2613:red-giant branch 2486: 2484: 2483: 2478: 2476: 2475: 2472: 2458:solar luminosity 2455: 2453: 2452: 2447: 2445: 2444: 2424: 2422: 2421: 2416: 2414: 2413: 2386: 2384: 2383: 2378: 2376: 2375: 2367: 2363: 2361: 2360: 2348: 2341: 2338: 2336: 2335: 2323: 2319: 2314: 2313: 2304: 2298: 2294: 2292: 2291: 2279: 2273: 2270: 2268: 2267: 2255: 2254: 2251: 2217: 2215: 2214: 2209: 2207: 2206: 2195: 2189: 2152: 2069:metal-poor stars 1830:2MASS J0523āˆ’1403 1825: 1819: 1813: 1807: 1791: 1785: 1779: 1773: 1757: 1751: 1745: 1739: 1723: 1717: 1711: 1705: 1689: 1683: 1677: 1671: 1655: 1649: 1643: 1637: 1621: 1615: 1609: 1603: 1585: 1580: 1576: 1571: 1567: 1562: 1558: 1542: 1536: 1530: 1524: 1508: 1502: 1496: 1490: 1474: 1468: 1462: 1456: 1440: 1434: 1428: 1422: 1403: 1397: 1391: 1372: 1366: 1360: 1341: 1335: 1329: 1307: 1301: 1260: 1197: 1193: 1128: 1069:. Second is the 1039: 1037: 1036: 1031: 1028: 1023: 1020: 1014: 1013: 704: 697: 690: 577: 563: 562: 415: 398: 391: 384: 377: 370: 363: 356: 349: 342: 333: 326: 319: 312: 305: 298: 291: 284: 277: 270: 263: 256: 249: 242: 235: 230: 21: 6987: 6986: 6982: 6981: 6980: 6978: 6977: 6976: 6947: 6946: 6943: 6931: 6921: 6919: 6909: 6907: 6897: 6895: 6885: 6883: 6875: 6873: 6868: 6856: 6838: 6763: 6732:Milky Way novae 6668:Smallest volume 6612: 6593:Radial velocity 6516: 6510: 6462:Common envelope 6438: 6337: 6306:Helioseismology 6277:Bipolar outflow 6218:Microturbulence 6213:Convection zone 6194: 6088:Lithium burning 6075:Nucleosynthesis 6065: 5947: 5856: 5583: 5462: 5411:Molecular cloud 5392: 5379: 5374: 5262:Springer-Verlag 5075: 4989: 4920:(2): 990ā€“1012. 4905: 4868: 4854: 4849: 4847:Further reading 4844: 4807:(5603): 65ā€“69. 4797: 4793: 4784: 4782: 4771: 4767: 4719: 4714: 4710: 4701: 4699: 4688: 4684: 4635: 4631: 4624: 4608: 4604: 4594: 4592: 4581: 4577: 4540: 4536: 4529: 4507: 4503: 4466: 4462: 4455: 4441: 4434: 4427: 4412: 4408: 4392: 4378: 4374: 4319: 4315: 4308: 4294: 4287: 4278: 4276: 4269: 4265: 4258: 4244: 4240: 4231: 4229: 4209: 4205: 4166: 4162: 4155: 4141: 4137: 4128: 4126: 4078: 4074: 4067: 4053: 4049: 4010: 4006: 3997: 3995: 3984: 3980: 3957: 3953: 3946: 3932: 3928: 3891: 3887: 3856: 3852: 3803: 3799: 3792: 3770: 3766: 3727:(2): 990ā€“1012. 3717: 3713: 3706: 3692: 3683: 3674: 3672: 3665: 3654: 3645: 3643: 3632: 3628: 3591: 3587: 3578: 3576: 3571: 3570: 3566: 3557: 3555: 3553: 3537: 3533: 3519: 3517: 3506: 3502: 3493: 3491: 3487: 3480: 3476: 3475: 3471: 3462: 3460: 3455: 3454: 3450: 3441: 3439: 3430: 3429: 3425: 3418: 3401: 3397: 3388: 3386: 3376: 3372: 3363: 3361: 3350: 3346: 3333: 3332: 3328: 3293: 3289: 3282: 3264: 3253: 3247: 3231: 3227: 3218: 3216: 3207: 3206: 3202: 3157: 3153: 3144: 3142: 3100:(5552): 82ā€“91. 3086: 3077: 3046: 3042: 3032: 3030: 3022: 3021: 3017: 3007: 3005: 2993: 2989: 2938: 2934: 2927: 2913: 2904: 2895: 2893: 2884: 2880: 2873: 2851: 2847: 2824: 2820: 2801:The Observatory 2797: 2790: 2775: 2751:, eds. (1995). 2741: 2734: 2727: 2705: 2701: 2697: 2692: 2691: 2686: 2682: 2673: 2669: 2664: 2652: 2601:subgiant branch 2598: 2595: 2583: 2580: 2544: 2538: 2531: 2528: 2524: 2521: 2471: 2467: 2465: 2462: 2461: 2440: 2436: 2434: 2431: 2430: 2409: 2405: 2403: 2400: 2399: 2368: 2356: 2352: 2347: 2343: 2342: 2337: 2331: 2327: 2309: 2305: 2303: 2299: 2287: 2283: 2278: 2274: 2269: 2263: 2259: 2250: 2246: 2244: 2241: 2240: 2227: 2224: 2202: 2198: 2184: 2181: 2180: 2159: 2156: 2150: 2136: 2133: 2112: 2057:close companion 2028: 2021: 2018: 2006: 2003: 1994:convection zone 1966: 1960: 1945: 1942: 1938: 1935: 1928: 1925: 1921: 1918: 1854: 1848: 1823: 1817: 1811: 1805: 1789: 1783: 1777: 1771: 1755: 1749: 1743: 1737: 1721: 1715: 1709: 1703: 1687: 1681: 1675: 1669: 1653: 1647: 1641: 1635: 1619: 1613: 1607: 1601: 1583: 1578: 1574: 1569: 1565: 1560: 1556: 1540: 1534: 1528: 1522: 1506: 1500: 1494: 1488: 1472: 1466: 1460: 1454: 1438: 1432: 1426: 1420: 1401: 1395: 1389: 1380:Pi Andromedae A 1370: 1364: 1358: 1339: 1333: 1327: 1318:Theta Orionis C 1305: 1299: 1261: 1254: 1251: 1243: 1238: 1235: 1227: 1222: 1219: 1211: 1202: 1165: 1145: 1138: 1116: 1110: 1068: 1024: 1019: 1009: 1005: 988: 985: 984: 975: 944: 907: 848: 796: 730: 714:Main articles: 708: 595:Molecular cloud 561: 497:Bengt Strƶmgren 418: 417: 413: 409: 407: 405: 403: 400: 396: 393: 389: 386: 382: 379: 375: 372: 368: 365: 361: 358: 354: 351: 347: 344: 340: 338: 335: 331: 328: 324: 321: 317: 314: 310: 307: 303: 300: 296: 293: 289: 286: 282: 279: 275: 272: 268: 265: 261: 258: 254: 251: 247: 244: 240: 237: 233: 224: 198: 195: 170: 167: 162:mass of the Sun 35: 28: 23: 22: 15: 12: 11: 5: 6985: 6975: 6974: 6969: 6964: 6959: 6942: 6941: 6929: 6917: 6905: 6893: 6870: 6869: 6867: 6866: 6854: 6843: 6840: 6839: 6837: 6836: 6831: 6826: 6821: 6816: 6811: 6806: 6801: 6800: 6799: 6794: 6793: 6792: 6787: 6771: 6769: 6765: 6764: 6762: 6761: 6756: 6751: 6750: 6749: 6744: 6734: 6729: 6724: 6719: 6714: 6709: 6704: 6703: 6702: 6697: 6696: 6695: 6685: 6680: 6675: 6670: 6665: 6663:Largest volume 6660: 6655: 6650: 6640: 6639: 6638: 6633: 6622: 6620: 6614: 6613: 6611: 6610: 6605: 6600: 6595: 6590: 6589: 6588: 6583: 6578: 6568: 6563: 6558: 6553: 6548: 6547: 6546: 6541: 6536: 6531: 6520: 6518: 6512: 6511: 6509: 6508: 6503: 6502: 6501: 6496: 6491: 6481: 6476: 6475: 6474: 6469: 6464: 6459: 6448: 6446: 6440: 6439: 6437: 6436: 6431: 6426: 6421: 6416: 6411: 6406: 6401: 6396: 6391: 6386: 6381: 6376: 6374:Magnetic field 6371: 6366: 6361: 6356: 6351: 6345: 6343: 6339: 6338: 6336: 6335: 6330: 6325: 6320: 6315: 6310: 6309: 6308: 6298: 6297: 6296: 6291: 6284:Accretion disk 6281: 6280: 6279: 6274: 6264: 6263: 6262: 6260:AlfvĆ©n surface 6257: 6255:Stellar corona 6252: 6247: 6242: 6232: 6230:Radiation zone 6227: 6226: 6225: 6220: 6210: 6204: 6202: 6196: 6195: 6193: 6192: 6187: 6186: 6185: 6180: 6175: 6170: 6165: 6155: 6150: 6145: 6140: 6135: 6130: 6125: 6120: 6115: 6110: 6105: 6100: 6095: 6090: 6085: 6079: 6077: 6071: 6070: 6067: 6066: 6064: 6063: 6058: 6053: 6048: 6043: 6038: 6037: 6036: 6031: 6028: 6020: 6019: 6018: 6013: 6008: 6003: 5998: 5993: 5988: 5983: 5978: 5968: 5963: 5957: 5955: 5949: 5948: 5946: 5945: 5940: 5939: 5938: 5928: 5923: 5922: 5921: 5916: 5915: 5914: 5909: 5899: 5889: 5888: 5887: 5877: 5872: 5866: 5864: 5858: 5857: 5855: 5854: 5852:Blue straggler 5849: 5848: 5847: 5837: 5832: 5831: 5830: 5820: 5819: 5818: 5813: 5808: 5803: 5798: 5793: 5788: 5783: 5778: 5768: 5763: 5762: 5761: 5756: 5751: 5741: 5740: 5739: 5729: 5728: 5727: 5722: 5717: 5707: 5702: 5701: 5700: 5695: 5690: 5680: 5675: 5670: 5665: 5664: 5663: 5658: 5648: 5647: 5646: 5641: 5636: 5631: 5626: 5621: 5616: 5610:Main sequence 5608: 5603: 5597: 5591: 5589:Classification 5585: 5584: 5582: 5581: 5580: 5579: 5574: 5564: 5559: 5554: 5549: 5544: 5539: 5534: 5529: 5528: 5527: 5525:Protoplanetary 5517: 5512: 5511: 5510: 5505: 5495: 5494: 5493: 5483: 5478: 5472: 5470: 5464: 5463: 5461: 5460: 5455: 5450: 5445: 5444: 5443: 5438: 5433: 5428: 5418: 5413: 5408: 5402: 5400: 5394: 5393: 5391: 5390: 5384: 5381: 5380: 5373: 5372: 5365: 5358: 5350: 5344: 5343: 5334: 5317: 5308: 5295: 5266: 5253: 5249:10.1086/177381 5224: 5195: 5166: 5157: 5128: 5092: 5079: 5073: 5052: 5040: 4993: 4987: 4974: 4965: 4956: 4944:10.1086/321493 4909: 4903: 4882: 4867: 4864: 4863: 4862: 4853: 4850: 4848: 4845: 4843: 4842: 4791: 4765: 4728:(3): 371ā€“383. 4717: 4708: 4682: 4645:(2): 337ā€“372. 4629: 4622: 4602: 4575: 4569:10.1086/304125 4554:(1): 420ā€“432. 4534: 4527: 4501: 4495:10.1086/173407 4460: 4453: 4432: 4425: 4406: 4390: 4372: 4333:(1): 155ā€“163. 4313: 4306: 4285: 4263: 4256: 4238: 4203: 4182:(6): 701ā€“715. 4160: 4153: 4135: 4116:10.1086/423221 4072: 4065: 4047: 4004: 3978: 3951: 3944: 3926: 3920:10.1086/172427 3885: 3880:10.1086/150726 3850: 3837:10.1086/428396 3813:(1): L43ā€“L46. 3797: 3790: 3764: 3751:10.1086/321493 3711: 3704: 3681: 3652: 3642:on 13 May 2012 3626: 3620:10.1086/427250 3585: 3564: 3551: 3531: 3500: 3469: 3448: 3423: 3416: 3404:Moore, Patrick 3395: 3370: 3344: 3326: 3287: 3280: 3251: 3245: 3225: 3200: 3151: 3075: 3040: 3015: 2987: 2950:(4): 334ā€“342. 2932: 2925: 2917:The New Cosmos 2902: 2878: 2871: 2845: 2818: 2788: 2773: 2749:Pippard, A. B. 2732: 2725: 2698: 2696: 2693: 2690: 2689: 2680: 2666: 2665: 2663: 2660: 2659: 2658: 2651: 2648: 2596: 2593: 2581: 2578: 2540:Main article: 2537: 2534: 2529: 2526: 2522: 2519: 2470: 2443: 2439: 2412: 2408: 2388: 2387: 2374: 2371: 2366: 2359: 2355: 2351: 2346: 2334: 2330: 2326: 2322: 2317: 2312: 2308: 2302: 2297: 2290: 2286: 2282: 2277: 2266: 2262: 2258: 2249: 2225: 2222: 2219: 2218: 2205: 2201: 2194: 2188: 2157: 2154: 2145:atoms to form 2134: 2131: 2111: 2108: 2084:variable stars 2065:magnetic field 2061:rapid rotation 2027: 2024: 2019: 2016: 2004: 2001: 1990:radiation zone 1962:Main article: 1959: 1956: 1943: 1940: 1936: 1933: 1926: 1923: 1919: 1916: 1847: 1844: 1833: 1832: 1827: 1821: 1815: 1809: 1803: 1799: 1798: 1793: 1787: 1781: 1775: 1769: 1765: 1764: 1759: 1753: 1747: 1741: 1735: 1731: 1730: 1725: 1719: 1713: 1707: 1701: 1697: 1696: 1691: 1685: 1679: 1673: 1667: 1663: 1662: 1657: 1651: 1645: 1639: 1633: 1629: 1628: 1623: 1617: 1611: 1605: 1599: 1595: 1594: 1587: 1581: 1572: 1563: 1554: 1550: 1549: 1544: 1538: 1532: 1526: 1520: 1516: 1515: 1510: 1504: 1498: 1492: 1486: 1482: 1481: 1479:Gamma Virginis 1476: 1470: 1464: 1458: 1452: 1448: 1447: 1442: 1436: 1430: 1424: 1418: 1414: 1413: 1408: 1405: 1399: 1393: 1387: 1383: 1382: 1377: 1374: 1368: 1362: 1356: 1352: 1351: 1346: 1343: 1337: 1331: 1325: 1321: 1320: 1315: 1312: 1309: 1303: 1297: 1293: 1292: 1287: 1284: 1281: 1278: 1275: 1271: 1270: 1267: 1256: 1252: 1249: 1240: 1236: 1233: 1224: 1220: 1217: 1205: 1164: 1161: 1143: 1136: 1108: 1066: 1041: 1040: 1027: 1018: 1012: 1008: 1004: 1001: 998: 995: 992: 973: 943: 940: 924:spectral lines 906: 903: 847: 844: 836: 835: 830: 825: 820: 815: 810: 805: 795: 794:Classification 792: 773:nuclear fusion 716:Star formation 710: 709: 707: 706: 699: 692: 684: 681: 680: 679: 678: 673: 668: 663: 658: 653: 645: 644: 640: 639: 638: 637: 632: 627: 622: 617: 612: 607: 602: 597: 592: 584: 583: 582:Object classes 579: 578: 570: 569: 567:Star formation 560: 557: 529:spectral types 508:; named after 446:Harvard Annals 411: 401: 394: 390:Red supergiant 387: 380: 373: 366: 359: 352: 345: 336: 329: 322: 315: 308: 301: 294: 287: 280: 273: 266: 259: 252: 245: 238: 231: 223: 220: 196: 193: 168: 165: 126:nuclear fusion 118:thermal energy 26: 9: 6: 4: 3: 2: 6984: 6973: 6970: 6968: 6965: 6963: 6960: 6958: 6955: 6954: 6952: 6945: 6940: 6935: 6930: 6928: 6918: 6916: 6906: 6904: 6894: 6892: 6882: 6881: 6878: 6865: 6860: 6855: 6853: 6845: 6844: 6841: 6835: 6832: 6830: 6827: 6825: 6824:Intergalactic 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6805: 6804:Galactic year 6802: 6798: 6795: 6791: 6788: 6786: 6783: 6782: 6781: 6778: 6777: 6776: 6773: 6772: 6770: 6766: 6760: 6757: 6755: 6752: 6748: 6745: 6743: 6740: 6739: 6738: 6735: 6733: 6730: 6728: 6725: 6723: 6720: 6718: 6715: 6713: 6710: 6708: 6705: 6701: 6698: 6694: 6691: 6690: 6689: 6686: 6684: 6683:Most luminous 6681: 6679: 6676: 6674: 6671: 6669: 6666: 6664: 6661: 6659: 6656: 6654: 6651: 6649: 6646: 6645: 6644: 6641: 6637: 6634: 6632: 6629: 6628: 6627: 6624: 6623: 6621: 6619: 6615: 6609: 6606: 6604: 6601: 6599: 6598:Proper motion 6596: 6594: 6591: 6587: 6584: 6582: 6579: 6577: 6574: 6573: 6572: 6569: 6567: 6564: 6562: 6561:Constellation 6559: 6557: 6554: 6552: 6549: 6545: 6542: 6540: 6537: 6535: 6532: 6530: 6529:Solar eclipse 6527: 6526: 6525: 6522: 6521: 6519: 6515:Earth-centric 6513: 6507: 6504: 6500: 6497: 6495: 6492: 6490: 6487: 6486: 6485: 6482: 6480: 6477: 6473: 6470: 6468: 6465: 6463: 6460: 6458: 6455: 6454: 6453: 6450: 6449: 6447: 6445: 6441: 6435: 6432: 6430: 6427: 6425: 6422: 6420: 6417: 6415: 6412: 6410: 6407: 6405: 6402: 6400: 6397: 6395: 6392: 6390: 6387: 6385: 6382: 6380: 6377: 6375: 6372: 6370: 6367: 6365: 6362: 6360: 6357: 6355: 6352: 6350: 6347: 6346: 6344: 6340: 6334: 6331: 6329: 6326: 6324: 6321: 6319: 6316: 6314: 6311: 6307: 6304: 6303: 6302: 6299: 6295: 6292: 6290: 6287: 6286: 6285: 6282: 6278: 6275: 6273: 6270: 6269: 6268: 6265: 6261: 6258: 6256: 6253: 6251: 6248: 6246: 6243: 6241: 6238: 6237: 6236: 6233: 6231: 6228: 6224: 6221: 6219: 6216: 6215: 6214: 6211: 6209: 6206: 6205: 6203: 6201: 6197: 6191: 6188: 6184: 6181: 6179: 6176: 6174: 6171: 6169: 6166: 6164: 6161: 6160: 6159: 6156: 6154: 6151: 6149: 6146: 6144: 6141: 6139: 6136: 6134: 6131: 6129: 6126: 6124: 6121: 6119: 6116: 6114: 6113:Alpha process 6111: 6109: 6106: 6104: 6101: 6099: 6096: 6094: 6091: 6089: 6086: 6084: 6081: 6080: 6078: 6076: 6072: 6062: 6059: 6057: 6054: 6052: 6049: 6047: 6044: 6042: 6039: 6035: 6032: 6029: 6027: 6024: 6023: 6021: 6017: 6014: 6012: 6009: 6007: 6004: 6002: 5999: 5997: 5994: 5992: 5989: 5987: 5984: 5982: 5979: 5977: 5974: 5973: 5972: 5969: 5967: 5964: 5962: 5959: 5958: 5956: 5954: 5950: 5944: 5941: 5937: 5934: 5933: 5932: 5929: 5927: 5924: 5920: 5917: 5913: 5910: 5908: 5905: 5904: 5903: 5900: 5898: 5895: 5894: 5893: 5890: 5886: 5885:Helium planet 5883: 5882: 5881: 5878: 5876: 5875:Parker's star 5873: 5871: 5868: 5867: 5865: 5863: 5859: 5853: 5850: 5846: 5843: 5842: 5841: 5838: 5836: 5833: 5829: 5826: 5825: 5824: 5821: 5817: 5814: 5812: 5809: 5807: 5806:Lambda Boƶtis 5804: 5802: 5799: 5797: 5794: 5792: 5789: 5787: 5784: 5782: 5779: 5777: 5774: 5773: 5772: 5769: 5767: 5764: 5760: 5757: 5755: 5752: 5750: 5747: 5746: 5745: 5742: 5738: 5735: 5734: 5733: 5730: 5726: 5723: 5721: 5718: 5716: 5713: 5712: 5711: 5708: 5706: 5703: 5699: 5696: 5694: 5691: 5689: 5686: 5685: 5684: 5681: 5679: 5676: 5674: 5671: 5669: 5666: 5662: 5659: 5657: 5654: 5653: 5652: 5649: 5645: 5642: 5640: 5637: 5635: 5632: 5630: 5627: 5625: 5622: 5620: 5617: 5615: 5612: 5611: 5609: 5607: 5604: 5602: 5599: 5598: 5595: 5592: 5590: 5586: 5578: 5575: 5573: 5572:Superluminous 5570: 5569: 5568: 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5548: 5545: 5543: 5540: 5538: 5535: 5533: 5530: 5526: 5523: 5522: 5521: 5518: 5516: 5513: 5509: 5506: 5504: 5501: 5500: 5499: 5496: 5492: 5489: 5488: 5487: 5484: 5482: 5479: 5477: 5476:Main sequence 5474: 5473: 5471: 5469: 5465: 5459: 5456: 5454: 5453:Hayashi track 5451: 5449: 5446: 5442: 5439: 5437: 5434: 5432: 5429: 5427: 5424: 5423: 5422: 5419: 5417: 5414: 5412: 5409: 5407: 5404: 5403: 5401: 5399: 5395: 5389: 5386: 5385: 5382: 5378: 5371: 5366: 5364: 5359: 5357: 5352: 5351: 5348: 5340: 5335: 5331: 5327: 5323: 5318: 5314: 5309: 5305: 5301: 5296: 5292: 5288: 5284: 5280: 5276: 5272: 5267: 5263: 5259: 5254: 5250: 5246: 5242: 5238: 5234: 5230: 5225: 5221: 5217: 5213: 5209: 5205: 5201: 5196: 5192: 5188: 5184: 5180: 5176: 5172: 5167: 5163: 5158: 5154: 5150: 5146: 5142: 5138: 5134: 5129: 5125: 5121: 5117: 5113: 5109: 5105: 5101: 5097: 5093: 5089: 5088:New York City 5085: 5080: 5076: 5070: 5066: 5061: 5060: 5053: 5049: 5045: 5041: 5037: 5033: 5029: 5025: 5021: 5017: 5012: 5007: 5003: 4999: 4994: 4990: 4984: 4980: 4975: 4971: 4966: 4962: 4957: 4953: 4949: 4945: 4941: 4937: 4933: 4928: 4923: 4919: 4915: 4910: 4906: 4900: 4896: 4893:. Cambridge: 4891: 4890: 4883: 4879: 4876:. Princeton: 4875: 4870: 4869: 4860: 4856: 4855: 4838: 4834: 4830: 4826: 4822: 4818: 4814: 4810: 4806: 4802: 4795: 4780: 4776: 4769: 4761: 4757: 4753: 4749: 4745: 4741: 4736: 4731: 4727: 4723: 4712: 4697: 4693: 4686: 4678: 4674: 4670: 4666: 4662: 4658: 4653: 4648: 4644: 4640: 4633: 4625: 4619: 4615: 4614: 4606: 4590: 4586: 4579: 4570: 4565: 4561: 4557: 4553: 4549: 4545: 4538: 4530: 4524: 4520: 4515: 4514: 4505: 4496: 4491: 4487: 4483: 4479: 4475: 4471: 4464: 4456: 4450: 4446: 4439: 4437: 4428: 4422: 4418: 4410: 4403: 4399: 4393: 4387: 4383: 4376: 4368: 4364: 4359: 4354: 4350: 4346: 4341: 4336: 4332: 4328: 4324: 4317: 4309: 4303: 4299: 4292: 4290: 4274: 4267: 4259: 4253: 4249: 4242: 4228: 4224: 4220: 4216: 4215: 4207: 4198: 4193: 4189: 4185: 4181: 4177: 4176: 4171: 4164: 4156: 4150: 4146: 4139: 4125: 4121: 4117: 4113: 4109: 4105: 4100: 4095: 4091: 4087: 4083: 4076: 4068: 4062: 4058: 4051: 4043: 4039: 4035: 4031: 4027: 4023: 4019: 4015: 4014:Solar Physics 4008: 3994:on 2014-11-19 3993: 3989: 3982: 3974: 3970: 3966: 3962: 3955: 3947: 3941: 3937: 3930: 3921: 3916: 3912: 3908: 3905:(1): 158ā€“71. 3904: 3900: 3896: 3889: 3881: 3877: 3873: 3869: 3865: 3861: 3854: 3846: 3842: 3838: 3834: 3830: 3826: 3821: 3816: 3812: 3808: 3801: 3793: 3787: 3783: 3778: 3777: 3768: 3760: 3756: 3752: 3748: 3744: 3740: 3735: 3730: 3726: 3722: 3715: 3707: 3701: 3697: 3690: 3688: 3686: 3670: 3663: 3661: 3659: 3657: 3641: 3637: 3630: 3621: 3616: 3612: 3608: 3604: 3600: 3596: 3589: 3574: 3568: 3554: 3548: 3544: 3543: 3535: 3528: 3515: 3511: 3504: 3490:on 2020-12-02 3486: 3479: 3473: 3458: 3452: 3437: 3433: 3432:"White Dwarf" 3427: 3419: 3413: 3409: 3405: 3399: 3385: 3381: 3374: 3359: 3355: 3348: 3340: 3336: 3330: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3291: 3283: 3277: 3272: 3271: 3262: 3260: 3258: 3256: 3248: 3242: 3238: 3237: 3229: 3214: 3210: 3204: 3196: 3192: 3188: 3184: 3179: 3174: 3170: 3166: 3162: 3155: 3141: 3137: 3133: 3129: 3125: 3121: 3117: 3113: 3108: 3103: 3099: 3095: 3091: 3084: 3082: 3080: 3071: 3067: 3063: 3059: 3055: 3051: 3044: 3029: 3025: 3019: 3004: 3003: 2998: 2991: 2983: 2979: 2975: 2971: 2967: 2963: 2958: 2953: 2949: 2945: 2944: 2936: 2928: 2922: 2918: 2911: 2909: 2907: 2891: 2890: 2882: 2874: 2868: 2864: 2859: 2858: 2849: 2841: 2837: 2833: 2829: 2822: 2814: 2810: 2806: 2802: 2795: 2793: 2784: 2780: 2776: 2770: 2766: 2762: 2758: 2754: 2750: 2746: 2745:Pais, Abraham 2739: 2737: 2728: 2722: 2718: 2713: 2712: 2703: 2699: 2684: 2677: 2671: 2667: 2657: 2654: 2653: 2647: 2645: 2644:turnoff point 2642:known as the 2640: 2635: 2633: 2629: 2625: 2621: 2616: 2614: 2608: 2606: 2602: 2590: 2587: 2572: 2568: 2564: 2560: 2556: 2548: 2543: 2533: 2517: 2512: 2510: 2506: 2502: 2497: 2494: 2488: 2468: 2459: 2441: 2437: 2428: 2410: 2406: 2397: 2393: 2372: 2369: 2364: 2357: 2353: 2349: 2344: 2332: 2328: 2324: 2320: 2315: 2310: 2306: 2300: 2295: 2288: 2284: 2280: 2275: 2264: 2260: 2256: 2247: 2239: 2238: 2237: 2235: 2229: 2203: 2199: 2192: 2186: 2179: 2178: 2177: 2175: 2171: 2167: 2163: 2148: 2144: 2140: 2128: 2126: 2116: 2107: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2076: 2074: 2070: 2066: 2062: 2058: 2054: 2049: 2044: 2037: 2032: 2023: 2013: 2008: 1998: 1995: 1991: 1987: 1983: 1979: 1970: 1965: 1955: 1953: 1949: 1930: 1914: 1909: 1907: 1903: 1899: 1895: 1891: 1885: 1883: 1874: 1870: 1866: 1865:protonā€“proton 1862: 1858: 1853: 1839: 1831: 1828: 1822: 1816: 1810: 1804: 1801: 1800: 1797: 1794: 1788: 1782: 1776: 1770: 1767: 1766: 1763: 1760: 1754: 1748: 1742: 1736: 1733: 1732: 1729: 1728:Lacaille 8760 1726: 1720: 1714: 1708: 1702: 1699: 1698: 1695: 1692: 1686: 1680: 1674: 1668: 1665: 1664: 1661: 1660:70 Ophiuchi A 1658: 1652: 1646: 1640: 1634: 1631: 1630: 1627: 1624: 1618: 1612: 1606: 1600: 1597: 1596: 1593: 1592: 1588: 1582: 1552: 1551: 1548: 1545: 1539: 1533: 1527: 1521: 1518: 1517: 1514: 1511: 1505: 1499: 1493: 1487: 1484: 1483: 1480: 1477: 1471: 1465: 1459: 1453: 1450: 1449: 1446: 1445:Beta Pictoris 1443: 1437: 1431: 1425: 1419: 1416: 1415: 1412: 1409: 1406: 1400: 1394: 1388: 1385: 1384: 1381: 1378: 1375: 1369: 1363: 1357: 1354: 1353: 1350: 1347: 1344: 1338: 1332: 1326: 1323: 1322: 1319: 1316: 1313: 1310: 1304: 1298: 1295: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1272: 1268: 1265: 1257: 1255: 1246: 1241: 1239: 1230: 1225: 1223: 1214: 1209: 1206: 1204: 1199: 1198: 1192: 1190: 1186: 1182: 1178: 1174: 1170: 1160: 1158: 1154: 1150: 1146: 1139: 1132: 1127: 1123: 1119: 1113: 1111: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1077:and the mass 1076: 1072: 1065: 1061: 1058:, the radius 1057: 1052: 1050: 1046: 1025: 1016: 1010: 1006: 1002: 999: 996: 993: 990: 983: 982: 981: 979: 972: 969: 965: 961: 957: 948: 939: 937: 933: 928: 925: 920: 919:yellow dwarfs 916: 915:orange dwarfs 912: 902: 900: 896: 892: 888: 885: āˆ’  884: 880: 876: 872: 868: 867:spectral type 863: 861: 857: 853: 852:spectral type 843: 841: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 800: 799: 791: 787: 785: 781: 776: 774: 771: 767: 763: 759: 755: 751: 747: 739: 734: 729: 725: 721: 717: 705: 700: 698: 693: 691: 686: 685: 683: 682: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 648: 647: 646: 642: 641: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 587: 586: 585: 581: 580: 576: 572: 571: 568: 565: 564: 556: 554: 550: 546: 542: 537: 534: 530: 526: 522: 518: 513: 511: 510:Heinrich Vogt 507: 501: 498: 493: 489: 486: 482: 478: 474: 469: 467: 463: 462:star clusters 458: 454: 449: 447: 443: 439: 435: 431: 427: 423: 416: 399: 392: 385: 378: 376:Bright giants 371: 364: 357: 350: 343: 339:Main sequence 334: 327: 320: 313: 306: 299: 292: 285: 278: 271: 264: 257: 250: 243: 241:Spectral type 236: 229: 219: 217: 213: 209: 205: 200: 190: 186: 182: 178: 174: 163: 158: 156: 152: 148: 143: 139: 135: 131: 127: 123: 120:in its dense 119: 114: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 75:main sequence 72: 64: 60: 56: 52: 48: 44: 39: 33: 19: 18:Main-sequence 6944: 6927:Solar System 6727:White dwarfs 6717:Brown dwarfs 6700:Most distant 6648:Most massive 6626:Proper names 6586:Photographic 6539:Solar System 6517:observations 6444:Star systems 6267:Stellar wind 6250:Chromosphere 6223:Oscillations 6103:Helium flash 5953:Hypothetical 5931:X-ray binary 5870:Compact star 5705:Bright giant 5475: 5458:Henyey track 5436:Herbig Ae/Be 5338: 5321: 5312: 5299: 5274: 5270: 5257: 5232: 5228: 5203: 5199: 5174: 5170: 5161: 5136: 5132: 5107: 5103: 5083: 5058: 5047: 5001: 4997: 4978: 4969: 4960: 4917: 4913: 4888: 4873: 4858: 4804: 4800: 4794: 4783:. Retrieved 4779:the original 4768: 4725: 4721: 4711: 4700:. Retrieved 4696:the original 4685: 4642: 4638: 4632: 4612: 4605: 4593:. Retrieved 4589:the original 4578: 4551: 4547: 4537: 4512: 4504: 4477: 4473: 4463: 4444: 4416: 4409: 4381: 4375: 4330: 4326: 4316: 4297: 4277:. Retrieved 4266: 4247: 4241: 4230:. Retrieved 4218: 4213: 4206: 4179: 4173: 4163: 4144: 4138: 4127:. Retrieved 4089: 4085: 4075: 4056: 4050: 4020:(1): 21ā€“34. 4017: 4013: 4007: 3996:. Retrieved 3992:the original 3981: 3967:(1): 25ā€“30. 3964: 3960: 3954: 3935: 3929: 3902: 3898: 3888: 3863: 3859: 3853: 3810: 3806: 3800: 3775: 3767: 3724: 3720: 3714: 3698:. Springer. 3695: 3673:. Retrieved 3644:. Retrieved 3640:the original 3629: 3602: 3598: 3588: 3577:. Retrieved 3567: 3556:. Retrieved 3541: 3534: 3518:. Retrieved 3503: 3492:. Retrieved 3485:the original 3472: 3461:. Retrieved 3451: 3440:. Retrieved 3435: 3426: 3410:. Springer. 3407: 3398: 3387:. Retrieved 3383: 3373: 3362:. Retrieved 3357: 3347: 3329: 3304: 3300: 3290: 3269: 3235: 3228: 3217:. Retrieved 3212: 3203: 3168: 3164: 3154: 3143:. Retrieved 3097: 3093: 3056:(1): 53ā€“60. 3053: 3049: 3043: 3031:. Retrieved 3027: 3018: 3006:. Retrieved 3000: 2990: 2947: 2941: 2935: 2916: 2894:. Retrieved 2888: 2881: 2856: 2848: 2831: 2827: 2821: 2804: 2800: 2759:; New York: 2752: 2710: 2702: 2683: 2670: 2636: 2628:neutron star 2617: 2609: 2591: 2586:white dwarfs 2576: 2553: 2513: 2498: 2492: 2489: 2395: 2391: 2389: 2230: 2220: 2169: 2165: 2129: 2121: 2095: 2091: 2077: 2048:binary stars 2045: 2041: 2009: 1999: 1975: 1952:brown dwarfs 1931: 1910: 1886: 1878: 1762:EZ Aquarii A 1626:Alpha Mensae 1589: 1244: 1242:Luminosity, 1228: 1212: 1188: 1180: 1172: 1166: 1156: 1152: 1141: 1134: 1130: 1125: 1121: 1117: 1114: 1106: 1102: 1094: 1090: 1086: 1082: 1078: 1074: 1063: 1059: 1055: 1053: 1044: 1042: 970: 963: 959: 953: 929: 908: 898: 894: 886: 882: 864: 849: 837: 797: 788: 777: 743: 625:T Tauri star 538: 514: 502: 494: 490: 470: 450: 445: 419: 337: 318:White dwarfs 311:Brown dwarfs 201: 159: 115: 90: 74: 68: 6915:Outer space 6903:Spaceflight 6780:Brown dwarf 6556:Circumpolar 6434:Kraft break 6414:Color index 6389:Metallicity 6349:Designation 6318:Cosmic dust 6240:Photosphere 6006:Dark-energy 5981:Electroweak 5966:Black dwarf 5897:Radio-quiet 5880:White dwarf 5766:White dwarf 5416:Bok globule 5004:: 337ā€“377. 4480:: 457ā€“468. 3866:: 947ā€“962. 3307:: 187ā€“200. 2834:: 222ā€“248. 2807:: 324ā€“329. 2620:supergiants 2563:Hā€“R diagram 1978:photosphere 1513:Eta Arietis 1349:Phi Orionis 962:and radius 932:white dwarf 879:color index 875:photosphere 605:Dark nebula 600:Bok globule 547:(formally, 397:Hypergiants 383:Supergiants 369:Blue giants 216:white dwarf 147:photosphere 122:core region 95:dwarf stars 55:color index 6967:Star types 6951:Categories 6742:Candidates 6737:Supernovae 6722:Red dwarfs 6581:Extinction 6369:Kinematics 6364:Luminosity 6342:Properties 6235:Atmosphere 6133:Si burning 6123:Ne burning 6061:White hole 6034:Quasi-star 5961:Blue dwarf 5816:Technetium 5732:Hypergiant 5710:Supergiant 5260:. Berlin: 4785:2007-12-05 4702:2008-01-08 4279:2007-12-03 4232:2007-12-06 4129:2007-12-06 3998:2007-12-05 3675:2007-12-04 3646:2008-08-12 3579:2008-11-21 3558:2007-12-06 3520:2007-12-06 3494:2010-05-18 3463:2007-12-06 3442:2007-12-04 3389:2009-10-29 3364:2009-10-29 3219:2007-12-09 3145:2007-12-03 2957:1706.10279 2896:2008-08-12 2695:References 2632:black hole 2509:convection 2427:solar mass 1986:convection 1850:See also: 1694:61 Cygni A 1169:luminosity 956:black body 942:Parameters 911:red dwarfs 856:luminosity 846:Properties 840:red dwarfs 770:exothermic 485:parallaxes 466:luminosity 362:Red giants 341:("dwarfs") 325:Red dwarfs 208:supergiant 164:(1.5  155:convection 87:brightness 47:luminosity 45:plots the 6891:Astronomy 6673:Brightest 6571:Magnitude 6551:Pole star 6472:Symbiotic 6467:Eclipsing 6399:Starlight 6200:Structure 6190:Supernova 6183:Micronova 6178:Recurrent 6163:Symbiotic 6148:p-process 6143:r-process 6138:s-process 6128:O burning 6118:C burning 6098:CNO cycle 6041:Gravastar 5577:Hypernova 5567:Supernova 5542:Dredge-up 5515:Blue loop 5508:super-AGB 5491:Red clump 5468:Evolution 5426:Protostar 5406:Accretion 5398:Formation 4866:Technical 4595:8 January 4340:0801.4031 4124:118975831 4042:120541081 3321:0004-6361 3002:Space.com 2982:125826925 2857:The Stars 2624:supernova 2469:τ 2442:⨀ 2411:⨀ 2370:− 2358:⨀ 2311:⨀ 2289:⨀ 2257:≈ 2248:τ 2193:∝ 2174:power law 2139:red giant 2086:known as 2073:subdwarfs 1982:radiation 1958:Structure 1894:CNO cycle 1861:Logarithm 1269:Examples 1149:CNO cycle 1003:σ 1000:π 893:in blue ( 891:magnitude 775:process. 746:protostar 720:Protostar 651:Accretion 615:Protostar 495:In 1933, 448:in 1901. 348:Subgiants 332:Subdwarfs 212:red giant 189:CNO cycle 151:radiation 71:astronomy 6852:Category 6747:Remnants 6643:Extremes 6603:Parallax 6576:Apparent 6566:Asterism 6544:Sunlight 6494:Globular 6479:Multiple 6404:Variable 6394:Rotation 6354:Dynamics 6245:Starspot 5919:Magnetar 5862:Remnants 5678:Subgiant 5651:Subdwarf 5503:post-AGB 5046:(1967). 5036:59325115 4952:13798091 4837:10814581 4829:12511641 4760:14566232 4677:12173790 4367:10073988 3759:13798091 3514:Archived 3406:(2006). 3339:Archived 3195:33059330 3187:11567116 3140:14084249 3132:11778039 2783:33102501 2650:See also 2597:☉ 2582:☉ 2530:☉ 2523:☉ 2226:☉ 2158:☉ 2135:☉ 2110:Lifetime 2020:☉ 2005:☉ 1944:☉ 1937:☉ 1927:☉ 1920:☉ 1902:nitrogen 1873:triple-Ī± 1253:☉ 1237:☉ 1221:☉ 1201:Stellar 1140:, where 854:and the 750:collapse 543:, named 533:mnemonic 404:absolute 197:☉ 181:nitrogen 169:☉ 130:hydrogen 124:through 6939:Science 6877:Portals 6819:Gravity 6768:Related 6688:Nearest 6636:Chinese 6484:Cluster 6457:Contact 6294:Proplyd 6168:Remnant 6056:Blitzar 6030:Hawking 5986:Strange 5936:Burster 5892:Neutron 5845:Extreme 5796:He-weak 5441:T Tauri 5326:Bibcode 5279:Bibcode 5277:: 437. 5237:Bibcode 5235:: 943. 5208:Bibcode 5206:: 571. 5179:Bibcode 5177:: 165. 5141:Bibcode 5112:Bibcode 5110:: 525. 5065:Chicago 5016:Bibcode 4932:Bibcode 4852:General 4809:Bibcode 4801:Science 4740:Bibcode 4657:Bibcode 4556:Bibcode 4482:Bibcode 4345:Bibcode 4223:Bibcode 4184:Bibcode 4104:Bibcode 4022:Bibcode 3988:"Stars" 3969:Bibcode 3907:Bibcode 3868:Bibcode 3845:7280299 3825:Bibcode 3739:Bibcode 3607:Bibcode 3309:Bibcode 3165:Science 3112:Bibcode 3094:Science 3058:Bibcode 3033:27 July 3008:2 April 2962:Bibcode 2836:Bibcode 2809:Bibcode 2757:Bristol 2637:When a 2567:NGC 188 2501:opacity 2456:is the 2063:, or a 1948:Jupiter 1820:0.00017 1407:10,800 1376:16,400 1345:30,000 1314:38,000 1311:180,000 1286:50,000 1283:800,000 1183:), and 1047:is the 976:by the 873:in its 782:on the 744:When a 453:Potsdam 426:spectra 222:History 204:evolves 85:versus 6809:Galaxy 6797:Planet 6785:Desert 6693:bright 6631:Arabic 6452:Binary 6272:Bubble 5996:Planck 5971:Exotic 5907:Binary 5902:Pulsar 5840:Helium 5801:Barium 5744:Carbon 5737:Yellow 5725:Yellow 5698:Yellow 5537:PG1159 5139:: 69. 5071:  5034:  4985:  4950:  4901:  4835:  4827:  4758:  4675:  4620:  4525:  4451:  4423:  4388:  4365:  4304:  4254:  4151:  4122:  4063:  4040:  3942:  3843:  3788:  3757:  3702:  3549:  3414:  3319:  3278:  3243:  3193:  3185:  3138:  3130:  2980:  2943:Nature 2923:  2869:  2781:  2771:  2723:  2390:where 2196:  2190:  2147:carbon 2143:helium 2012:Sirius 1913:Kelvin 1906:oxygen 1904:, and 1898:carbon 1867:(PP), 1826:2,200 1818:000,00 1792:2,650 1786:0.0004 1784:000,00 1758:3,120 1752:0.0027 1750:000,00 1724:3,800 1716:000,00 1690:4,410 1682:000,00 1656:5,240 1648:000,00 1622:5,610 1614:000,00 1586:5,780 1575:000,00 1543:5,920 1535:000,00 1509:6,540 1501:000,00 1475:7,240 1467:000,00 1441:8,620 1342:20,000 1290:BI 253 1226:Mass, 1208:Radius 1177:radius 1043:where 917:, and 871:plasma 726:, and 545:Icarus 406:magni- 355:Giants 185:oxygen 183:, and 177:carbon 134:helium 105:after 73:, the 6814:Guest 6618:Lists 6499:Super 6153:Fusor 6026:Black 6011:Quark 5991:Preon 5976:Boson 5912:X-ray 5828:Shell 5781:Ap/Bp 5683:Giant 5601:Early 5547:OH/IR 5377:Stars 5032:S2CID 5006:arXiv 4948:S2CID 4922:arXiv 4833:S2CID 4756:S2CID 4730:arXiv 4673:S2CID 4647:arXiv 4363:S2CID 4335:arXiv 4120:S2CID 4094:arXiv 4038:S2CID 3841:S2CID 3815:arXiv 3755:S2CID 3729:arXiv 3488:(PDF) 3481:(PDF) 3191:S2CID 3136:S2CID 3102:arXiv 2978:S2CID 2952:arXiv 2863:96ā€“97 2717:25ā€“26 2662:Notes 2425:is a 2339:years 2271:years 1718:0.072 1433:000,0 1402:000,0 1259:Temp. 1203:class 936:Earth 780:curve 752:of a 553:Earth 422:stars 132:into 83:color 79:stars 6489:Open 6384:Mass 6208:Core 6158:Nova 6051:Iron 6001:Dark 5811:Lead 5791:HgMn 5786:CEMP 5715:Blue 5688:Blue 5606:Late 5388:List 5069:ISBN 4983:ISBN 4899:ISBN 4825:PMID 4618:ISBN 4597:2007 4523:ISBN 4449:ISBN 4421:ISBN 4386:ISBN 4302:ISBN 4252:ISBN 4149:ISBN 4061:ISBN 3940:ISBN 3786:ISBN 3700:ISBN 3547:ISBN 3412:ISBN 3317:ISSN 3276:ISBN 3241:ISBN 3183:PMID 3128:PMID 3035:2012 3010:2018 2921:ISBN 2867:ISBN 2779:OCLC 2769:ISBN 2721:ISBN 2493:will 2460:and 2394:and 2094:and 2034:The 1988:. A 1984:and 1871:and 1814:0.07 1808:0.09 1780:0.08 1774:0.11 1746:0.15 1740:0.18 1712:0.60 1706:0.51 1684:0.16 1678:0.69 1672:0.74 1650:0.40 1644:0.78 1638:0.85 1616:0.79 1610:0.93 1604:0.93 1537:1.26 1531:1.10 1525:1.05 1371:000, 1185:mass 1085:and 541:star 523:and 432:and 408:tude 109:and 49:(or 6790:Sub 6524:Sun 5943:SGR 5720:Red 5693:Red 5287:doi 5245:doi 5233:464 5216:doi 5187:doi 5149:doi 5120:doi 5024:doi 4940:doi 4918:555 4817:doi 4805:299 4748:doi 4726:141 4718:sun 4665:doi 4564:doi 4552:482 4490:doi 4478:418 4353:doi 4331:386 4192:doi 4180:113 4112:doi 4090:128 4030:doi 3965:102 3915:doi 3903:406 3876:doi 3864:162 3833:doi 3811:620 3782:128 3747:doi 3725:555 3615:doi 3603:129 3305:217 3173:doi 3169:293 3120:doi 3098:295 3066:doi 2970:doi 2630:or 2605:gap 2571:M67 2373:2.5 2234:Sun 2204:3.5 2036:Sun 1869:CNO 1591:Sun 1579:.00 1570:.00 1561:.00 1553:G2 1503:2.5 1497:1.3 1491:1.2 1463:1.7 1457:1.3 1429:2.1 1423:1.7 1398:3.2 1392:2.5 1373:800 1367:6.5 1361:3.8 1330:7.4 1302:9.8 1280:100 1175:), 1101:of 1093:to 1067:eff 1021:eff 974:eff 471:At 451:In 436:at 153:or 128:of 113:. 99:Sun 93:or 69:In 6953:: 5823:Be 5776:Am 5759:CH 5754:CN 5673:OB 5668:WR 5285:. 5275:25 5273:. 5243:. 5231:. 5214:. 5202:. 5185:. 5175:21 5173:. 5147:. 5137:13 5135:. 5118:. 5106:. 5098:; 5086:. 5063:. 5030:. 5022:. 5014:. 5002:38 5000:. 4946:. 4938:. 4930:. 4916:. 4897:. 4831:. 4823:. 4815:. 4803:. 4754:. 4746:. 4738:. 4724:. 4671:. 4663:. 4655:. 4643:69 4641:. 4562:. 4550:. 4546:. 4521:. 4519:28 4488:. 4476:. 4472:. 4435:^ 4402:kg 4361:. 4351:. 4343:. 4329:. 4325:. 4288:^ 4217:. 4190:. 4178:. 4172:. 4118:. 4110:. 4102:. 4088:. 4084:. 4036:. 4028:. 4018:74 4016:. 3963:. 3913:. 3901:. 3897:. 3874:. 3862:. 3839:. 3831:. 3823:. 3809:. 3784:. 3753:. 3745:. 3737:. 3723:. 3684:^ 3655:^ 3613:. 3601:. 3597:. 3434:. 3382:. 3356:. 3315:. 3303:. 3299:. 3254:^ 3211:. 3189:. 3181:. 3167:. 3163:. 3134:. 3126:. 3118:. 3110:. 3096:. 3092:. 3078:^ 3064:. 3054:34 3052:. 3026:. 2999:. 2976:. 2968:. 2960:. 2946:. 2905:^ 2865:. 2830:. 2805:36 2803:. 2791:^ 2777:. 2763:, 2755:. 2747:; 2735:^ 2719:. 2634:. 2473:MS 2429:, 2333:10 2329:10 2265:10 2261:10 2252:MS 2228:. 2176:: 2059:, 1954:. 1900:, 1812:00 1802:L1 1778:00 1768:M8 1744:00 1734:M5 1710:00 1700:M0 1676:00 1666:K5 1642:00 1632:K0 1608:00 1598:G5 1566:00 1529:00 1519:G0 1495:00 1485:F5 1461:00 1451:F0 1435:20 1427:00 1417:A5 1404:80 1396:00 1386:A0 1365:00 1355:B5 1336:18 1324:B0 1308:35 1296:O6 1277:12 1274:O2 1266:) 1210:, 1159:. 1155:āˆ 1120:= 980:: 913:, 881:, 842:. 722:, 718:, 555:. 475:, 410:(M 218:. 210:, 179:, 41:A 6879:: 6016:Q 5835:B 5749:S 5661:B 5656:O 5644:M 5639:K 5634:G 5629:F 5624:A 5619:B 5614:O 5369:e 5362:t 5355:v 5332:. 5328:: 5306:. 5293:. 5289:: 5281:: 5264:. 5251:. 5247:: 5239:: 5222:. 5218:: 5210:: 5204:5 5193:. 5189:: 5181:: 5155:. 5151:: 5143:: 5126:. 5122:: 5114:: 5108:5 5077:. 5038:. 5026:: 5018:: 5008:: 4991:. 4954:. 4942:: 4934:: 4924:: 4907:. 4880:. 4839:. 4819:: 4811:: 4788:. 4762:. 4750:: 4742:: 4732:: 4705:. 4679:. 4667:: 4659:: 4649:: 4626:. 4599:. 4572:. 4566:: 4558:: 4531:. 4498:. 4492:: 4484:: 4457:. 4429:. 4400:/ 4398:J 4394:. 4369:. 4355:: 4347:: 4337:: 4310:. 4282:. 4260:. 4235:. 4225:: 4200:. 4194:: 4186:: 4157:. 4132:. 4114:: 4106:: 4096:: 4069:. 4044:. 4032:: 4024:: 4001:. 3975:. 3971:: 3948:. 3923:. 3917:: 3909:: 3882:. 3878:: 3870:: 3847:. 3835:: 3827:: 3817:: 3794:. 3761:. 3749:: 3741:: 3731:: 3708:. 3678:. 3649:. 3623:. 3617:: 3609:: 3582:. 3561:. 3523:. 3497:. 3466:. 3445:. 3420:. 3392:. 3367:. 3323:. 3311:: 3284:. 3222:. 3197:. 3175:: 3148:. 3122:: 3114:: 3104:: 3072:. 3068:: 3060:: 3037:. 3012:. 2984:. 2972:: 2964:: 2954:: 2948:2 2929:. 2899:. 2875:. 2842:. 2838:: 2832:7 2815:. 2811:: 2785:. 2729:. 2678:. 2594:M 2579:M 2527:M 2520:M 2438:L 2407:M 2396:L 2392:M 2365:] 2354:M 2350:M 2345:[ 2325:= 2321:] 2316:L 2307:L 2301:[ 2296:] 2285:M 2281:M 2276:[ 2223:M 2200:M 2187:L 2170:M 2166:L 2155:M 2132:M 2096:F 2092:A 2017:M 2002:M 1941:M 1934:M 1924:M 1917:M 1824:0 1806:0 1790:0 1772:0 1756:0 1738:0 1722:0 1704:0 1688:0 1670:0 1654:0 1636:0 1620:0 1602:0 1584:0 1577:1 1568:1 1559:1 1557:0 1541:0 1523:0 1507:0 1489:0 1473:0 1469:6 1455:0 1439:0 1421:0 1390:0 1359:0 1340:0 1334:0 1328:0 1306:0 1300:0 1264:K 1262:( 1250:L 1247:/ 1245:L 1234:M 1231:/ 1229:M 1218:R 1215:/ 1213:R 1189:M 1187:( 1181:R 1179:( 1173:L 1171:( 1157:M 1153:R 1144:I 1142:T 1137:I 1135:T 1131:Īµ 1126:M 1124:/ 1122:L 1118:Īµ 1109:I 1107:T 1103:M 1095:R 1091:M 1087:R 1083:M 1079:M 1075:L 1064:T 1060:R 1056:L 1045:Ļƒ 1026:4 1017:T 1011:2 1007:R 997:4 994:= 991:L 971:T 964:R 960:L 899:V 895:B 887:V 883:B 703:e 696:t 689:v 414:) 412:V 304:T 297:L 290:M 283:K 276:G 269:F 262:A 255:B 248:O 194:M 166:M 65:. 34:. 20:)

Index

Main-sequence
Main Sequence (horse)

Hertzsprungā€“Russell diagram
luminosity
absolute magnitude
color index
Hipparcos Catalog
Gliese Catalogue of Nearby Stars
astronomy
stars
color
brightness
dwarf stars
Sun
Hertzsprungā€“Russell diagrams
Ejnar Hertzsprung
Henry Norris Russell
thermal energy
core region
nuclear fusion
hydrogen
helium
hydrostatic equilibrium
gravitational collapse
photosphere
radiation
convection
mass of the Sun
protonā€“proton chain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘