Knowledge

Lossy compression

Source đź“ť

279:, which transforms the raw data to a domain that more accurately reflects the information content. For example, rather than expressing a sound file as the amplitude levels over time, one may express it as the frequency spectrum over time, which corresponds more accurately to human audio perception. While data reduction (compression, be it lossy or lossless) is a main goal of transform coding, it also allows other goals: one may represent data more accurately for the original amount of space – for example, in principle, if one starts with an analog or high-resolution 3010: 3000: 551:. If data which has been compressed lossily is decoded and compressed losslessly, the size of the result can be comparable with the size of the data before lossy compression, but the data already lost cannot be recovered. When deciding to use lossy conversion without keeping the original, format conversion may be needed in the future to achieve compatibility with software or devices ( 172:
compression techniques as closely matched to human perception as possible is a complex task. Sometimes the ideal is a file that provides exactly the same perception as the original, with as much digital information as possible removed; other times, perceptible loss of quality is considered a valid tradeoff.
151:
needed to transmit it, with no loss of the full information contained in the original file. A picture, for example, is converted to a digital file by considering it to be an array of dots and specifying the color and brightness of each dot. If the picture contains an area of the same color, it can be
171:
In many cases, files or data streams contain more information than is needed. For example, a picture may have more detail than the eye can distinguish when reproduced at the largest size intended; likewise, an audio file does not need a lot of fine detail during a very loud passage. Developing lossy
447:
methods is that in some cases a lossy method can produce a much smaller compressed file than any lossless method, while still meeting the requirements of the application. Lossy methods are most often used for compressing sound, images or videos. This is because these types of data are intended for
347:, allow one to reduce the resolution on the components to accord with human perception – humans have highest resolution for black-and-white (luma), lower resolution for mid-spectrum colors like yellow and green, and lowest for red and blues – thus NTSC displays approximately 350 pixels of luma per 295:
file of the same size. This is because uncompressed audio can only reduce file size by lowering bit rate or depth, whereas compressing audio can reduce size while maintaining bit rate and depth. This compression becomes a selective loss of the least significant data, rather than losing data across
577:
By modifying the compressed data directly without decoding and re-encoding, some editing of lossily compressed files without degradation of quality is possible. Editing which reduces the file size as if it had been compressed to a greater degree, but without more loss than this, is sometimes also
86:
Well-designed lossy compression technology often reduces file sizes significantly before degradation is noticed by the end-user. Even when noticeable by the user, further data reduction may be desirable (e.g., for real-time communication or to reduce transmission times or storage needs). The most
78:
methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create
719:
video, although those prior schemes had limited success in terms of adoption into real-world common usage. Without this capacity, which is often the case in practice, to produce a representation with lower resolution or lower fidelity than a given one, one needs to start with the original source
175:
The terms "irreversible" and "reversible" are preferred over "lossy" and "lossless" respectively for some applications, such as medical image compression, to circumvent the negative implications of "loss". The type and amount of loss can affect the utility of the images. Artifacts or undesirable
1288:, are, like lossy compression, irreversible: the original signal cannot be reconstructed from the transformed signal. However, in general these will have the same size as the original, and are not a form of compression. Lowering resolution has practical uses, as the 167:
file is smaller than its original, but repeatedly compressing the same file will not reduce the size to nothing. Most compression algorithms can recognize when further compression would be pointless and would in fact increase the size of the data.
1512:“Although one main goal of digital audio perceptual coders is data reduction, this is not a necessary characteristic. As we shall see, perceptual coding can be used to improve the representation of digital audio through advanced bit allocation.” 759:
methods. Some audio formats feature a combination of a lossy format and a lossless correction which when combined reproduce the original signal; the correction can be stripped, leaving a smaller, lossily compressed, file. Such formats include
427:, previous and/or subsequent decoded data is used to predict the current sound sample or image frame. The error between the predicted data and the real data, together with any extra information needed to reproduce the prediction, is then 225:. The remaining information can then be compressed via a variety of methods. When the output is decoded, the result may not be identical to the original input, but is expected to be close enough for the purpose of the application. 695:, but this functionality is not supported in all designs, as not all codecs encode data in a form that allows less important detail to simply be dropped. Some well-known designs that have this capability include 130:
which can then be used to produce additional copies from. This allows one to avoid basing new compressed copies off of a lossy source file, which would yield additional artifacts and further unnecessary
630:
Some other transforms are possible to some extent, such as joining images with the same encoding (composing side by side, as on a grid) or pasting images such as logos onto existing images (both via
50: 36: 514:(that is, the size of the compressed file compared to that of the uncompressed file) of lossy video codecs is nearly always far superior to that of the audio and still-image equivalents. 1303:
which progressively defines the image. Thus a partial transmission is enough to preview the final image, in a lower resolution version, without creating a scaled and a full version too.
498:
describes how sound can be highly compressed without degrading perceived quality. Flaws caused by lossy compression that are noticeable to the human eye or ear are known as
83:(reversible data compression) which does not degrade the data. The amount of data reduction possible using lossy compression is much higher than using lossless techniques. 1667: 731:
Another approach is to encode the original signal at several different bitrates, and then either choose which to use (as when streaming over the internet – as in
704: 691:
or otherwise decrease the resolution of the represented source signal and the quantity of data used for its compressed representation without re-encoding, as in
543:
from the re-encoding. This can be avoided by only producing lossy files from (lossless) originals and only editing (copies of) original files, such as images in
155:
The original data contains a certain amount of information, and there is a lower bound to the size of a file that can still carry all the information. Basic
126:. By contrast, lossless compression is typically required for text and data files, such as bank records and text articles. It can be advantageous to make a 1649: 486:
When a user acquires a lossily compressed file, (for example, to reduce download time) the retrieved file can be quite different from the original at the
181: 456:. Data files using lossy compression are smaller in size and thus cost less to store and to transmit over the Internet, a crucial consideration for 448:
human interpretation where the mind can easily "fill in the blanks" or see past very minor errors or inconsistencies – ideally lossy compression is
435:
In some systems the two techniques are combined, with transform codecs being used to compress the error signals generated by the predictive stage.
490:
level while being indistinguishable to the human ear or eye for most practical purposes. Many compression methods focus on the idiosyncrasies of
1834: 736: 524:
Still images are often lossily compressed at 10:1, as with audio, but the quality loss is more noticeable, especially on closer inspection.
176:
effects of compression may be clearly discernible yet the result still useful for the intended purpose. Or lossy compressed images may be '
2502: 2313: 1113: 1611: 1299:
of its encounter with Pluto-Charon before it sent the higher resolution images. Another solution for slow connections is the usage of
2202: 2708: 2531: 2325: 1175: 1373:"Usability of irreversible image compression in radiological imaging. A position paper by the European Society of Radiology (ESR)" 2016: 296:
the board. Further, a transform coding may provide a better domain for manipulating or otherwise editing the data – for example,
351:, 150 pixels of yellow vs. green, and 50 pixels of blue vs. red, which are proportional to human sensitivity to each component. 300:
of audio is most naturally expressed in the frequency domain (boost the bass, for instance) rather than in the raw time domain.
2713: 2290: 1181: 17: 1513: 3044: 2443: 1697: 1675: 363:: repeatedly compressing and decompressing the file will cause it to progressively lose quality. This is in contrast with 1232: 1747: 2820: 2558: 2497: 2308: 2258: 2081: 1221: 1067: 1055: 572: 1941: 1926: 1827: 1785: 539:
An important caveat about lossy compression (formally transcoding), is that editing lossily compressed files causes
2933: 884: 428: 413: 218: 107: 331:) means that black-and-white sets display the luminance, while ignoring the color information. Another example is 2943: 2781: 2632: 2551: 2345: 1193: 481: 449: 152:
compressed without loss by saying "200 red dots" instead of "red dot, red dot, ...(197 more times)..., red dot."
743:), or broadcast several, where the best that is successfully received is used, as in various implementations of 2916: 2536: 2330: 2118: 1277: 1169: 1800: 1722: 1642: 3013: 2049: 292: 2678: 3003: 2906: 2448: 2006: 1820: 1562: 1119: 989: 818: 160: 1996: 1991: 1257: 210: 568: 2938: 2865: 2703: 2683: 2627: 2285: 2076: 1879: 1342: 1163: 834: 752: 494:, taking into account, for instance, that the human eye can see only certain wavelengths of light. The 627:
channel). While unwanted information is destroyed, the quality of the remaining portion is unchanged.
3039: 2948: 2889: 2815: 2663: 2253: 2248: 2103: 1946: 1489:"T.81 – DIGITAL COMPRESSION AND CODING OF CONTINUOUS-TONE STILL IMAGES – REQUIREMENTS AND GUIDELINES" 942: 876: 801: 364: 229: 159:
says that there is an absolute limit in reducing the size of this data. When data is compressed, its
88: 2953: 2526: 2320: 2021: 1157: 824: 720:
signal and encode, or start with a compressed representation and then decompress and re-encode it (
261: 1600:, Prentice Hall, 1996; JPEG: Chapter 8; H.261: Chapter 9; MPEG-1: Chapter 10; MPEG-2: Chapter 11. 2894: 2265: 2152: 2108: 1921: 1904: 1894: 1425: 744: 725: 540: 1108:(Notable for lack of patent restrictions, low delay, and high quality speech and general audio.) 2519: 2270: 2054: 1899: 1044: 511: 409: 372: 312: 249: 63: 2791: 221:. Knowledge of the application is used to choose information to discard, thereby lowering its 2923: 1300: 1261: 1127: 1079: 979: 408:, samples of picture or sound are taken, chopped into small segments, transformed into a new 287:
file of a given size should provide a better representation than a raw uncompressed audio in
222: 148: 2607: 2069: 2031: 1852: 1337: 1312: 769: 499: 495: 444: 316: 297: 269: 80: 143:
It is possible to compress many types of digital data in a way that reduces the size of a
8: 2838: 2729: 2688: 2673: 2642: 2637: 2546: 2453: 2386: 2355: 2340: 2123: 1420: 1094: 1040: 1011: 932: 890: 846: 773: 656: 1795: 1773: 707:
for video. Such schemes have also been standardized for older designs as well, such as
27:
Data compression approach that reduces data size while discarding or changing some of it
2911: 2881: 2860: 2766: 2698: 2592: 2280: 2096: 2086: 1981: 1961: 1956: 1619: 1471: 1397: 1372: 866: 679:
information, can usually be modified or removed without modifying the underlying data.
368: 332: 156: 2492: 2855: 2843: 2825: 2693: 2577: 2514: 2360: 2275: 2192: 1874: 1475: 1402: 936: 795: 383: 320: 276: 241: 177: 164: 2830: 2786: 2759: 2754: 2612: 2597: 2507: 2416: 2411: 2240: 1973: 1951: 1843: 1463: 1392: 1384: 1317: 1016: 700: 608: 544: 491: 417: 199: 193: 127: 75: 1272:
A general kind of lossy compression is to lower the resolution of an image, as in
2749: 2563: 2487: 2468: 2438: 2406: 2372: 1931: 1869: 1789: 1151: 904: 692: 556: 552: 465: 457: 387: 380: 360: 119: 518:
Video can be compressed immensely (e.g., 100:1) with little visible quality loss
2541: 2335: 2064: 2059: 1916: 1889: 1861: 1488: 1332: 1187: 1073: 1028: 672: 641:
Optimizing the compression (to reduce size without change to the decoded image)
521:
Audio can often be compressed at 10:1 with almost imperceptible loss of quality
280: 203: 1803:, comparing the suitability of JPG and lossless compression for image archives 1388: 3033: 2848: 2796: 2463: 2458: 2433: 2365: 1986: 1884: 1322: 1285: 1280:. One may also remove less "lower information" parts of an image, such as by 1273: 1061: 969: 963: 958: 716: 616: 612: 214: 207: 144: 1467: 1097:(WMA) (Standard and Pro profiles are lossy. WMA Lossless is also available.) 240:
in 1974. DCT is the most widely used form of lossy compression, for popular
228:
The most common form of lossy compression is a transform coding method, the
49: 2969: 1936: 1911: 1812: 1776:, comparing the speed and compression strength of five lossy audio formats. 1406: 1347: 1292: 1281: 1238: 1105: 1100: 740: 732: 35: 1779: 163:
increases, and it cannot increase indefinitely. For example, a compressed
2928: 2806: 2602: 2478: 2428: 1352: 1021: 953: 756: 721: 624: 534: 376: 336: 324: 1526: 631: 217:. The transformation is typically used to enable better (more targeted) 2985: 2776: 2771: 2658: 2617: 2423: 1260:
techniques, although these sometimes fall into the related category of
1252:
Researchers have performed lossy compression on text by either using a
761: 688: 198:
Some forms of lossy compression can be thought of as an application of
103: 303:
From this point of view, perceptual encoding is not essentially about
1782:, including chapters on lossy compression of images, audio and video. 1451: 1296: 1253: 870: 851: 696: 682: 649: 620: 391: 257: 237: 96: 2899: 2744: 2401: 1447: 1133: 855: 815:(high-density lossless or lossy compression of RGB and RGBA images) 588: 453: 348: 233: 92: 379:
in optimal coding theory, rate-distortion theory heavily draws on
2668: 2142: 2091: 1563:"Reminiscences of the Early Work in DCT: Interview with K.R. Rao" 830: 765: 668: 637:
Some changes can be made to the compression without re-encoding:
469: 461: 275:
In the case of audio data, a popular form of transform coding is
2182: 1227: 1207: 1089: 998: 983: 748: 712: 601: 367:, where data will not be lost via the use of such a procedure. 79:
coarser images as more details are removed. This is opposed to
3017: 2622: 2215: 2162: 1370: 1327: 1213: 973: 948: 895: 838: 404: 115: 111: 1806: 644:
Converting between progressive and non-progressive encoding.
2172: 2026: 2011: 2001: 1748:"Semantic and Generative Models for Lossy Text Compression" 1598:
Techniques and Standards for Image, Video, and Audio Coding
1289: 1201: 1139: 1004: 986:
AVC) (may also be lossless, even in certain video sections)
920: 901: 879:, Progressive Graphics File (lossless or lossy compression) 861: 812: 807: 708: 676: 597: 548: 344: 253: 245: 123: 2147: 2113: 1197: 1083: 995: 908: 487: 340: 328: 288: 284: 265: 586:
The primary programs for lossless editing of JPEGs are
371:
foundations for lossy data compression are provided by
1796:
Using lossy GIF/PNG compression for the web (article)
1570:
Reprints from the Early Days of Information Sciences
102:
Lossy compression is most commonly used to compress
1612:"The Use of FFT and MDCT in MP3 Audio Compression" 683:Downsampling/compressed representation scalability 573:commons:Commons:Software § Ogg Vorbis (audio) 559:for decoding or distribution of compressed files. 182:diagnostically acceptable irreversible compression 1561:Stanković, Radomir S.; Astola, Jaakko T. (2012). 1446: 739:" – or offering varying downloads, as at Apple's 390:in order to model perceptual distortion and even 3031: 1560: 397:There are two basic lossy compression schemes: 202:, which is a type of data compression used for 180:', or in the case of medical images, so-called 87:widely used lossy compression algorithm is the 1668:"The inconvenient truth about Bluetooth audio" 452:(imperceptible), which can be verified via an 1828: 1454:(January 1974), "Discrete Cosine Transform", 841:pixel formats (lossless or lossy compression) 1842: 1256:to substitute short words for long ones, or 319:: in color television, encoding color via a 1698:"What is Sony LDAC, and how does it do it?" 1640: 1634: 1556: 1554: 1552: 1550: 1548: 1546: 1516:, Victor Lombardi, noisebetweenstations.com 1216:(noted for its lack of patent restrictions) 1210:(noted for its lack of patent restrictions) 1114:Adaptive differential pulse-code modulation 1001:(noted for its lack of patent restrictions) 1835: 1821: 1714: 1689: 1659: 774:DTS-HD Master Audio in lossless (XLL) mode 528: 416:. The resulting quantized values are then 1396: 652:has some lossless JPEG operations in its 562: 1745: 1543: 1176:Algebraic code-excited linear prediction 1609: 914: 833:, a successor of JPEG with support for 14: 3032: 1603: 1371:European Society of Radiology (2011). 1267: 1182:Relaxed code-excited linear prediction 869:, used by the Mars Rovers, related to 711:images with progressive encoding, and 604:(which provides a Windows interface). 359:Lossy compression formats suffer from 118:), especially in applications such as 1816: 1665: 1592: 1590: 1440: 827:(BPG) (lossless or lossy compression) 132: 1720: 1695: 854:, JPEG's successor format that uses 724:), though the latter tends to cause 569:commons:Commons:Software § JPEG 505: 443:The advantage of lossy methods over 232:(DCT), which was first published by 1241:(mostly for real-time applications) 1233:Constrained Energy Lapped Transform 354: 187: 55:High-compression (low quality) JPEG 41:Low-compression (high quality) JPEG 24: 1587: 1222:Modified discrete cosine transform 1068:Adaptive Transform Acoustic Coding 1056:Modified discrete cosine transform 25: 3056: 1767: 1284:. Many media transforms, such as 747:. Similar techniques are used in 3009: 3008: 2999: 2998: 1655:from the original on 2017-02-13. 885:Cartesian Perceptual Compression 48: 34: 1739: 1641:Brandenburg, Karlheinz (1999). 898:(lossless or lossy compression) 858:(lossless or lossy compression) 482:Transparency (data compression) 475: 1723:"aptX HD - lossless or lossy?" 1519: 1506: 1481: 1456:IEEE Transactions on Computers 1413: 1364: 1170:Code-excited linear prediction 184:(DAIC) may have been applied. 13: 1: 1666:Darko, John H. (2017-03-29). 1610:Guckert, John (Spring 2012). 1514:Masking and Perceptual Coding 1247: 909:3D computer graphics hardware 438: 3045:Lossy compression algorithms 1120:Master Quality Authenticated 990:High Efficiency Video Coding 819:High Efficiency Image Format 607:These allow the image to be 311:of data. Another use is for 7: 1786:Lossy PNG image compression 1596:K. R. Rao and J. J. Hwang, 1306: 784: 662: 147:needed to store it, or the 10: 3061: 2890:Compressed data structures 2212:RLE + BWT + MTF + Huffman 1880:Asymmetric numeral systems 1809:, Jpg, Png compressor tool 1792: (archived 2005-10-03) 1746:I. H. WITTEN; et al. 1164:Adaptive predictive coding 1149: 1049: 1038: 930: 793: 779: 648:The freeware Windows-only 566: 532: 479: 327:transform domain (such as 191: 91:(DCT), first published by 2994: 2978: 2962: 2880: 2805: 2737: 2728: 2651: 2585: 2576: 2477: 2394: 2385: 2301: 2249:Discrete cosine transform 2239: 2230: 2179:LZ77 + Huffman + context 2132: 2042: 1972: 1860: 1851: 1389:10.1007/s13244-011-0071-x 1145: 943:Discrete cosine transform 802:Discrete cosine transform 755:, and more sophisticated 365:lossless data compression 307:data, but rather about a 230:discrete cosine transform 89:discrete cosine transform 81:lossless data compression 2954:Smallest grammar problem 1721:Ford, Jez (2016-11-22). 1696:Ford, Jez (2015-08-24). 1358: 1158:Linear predictive coding 1034: 926: 825:Better Portable Graphics 789: 764:(Scalable to Lossless), 375:. Much like the use of 138: 72:irreversible compression 2895:Compressed suffix array 2444:Nyquist–Shannon theorem 1780:Data compression basics 1643:"MP3 and AAC Explained" 1527:"New jpegtran features" 1494:. CCITT. September 1992 1468:10.1109/T-C.1974.223784 1426:Encyclopedia Britannica 753:pyramid representations 745:hierarchical modulation 726:digital generation loss 619:, or even converted to 581: 541:digital generation loss 529:Transcoding and editing 425:lossy predictive codecs 369:Information-theoretical 1753:. The Computer Journal 1343:Rate–distortion theory 1045:Audio data compression 873:in its use of wavelets 596:(which also preserves 563:Editing of lossy files 555:), or to avoid paying 373:rate-distortion theory 313:backward compatibility 250:video coding standards 64:information technology 18:Lossy data compression 2924:Kolmogorov complexity 2792:Video characteristics 2169:LZ77 + Huffman + ANS 1807:JPG Image Compression 1262:lossy data conversion 1150:Further information: 1128:MPEG-1 Audio Layer II 1080:Advanced Audio Coding 1039:Further information: 980:Advanced Video Coding 931:Further information: 794:Further information: 705:Scalable Video Coding 699:for still images and 533:Further information: 500:compression artifacts 480:Further information: 309:better representation 3014:Compression software 2608:Compression artifact 2564:Psychoacoustic model 1338:Lossless compression 1313:Compression artifact 1029:Sorenson video codec 915:3D computer graphics 770:OptimFROG DualStream 496:psychoacoustic model 317:graceful degradation 128:master lossless file 3004:Compression formats 2643:Texture compression 2638:Standard test image 2454:Silence compression 1774:Lossy audio formats 1268:Lowering resolution 1194:Adaptive Multi-Rate 1095:Windows Media Audio 1041:Audio coding format 1012:Wavelet compression 933:Video coding format 891:Fractal compression 887:, also known as CPC 847:Wavelet compression 236:, T. Natarajan and 95:, T. Natarajan and 2912:Information theory 2767:Display resolution 2593:Chroma subsampling 1982:Byte pair encoding 1927:Shannon–Fano–Elias 1620:University of Utah 1421:"Data compression" 1295:craft transmitted 1136:(based on Musicam) 835:high-dynamic range 667:Metadata, such as 600:information), and 592:, and the derived 333:chroma subsampling 157:information theory 124:internet telephony 3027: 3026: 2876: 2875: 2826:Deblocking filter 2724: 2723: 2572: 2571: 2381: 2380: 2226: 2225: 1801:JPG for Archiving 1450:; Natarajan, T.; 1301:Image interlacing 937:Video compression 796:Image compression 623:(by dropping the 512:compression ratio 506:Compression ratio 468:services such as 460:services such as 277:perceptual coding 264:formats (such as 262:audio compression 244:formats (such as 242:image compression 178:visually lossless 68:lossy compression 16:(Redirected from 3052: 3040:Data compression 3012: 3011: 3002: 3001: 2831:Lapped transform 2735: 2734: 2613:Image resolution 2598:Coding tree unit 2583: 2582: 2392: 2391: 2237: 2236: 1858: 1857: 1844:Data compression 1837: 1830: 1823: 1814: 1813: 1762: 1761: 1759: 1758: 1752: 1743: 1737: 1736: 1734: 1733: 1718: 1712: 1711: 1709: 1708: 1693: 1687: 1686: 1684: 1683: 1674:. Archived from 1663: 1657: 1656: 1654: 1647: 1638: 1632: 1631: 1629: 1627: 1616: 1607: 1601: 1594: 1585: 1584: 1582: 1580: 1567: 1558: 1541: 1540: 1538: 1537: 1523: 1517: 1510: 1504: 1503: 1501: 1499: 1493: 1485: 1479: 1478: 1444: 1438: 1437: 1435: 1433: 1417: 1411: 1410: 1400: 1377:Insights Imaging 1368: 1318:Data compression 1017:Motion JPEG 2000 907:compression for 701:H.264/MPEG-4 AVC 687:One may wish to 655: 595: 591: 557:patent royalties 545:raw image format 492:human physiology 403:lossy transform 355:Information loss 200:transform coding 194:Transform coding 188:Transform coding 133:information loss 76:data compression 74:is the class of 52: 38: 21: 3060: 3059: 3055: 3054: 3053: 3051: 3050: 3049: 3030: 3029: 3028: 3023: 2990: 2974: 2958: 2939:Rate–distortion 2872: 2801: 2720: 2647: 2568: 2473: 2469:Sub-band coding 2377: 2302:Predictive type 2297: 2222: 2189:LZSS + Huffman 2139:LZ77 + Huffman 2128: 2038: 1974:Dictionary type 1968: 1870:Adaptive coding 1847: 1841: 1790:Wayback Machine 1770: 1765: 1756: 1754: 1750: 1744: 1740: 1731: 1729: 1719: 1715: 1706: 1704: 1694: 1690: 1681: 1679: 1664: 1660: 1652: 1645: 1639: 1635: 1625: 1623: 1614: 1608: 1604: 1595: 1588: 1578: 1576: 1565: 1559: 1544: 1535: 1533: 1525: 1524: 1520: 1511: 1507: 1497: 1495: 1491: 1487: 1486: 1482: 1445: 1441: 1431: 1429: 1419: 1418: 1414: 1369: 1365: 1361: 1309: 1276:, particularly 1270: 1258:generative text 1250: 1154: 1152:Speech encoding 1148: 1052: 1047: 1037: 982:(AVC / H.264 / 939: 929: 917: 798: 792: 787: 782: 693:bitrate peeling 685: 673:Vorbis comments 665: 653: 634:), or scaling. 593: 587: 584: 575: 565: 553:format shifting 537: 531: 508: 484: 478: 466:streaming audio 458:streaming video 441: 388:decision theory 361:generation loss 357: 196: 190: 141: 120:streaming media 60: 59: 58: 57: 56: 53: 44: 43: 42: 39: 28: 23: 22: 15: 12: 11: 5: 3058: 3048: 3047: 3042: 3025: 3024: 3022: 3021: 3006: 2995: 2992: 2991: 2989: 2988: 2982: 2980: 2976: 2975: 2973: 2972: 2966: 2964: 2960: 2959: 2957: 2956: 2951: 2946: 2941: 2936: 2931: 2926: 2921: 2920: 2919: 2909: 2904: 2903: 2902: 2897: 2886: 2884: 2878: 2877: 2874: 2873: 2871: 2870: 2869: 2868: 2863: 2853: 2852: 2851: 2846: 2841: 2833: 2828: 2823: 2818: 2812: 2810: 2803: 2802: 2800: 2799: 2794: 2789: 2784: 2779: 2774: 2769: 2764: 2763: 2762: 2757: 2752: 2741: 2739: 2732: 2726: 2725: 2722: 2721: 2719: 2718: 2717: 2716: 2711: 2706: 2701: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2655: 2653: 2649: 2648: 2646: 2645: 2640: 2635: 2630: 2625: 2620: 2615: 2610: 2605: 2600: 2595: 2589: 2587: 2580: 2574: 2573: 2570: 2569: 2567: 2566: 2561: 2556: 2555: 2554: 2549: 2544: 2539: 2534: 2524: 2523: 2522: 2512: 2511: 2510: 2505: 2495: 2490: 2484: 2482: 2475: 2474: 2472: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2436: 2431: 2426: 2421: 2420: 2419: 2414: 2409: 2398: 2396: 2389: 2383: 2382: 2379: 2378: 2376: 2375: 2373:Psychoacoustic 2370: 2369: 2368: 2363: 2358: 2350: 2349: 2348: 2343: 2338: 2333: 2328: 2318: 2317: 2316: 2305: 2303: 2299: 2298: 2296: 2295: 2294: 2293: 2288: 2283: 2273: 2268: 2263: 2262: 2261: 2256: 2245: 2243: 2241:Transform type 2234: 2228: 2227: 2224: 2223: 2221: 2220: 2219: 2218: 2210: 2209: 2208: 2205: 2197: 2196: 2195: 2187: 2186: 2185: 2177: 2176: 2175: 2167: 2166: 2165: 2157: 2156: 2155: 2150: 2145: 2136: 2134: 2130: 2129: 2127: 2126: 2121: 2116: 2111: 2106: 2101: 2100: 2099: 2094: 2084: 2079: 2074: 2073: 2072: 2062: 2057: 2052: 2046: 2044: 2040: 2039: 2037: 2036: 2035: 2034: 2029: 2024: 2019: 2014: 2009: 2004: 1999: 1994: 1984: 1978: 1976: 1970: 1969: 1967: 1966: 1965: 1964: 1959: 1954: 1949: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1908: 1907: 1902: 1897: 1887: 1882: 1877: 1872: 1866: 1864: 1855: 1849: 1848: 1840: 1839: 1832: 1825: 1817: 1811: 1810: 1804: 1798: 1793: 1783: 1777: 1769: 1768:External links 1766: 1764: 1763: 1738: 1713: 1688: 1658: 1633: 1602: 1586: 1542: 1518: 1505: 1480: 1439: 1412: 1383:(2): 103–115. 1362: 1360: 1357: 1356: 1355: 1350: 1345: 1340: 1335: 1333:List of codecs 1330: 1325: 1320: 1315: 1308: 1305: 1269: 1266: 1249: 1246: 1245: 1244: 1243: 1242: 1236: 1230: 1219: 1218: 1217: 1211: 1205: 1191: 1188:Low-delay CELP 1185: 1179: 1173: 1167: 1147: 1144: 1143: 1142: 1137: 1131: 1125: 1124: 1123: 1111: 1110: 1109: 1103: 1098: 1092: 1087: 1077: 1074:MPEG Layer III 1071: 1065: 1051: 1048: 1036: 1033: 1032: 1031: 1026: 1025: 1024: 1019: 1009: 1008: 1007: 1002: 993: 992:(HEVC / H.265) 987: 977: 967: 961: 956: 951: 928: 925: 924: 923: 916: 913: 912: 911: 899: 893: 888: 882: 881: 880: 874: 864: 859: 844: 843: 842: 828: 822: 816: 810: 791: 788: 786: 783: 781: 778: 684: 681: 664: 661: 646: 645: 642: 583: 580: 564: 561: 530: 527: 526: 525: 522: 519: 507: 504: 477: 474: 440: 437: 433: 432: 421: 356: 353: 281:digital master 204:digital images 192:Main article: 189: 186: 140: 137: 54: 47: 46: 45: 40: 33: 32: 31: 30: 29: 26: 9: 6: 4: 3: 2: 3057: 3046: 3043: 3041: 3038: 3037: 3035: 3019: 3015: 3007: 3005: 2997: 2996: 2993: 2987: 2984: 2983: 2981: 2977: 2971: 2968: 2967: 2965: 2961: 2955: 2952: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2918: 2915: 2914: 2913: 2910: 2908: 2905: 2901: 2898: 2896: 2893: 2892: 2891: 2888: 2887: 2885: 2883: 2879: 2867: 2864: 2862: 2859: 2858: 2857: 2854: 2850: 2847: 2845: 2842: 2840: 2837: 2836: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2813: 2811: 2808: 2804: 2798: 2797:Video quality 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2761: 2758: 2756: 2753: 2751: 2748: 2747: 2746: 2743: 2742: 2740: 2736: 2733: 2731: 2727: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2696: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2656: 2654: 2650: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2590: 2588: 2584: 2581: 2579: 2575: 2565: 2562: 2560: 2557: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2530: 2529: 2528: 2525: 2521: 2518: 2517: 2516: 2513: 2509: 2506: 2504: 2501: 2500: 2499: 2496: 2494: 2491: 2489: 2486: 2485: 2483: 2480: 2476: 2470: 2467: 2465: 2464:Speech coding 2462: 2460: 2459:Sound quality 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2434:Dynamic range 2432: 2430: 2427: 2425: 2422: 2418: 2415: 2413: 2410: 2408: 2405: 2404: 2403: 2400: 2399: 2397: 2393: 2390: 2388: 2384: 2374: 2371: 2367: 2364: 2362: 2359: 2357: 2354: 2353: 2351: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2323: 2322: 2319: 2315: 2312: 2311: 2310: 2307: 2306: 2304: 2300: 2292: 2289: 2287: 2284: 2282: 2279: 2278: 2277: 2274: 2272: 2269: 2267: 2264: 2260: 2257: 2255: 2252: 2251: 2250: 2247: 2246: 2244: 2242: 2238: 2235: 2233: 2229: 2217: 2214: 2213: 2211: 2206: 2204: 2201: 2200: 2199:LZ77 + Range 2198: 2194: 2191: 2190: 2188: 2184: 2181: 2180: 2178: 2174: 2171: 2170: 2168: 2164: 2161: 2160: 2158: 2154: 2151: 2149: 2146: 2144: 2141: 2140: 2138: 2137: 2135: 2131: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2098: 2095: 2093: 2090: 2089: 2088: 2085: 2083: 2080: 2078: 2075: 2071: 2068: 2067: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2048: 2047: 2045: 2041: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1989: 1988: 1985: 1983: 1980: 1979: 1977: 1975: 1971: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1945: 1944: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1906: 1903: 1901: 1898: 1896: 1893: 1892: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1867: 1865: 1863: 1859: 1856: 1854: 1850: 1845: 1838: 1833: 1831: 1826: 1824: 1819: 1818: 1815: 1808: 1805: 1802: 1799: 1797: 1794: 1791: 1787: 1784: 1781: 1778: 1775: 1772: 1771: 1749: 1742: 1728: 1724: 1717: 1703: 1699: 1692: 1678:on 2018-01-14 1677: 1673: 1669: 1662: 1651: 1644: 1637: 1622: 1621: 1613: 1606: 1599: 1593: 1591: 1575: 1571: 1564: 1557: 1555: 1553: 1551: 1549: 1547: 1532: 1528: 1522: 1515: 1509: 1490: 1484: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1443: 1428: 1427: 1422: 1416: 1408: 1404: 1399: 1394: 1390: 1386: 1382: 1378: 1374: 1367: 1363: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1323:Image scaling 1321: 1319: 1316: 1314: 1311: 1310: 1304: 1302: 1298: 1294: 1291: 1287: 1286:Gaussian blur 1283: 1279: 1275: 1274:image scaling 1265: 1263: 1259: 1255: 1240: 1237: 1234: 1231: 1229: 1226: 1225: 1223: 1220: 1215: 1212: 1209: 1206: 1203: 1199: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1161: 1159: 1156: 1155: 1153: 1141: 1140:aptX/ aptX-HD 1138: 1135: 1132: 1129: 1126: 1121: 1118: 1117: 1115: 1112: 1107: 1104: 1102: 1099: 1096: 1093: 1091: 1088: 1085: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1062:Dolby Digital 1060: 1059: 1057: 1054: 1053: 1046: 1042: 1030: 1027: 1023: 1020: 1018: 1015: 1014: 1013: 1010: 1006: 1003: 1000: 997: 994: 991: 988: 985: 981: 978: 975: 971: 970:MPEG-4 Part 2 968: 965: 964:MPEG-2 Part 2 962: 960: 959:MPEG-1 Part 2 957: 955: 952: 950: 947: 946: 944: 941: 940: 938: 934: 922: 919: 918: 910: 906: 903: 900: 897: 894: 892: 889: 886: 883: 878: 875: 872: 868: 865: 863: 860: 857: 853: 850: 849: 848: 845: 840: 836: 832: 829: 826: 823: 820: 817: 814: 811: 809: 806: 805: 803: 800: 799: 797: 777: 775: 771: 767: 763: 758: 754: 750: 746: 742: 738: 734: 729: 727: 723: 718: 717:MPEG-4 Part 2 714: 710: 706: 702: 698: 694: 690: 680: 678: 674: 670: 660: 658: 654:JPG_TRANSFORM 651: 643: 640: 639: 638: 635: 633: 628: 626: 622: 618: 614: 610: 605: 603: 599: 590: 579: 574: 570: 560: 558: 554: 550: 546: 542: 536: 523: 520: 517: 516: 515: 513: 503: 501: 497: 493: 489: 483: 473: 471: 467: 463: 459: 455: 451: 446: 436: 430: 426: 422: 419: 418:entropy coded 415: 411: 407: 406: 400: 399: 398: 395: 393: 389: 385: 382: 378: 374: 370: 366: 362: 352: 350: 346: 342: 338: 335:: the use of 334: 330: 326: 322: 318: 314: 310: 306: 301: 299: 294: 290: 286: 282: 278: 273: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 226: 224: 220: 216: 215:digital video 212: 209: 208:digital audio 205: 201: 195: 185: 183: 179: 173: 169: 166: 162: 158: 153: 150: 146: 145:computer file 136: 134: 129: 125: 121: 117: 113: 109: 105: 100: 98: 94: 90: 84: 82: 77: 73: 69: 65: 51: 37: 19: 2970:Hutter Prize 2934:Quantization 2839:Compensation 2633:Quantization 2356:Compensation 2231: 1922:Shannon–Fano 1862:Entropy type 1755:. Retrieved 1741: 1730:. Retrieved 1726: 1716: 1705:. Retrieved 1701: 1691: 1680:. Retrieved 1676:the original 1671: 1661: 1636: 1624:. Retrieved 1618: 1605: 1597: 1577:. Retrieved 1573: 1569: 1534:. Retrieved 1530: 1521: 1508: 1496:. Retrieved 1483: 1462:(1): 90–93, 1459: 1455: 1448:Ahmed, Nasir 1442: 1430:. Retrieved 1424: 1415: 1380: 1376: 1366: 1348:Seam carving 1293:New Horizons 1282:seam carving 1271: 1251: 741:iTunes Store 733:RealNetworks 730: 686: 666: 647: 636: 629: 606: 585: 576: 538: 509: 485: 476:Transparency 442: 434: 424: 402: 396: 358: 337:color spaces 308: 304: 302: 298:equalization 274: 227: 219:quantization 197: 174: 170: 154: 142: 101: 85: 71: 67: 61: 2929:Prefix code 2782:Frame types 2603:Color space 2429:Convolution 2159:LZ77 + ANS 2070:Incremental 2043:Other types 1962:Levenshtein 1531:sylvana.net 1353:Transcoding 954:Motion JPEG 757:scale space 722:transcoding 625:chrominance 611:, rotated, 547:instead of 535:Transcoding 450:transparent 410:basis space 377:probability 325:chrominance 234:Nasir Ahmed 93:Nasir Ahmed 3034:Categories 2986:Mark Adler 2944:Redundancy 2861:Daubechies 2844:Estimation 2777:Frame rate 2699:Daubechies 2659:Chain code 2618:Macroblock 2424:Companding 2361:Estimation 2281:Daubechies 1987:Lempel–Ziv 1947:Exp-Golomb 1875:Arithmetic 1757:2007-10-13 1732:2018-01-13 1707:2018-01-13 1682:2018-01-13 1579:13 October 1536:2019-09-20 1452:Rao, K. R. 1297:thumbnails 1278:decimation 1248:Other data 762:MPEG-4 SLS 737:SureStream 689:downsample 578:possible. 567:See also: 439:Comparison 431:and coded. 394:judgment. 384:estimation 343:, used in 305:discarding 104:multimedia 2963:Community 2787:Interlace 2173:Zstandard 1952:Fibonacci 1942:Universal 1900:Canonical 1476:149806273 1432:13 August 1254:thesaurus 1196:(used in 1190:(LD-CELP) 871:JPEG 2000 852:JPEG 2000 697:JPEG 2000 650:IrfanView 621:grayscale 429:quantized 414:quantized 392:aesthetic 321:luminance 258:H.264/AVC 252:(such as 238:K. R. Rao 223:bandwidth 149:bandwidth 99:in 1974. 97:K. R. Rao 2949:Symmetry 2917:Timeline 2900:FM-index 2745:Bit rate 2738:Concepts 2586:Concepts 2449:Sampling 2402:Bit rate 2395:Concepts 2097:Sequitur 1932:Tunstall 1905:Modified 1895:Adaptive 1853:Lossless 1650:Archived 1407:22347940 1307:See also 1134:Musepack 1116:(ADPCM) 856:wavelets 785:Graphics 669:ID3 tags 663:Metadata 632:Jpegjoin 602:Jpegcrop 594:exiftran 589:jpegtran 454:ABX test 445:lossless 381:Bayesian 349:scanline 339:such as 2907:Entropy 2856:Wavelet 2835:Motion 2694:Wavelet 2674:Fractal 2669:Deflate 2652:Methods 2439:Latency 2352:Motion 2276:Wavelet 2193:LHA/LZH 2143:Deflate 2092:Re-Pair 2087:Grammar 1917:Shannon 1890:Huffman 1846:methods 1788:at the 1672:DAR__KO 1626:14 July 1498:12 July 1398:3259360 1224:(MDCT) 1184:(RCELP) 1178:(ACELP) 1082:(AAC / 1070:(ATRAC) 1058:(MDCT) 1050:General 966:(H.262) 905:texture 837:, wide 831:JPEG XR 780:Methods 766:WavPack 749:mipmaps 617:flopped 613:flipped 609:cropped 470:Spotify 462:Netflix 211:signals 161:entropy 3018:codecs 2979:People 2882:Theory 2849:Vector 2366:Vector 2183:Brotli 2133:Hybrid 2032:Snappy 1885:Golomb 1474:  1405:  1395:  1235:(CELT) 1228:AAC-LD 1208:Codec2 1172:(CELP) 1160:(LPC) 1146:Speech 1090:Vorbis 1086:Audio) 1064:(AC-3) 999:Theora 984:MPEG-4 945:(DCT) 821:(HEIF) 804:(DCT) 772:, and 713:MPEG-2 703:based 657:plugin 615:, and 571:, and 412:, and 405:codecs 260:) and 213:, and 116:images 114:, and 106:data ( 2809:parts 2807:Codec 2772:Frame 2730:Video 2714:SPIHT 2623:Pixel 2578:Image 2532:ACELP 2503:ADPCM 2493:ÎĽ-law 2488:A-law 2481:parts 2479:Codec 2387:Audio 2326:ACELP 2314:ADPCM 2291:SPIHT 2232:Lossy 2216:bzip2 2207:LZHAM 2163:LZFSE 2065:Delta 1957:Gamma 1937:Unary 1912:Range 1751:(PDF) 1727:AVHub 1702:AVHub 1653:(PDF) 1646:(PDF) 1615:(PDF) 1566:(PDF) 1492:(PDF) 1472:S2CID 1359:Notes 1328:Lenna 1214:Speex 1166:(APC) 1130:(MP2) 1122:(MQA) 1076:(MP3) 1035:Audio 1022:Dirac 974:H.263 949:H.261 927:Video 896:JBIG2 839:gamut 790:Image 675:, or 283:, an 139:Types 112:video 108:audio 2821:DPCM 2628:PSNR 2559:MDCT 2552:WLPC 2537:CELP 2498:DPCM 2346:WLPC 2331:CELP 2309:DPCM 2259:MDCT 2203:LZMA 2104:LDCT 2082:DPCM 2027:LZWL 2017:LZSS 2012:LZRW 2002:LZJB 1628:2019 1581:2019 1500:2019 1460:C-23 1434:2019 1403:PMID 1290:NASA 1239:Opus 1202:3GPP 1200:and 1106:Opus 1101:LDAC 1043:and 1005:VC-1 935:and 921:glTF 902:S3TC 867:ICER 862:DjVu 813:WebP 808:JPEG 715:and 709:JPEG 677:Exif 598:Exif 582:JPEG 549:JPEG 510:The 464:and 386:and 345:NTSC 315:and 293:AIFF 268:and 256:and 254:MPEG 246:JPEG 122:and 2866:DWT 2816:DCT 2760:VBR 2755:CBR 2750:ABR 2709:EZW 2704:DWT 2689:RLE 2679:KLT 2664:DCT 2547:LSP 2542:LAR 2527:LPC 2520:FFT 2417:VBR 2412:CBR 2407:ABR 2341:LSP 2336:LAR 2321:LPC 2286:DWT 2271:FFT 2266:DST 2254:DCT 2153:LZS 2148:LZX 2124:RLE 2119:PPM 2114:PAQ 2109:MTF 2077:DMC 2055:CTW 2050:BWT 2022:LZW 2007:LZO 1997:LZ4 1992:842 1464:doi 1393:PMC 1385:doi 1198:GSM 1084:MP4 996:Ogg 877:PGF 776:). 735:' " 488:bit 423:In 401:In 341:YIQ 329:YUV 291:or 289:WAV 285:MP3 272:). 270:AAC 266:MP3 248:), 165:ZIP 70:or 62:In 3036:: 2684:LP 2515:FT 2508:DM 2060:CM 1725:. 1700:. 1670:. 1648:. 1617:. 1589:^ 1574:60 1572:. 1568:. 1545:^ 1529:. 1470:, 1458:, 1423:. 1401:. 1391:. 1379:. 1375:. 1264:. 768:, 751:, 728:. 671:, 659:. 502:. 472:. 206:, 135:. 110:, 66:, 3020:) 3016:( 1836:e 1829:t 1822:v 1760:. 1735:. 1710:. 1685:. 1630:. 1583:. 1539:. 1502:. 1466:: 1436:. 1409:. 1387:: 1381:2 1204:) 976:) 972:( 420:. 323:- 20:)

Index

Lossy data compression


information technology
data compression
lossless data compression
discrete cosine transform
Nasir Ahmed
K. R. Rao
multimedia
audio
video
images
streaming media
internet telephony
master lossless file
information loss
computer file
bandwidth
information theory
entropy
ZIP
visually lossless
diagnostically acceptable irreversible compression
Transform coding
transform coding
digital images
digital audio
signals
digital video

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑