Knowledge

Liquid chromatography–mass spectrometry

Source 📝

545:
5 kV and is nebulized by a high-velocity coaxial flow of gas at the tip of the capillary, creating a fine spray of charged droplets in front of the entrance to the vacuum chamber. To avoid contamination of the vacuum system by buffers and salts, this capillary is usually perpendicularly located at the inlet of the MS system, in some cases with a counter-current of dry nitrogen in front of the entrance through which ions are directed by the electric field. In some sources, rapid droplet evaporation and thus maximum ion emission is achieved by mixing an additional stream of hot gas with the spray plume in front of the vacuum entrance. In other sources, the droplets are drawn through a heated capillary tube as they enter the vacuum, promoting droplet evaporation and ion emission. These methods of increasing droplet evaporation now allow the use of liquid flow rates of 1 - 2 mL/min to be used while still achieving efficient ionisation and high sensitivity. Thus while the use of 1 – 3 mm microbore columns and lower flow rates of 50 - 200 μl/min was commonly considered necessary for optimum operation, this limitation is no longer as important, and the higher column capacity of larger bore columns can now be advantageously employed with ESI LC–MS systems. Positively and negatively charged ions can be created by switching polarities, and it is possible to acquire alternate positive and negative mode spectra rapidly within the same LC run . While most large molecules (greater than MW 1500–2000) produce multiply charged ions in the ESI source, the majority of smaller molecules produce singly charged ions.
316:(TSP) interface was developed in 1980 by Marvin Vestal and co-workers at the University of Houston. It was commercialized by Vestec and several of the major mass spectrometer manufacturers. The interface resulted from a long-term research project intended to find a LC–MS interface capable of handling high flow rates (1 ml/min) and avoiding the flow split in DLI interfaces. The TSP interface was composed of a heated probe, a desolvation chamber, and an ion focusing skimmer. The LC effluent passed through the heated probe and emerged as a jet of vapor and small droplets flowing into the desolvation chamber at low pressure. Initially operated with a filament or discharge as the source of ions (thereby acting as a CI source for vapourized analyte), it was soon discovered that ions were also observed when the filament or discharge was off. This could be attributed to either direct emission of ions from the liquid droplets as they evaporated in a process related to electrospray ionization or ion evaporation, or to chemical ionization of vapourized analyte molecules from buffer ions (such as ammonium acetate). The fact that multiply-charged ions were observed from some larger analytes suggests that direct analyte ion emission was occurring under at least some conditions. The interface was able to handle up to 2 ml/min of eluate from the LC column and would efficiently introduce it into the MS vacuum system. TSP was also more suitable for LC–MS applications involving 352:) and continuous flow-FAB (CF-FAB) interfaces were developed in 1985 and 1986 respectively. Both interfaces were similar, but they differed in that the first used a porous frit probe as connecting channel, while CF-FAB used a probe tip. From these, the CF-FAB was more successful as a LC–MS interface and was useful to analyze non-volatile and thermally labile compounds. In these interfaces, the LC effluent passed through the frit or CF-FAB channels to form a uniform liquid film at the tip. There, the liquid was bombarded with ion beams or high energy atoms (fast atoms). For stable operation, the FAB based interfaces were able to handle liquid flow rates of only 1–15 μl and were also restricted to microbore and capillary columns. In order to be used in FAB MS ionization sources, the analytes of interest had to be mixed with a matrix (e.g., glycerol) that could be added before or after the separation in the LC column. FAB based interfaces were extensively used to characterize peptides, but lost applicability with the advent of 560:
used to analyze small, neutral, relatively non-polar, and thermally stable molecules (e.g., steroids, lipids, and fat soluble vitamins). These compounds are not well ionized using ESI. In addition, APCI can also handle mobile phase streams containing buffering agents. The liquid from the LC system is pumped through a capillary and there is also nebulization at the tip, where a corona discharge takes place. First, the ionizing gas surrounding the interface and the mobile phase solvent are subject to chemical ionization at the ion source. Later, these ions react with the analyte and transfer their charge. The sample ions then pass through small orifice skimmers by means of or ion-focusing lenses. Once inside the high vacuum region, the ions are subject to mass analysis. This interface can be operated in positive and negative charge modes and singly-charged ions are mainly produced. APCI ion source can also handle flow rates between 500 and 2000 μl/min and it can be directly connected to conventional 4.6 mm ID columns.
285:
diameter) to form a liquid jet composed of small droplets that were subsequently dried in a desolvation chamber. The analytes were ionized using a solvent-assisted chemical ionization source, where the LC solvents acted as reagent gases. To use this interface, it was necessary to split the flow coming out of the LC column because only a small portion of the effluent (10 to 50 μl/min out of 1 ml/min) could be introduced into the source without raising the vacuum pressure of the MS system too high. Alternately, Henion at Cornell University had success with using micro-bore LC methods so that the entire (low) flow of the LC could be used. One of the main operational problems of the DLI interface was the frequent clogging of the diaphragm orifices. The DLI interface was used between 1982 and 1985 for the analysis of pesticides, corticosteroids, metabolites in horse urine, erythromycin, and vitamin B
300:(PBI), developed by Willoughby and Browner in 1984. Particle beam interfaces took over the wide applications of MBI for LC–MS in 1988. The PBI operated by using a helium gas nebulizer to spray the eluant into the vacuum, drying the droplets and pumping away the solvent vapour (using a jet separator) while the stream of monodisperse dried particles containing the analyte entered the source. Drying the droplets outside of the source volume, and using a jet separator to pump away the solvent vapour, allowed the particles to enter and be vapourized in a low-pressure EI source. As with the MBI, the ability to generate library-searchable EI spectra was a distinct advantage for many applications. Commercialized by 645:) is used to derive the sequences of individual peptides. LC–MS/MS is most commonly used for proteomic analysis of complex samples where peptide masses may overlap even with a high-resolution mass spectrometry. Samples of complex biological (e.g., human serum) may be analyzed in modern LC–MS/MS systems, which can identify over 1000 proteins. However, this high level of protein identification is possible only after separating the sample by means of SDS-PAGE gel or HPLC-SCX. Recently, LC–MS/MS has been applied to search peptide biomarkers. Examples are the recent discovery and validation of peptide biomarkers for four major bacterial respiratory tract pathogens ( 435: 365: 163:(MS). Coupled chromatography – MS systems are popular in chemical analysis because the individual capabilities of each technique are enhanced synergistically. While liquid chromatography separates mixtures with multiple components, mass spectrometry provides spectral information that may help to identify (or confirm the suspected identity of) each separated component. MS is not only sensitive, but provides selective detection, relieving the need for complete chromatographic separation. LC–MS is also appropriate for 575:
ionization occurs by using photons coming from a discharge lamp. In the direct-APPI mode, singly charged analyte molecular ions are formed by absorption of a photon and ejection of an electron. In the dopant-APPI mode, an easily ionizable compound (Dopant) is added to the mobile phase or the nebulizing gas to promote a reaction of charge-exchange between the dopant molecular ion and the analyte. The ionized sample is later transferred to the mass analyzer at high vacuum as it passes through small orifice skimmers.
45: 489:
devices facilitating the transition from samples at higher pressure and in condensed phase (solid or liquid) into a vacuum system has been essential to develop MS as a potent tool for identification and quantification of organic compounds like peptides. MS is now in very common use in analytical laboratories that study physical, chemical, or biological properties of a great variety of compounds. Among the many different kinds of mass analyzers, the ones that find application in LC–MS systems are the
481:. In the case of electrospray ionization, the ion source moves ions that exist in liquid solution into the gas phase. The ion source converts and fragments the neutral sample molecules into gas-phase ions that are sent to the mass analyzer. While the mass analyzer applies the electric and magnetic fields to sort the ions by their masses, the detector measures and amplifies the ion current to calculate the abundances of each mass-resolved ion. In order to generate a 3255: 2809: 247:
alternatives were proposed as coupling alternatives. In general, off-line coupling involved fraction collection, evaporation of solvent, and transfer of analytes to the MS using probes. Off-line analyte treatment process was time-consuming and there was an inherent risk of sample contamination. Rapidly, it was realized that the analysis of complex mixtures would require the development of a fully automated on-line coupling solution in LC–MS.
260:
the solvent vapours under reduced pressure in two vacuum chambers. After the liquid phase was removed, the belt passed over a heater which flash desorbed the analytes into the MS ion source. One of the significant advantages of the MBI was its compatibility with a wide range of chromatographic conditions. MBI was successfully used for LC–MS applications between 1978 and 1990 because it allowed coupling of LC to MS devices using EI, CI, and
400:. Among these, the most widely used variant is the reverse-phase (RP) mode of the partition chromatography technique, which makes use of a nonpolar (hydrophobic) stationary phase and a polar mobile phase. In common applications, the mobile phase is a mixture of water and other polar solvents (e.g., methanol, isopropanol, and acetonitrile), and the stationary matrix is prepared by attaching long-chain alkyl groups (e.g., n-octadecyl or C 417:
chromatography experiments. Depending on the partitioning between the mobile and stationary phases, the components of the sample will flow out of the column at different times. The column is the most important component of the LC system and is designed to withstand the high pressure of the liquid. Conventional LC columns are 100–300 mm long with outer diameter of 6.4 mm (1/4 inch) and internal diameter of 3.0
2154:
M; Dumont, E; Debyser, G; t'Kindt, R; Sandra, K; Gupta, S; Drouin, N; Harms, A; Hankemeier, T; Jones, DJL; Gupta, P; Lane, D; Lane, CS; El Ouadi, S; Vincendet, JB; Morrice, N; Oehrle, S; Tanna, N; Silvester, S; Hannam, S; Sigloch, FC; Bhangu-Uhlmann, A; Claereboudt, J; Anderson, NL; Razavi, M; Degroeve, S; Cuypers, L; Stove, C; Lagrou, K; Martens, GA; Deforce, D; Martens, L; Vissers, JPC; Dhaenens, M (28 June 2021).
3279: 3267: 2018: 518:
vacuum conditions needed at the MS analyzer. Although these interfaces are described individually, they can also be commercially available as dual ESI/APCI, ESI/APPI, or APCI/APPI ion sources. Various deposition and drying techniques were used in the past (e.g., moving belts) but the most common of these was the off-line
233:) ion sources in the MS system was a technically simpler challenge. Because of this, the development of GC-MS systems was faster than LC–MS and such systems were first commercialized in the 1970s. The development of LC–MS systems took longer than GC-MS and was directly related to the development of proper interfaces. 583:
The coupling of MS with LC systems is attractive because liquid chromatography can separate delicate and complex natural mixtures, which chemical composition needs to be well established (e.g., biological fluids, environmental samples, and drugs). Further, LC–MS has applications in volatile explosive
517:
changed this. Currently, the most common LC–MS interfaces are electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo-ionization (APPI). These are newer MS ion sources that facilitate the transition from a high pressure environment (HPLC) to high
241:
started the development of LC–MS in the late 1960s, when they first used capillaries to connect an LC columns to an EI source. A similar strategy was investigated by McLafferty and collaborators in 1973 who coupled the LC column to a CI source, which allowed a higher liquid flow into the source. This
544:
and collaborators in 1988. This ion source/ interface can be used for the analysis of moderately polar and even very polar molecules (e.g., metabolites, xenobiotics, peptides, nucleotides, polysaccharides). The liquid eluate coming out of the LC column is directed into a metal capillary kept at 3 to
2153:
Van Puyvelde, B; Van Uytfanghe, K; Tytgat, O; Van Oudenhove, L; Gabriels, R; Bouwmeester, R; Daled, S; Van Den Bossche, T; Ramasamy, P; Verhelst, S; De Clerck, L; Corveleyn, L; Willems, S; Debunne, N; Wynendaele, E; De Spiegeleer, B; Judak, P; Roels, K; De Wilde, L; Van Eenoo, P; Reyns, T; Cherlet,
584:
residue analysis. Nowadays, LC–MS has become one of the most widely used chemical analysis techniques because more than 85% of natural chemical compounds are polar and thermally labile and GC-MS cannot process these samples. As an example, HPLC–MS is regarded as the leading analytical technique for
407:
In HPLC, typically 20 μl of the sample of interest are injected into the mobile phase stream delivered by a high pressure pump. The mobile phase containing the analytes permeates through the stationary phase bed in a definite direction. The components of the mixture are separated depending on their
259:
The moving-belt interface (MBI) was developed by McFadden et al. in 1977 and commercialized by Finnigan. This interface consisted of an endless moving belt onto which the LC column effluent was deposited in a band. On the belt, the solvent was evaporated by gently heating and efficiently exhausting
195:
In addition to the liquid chromatography and mass spectrometry devices, an LC–MS system contains an interface that efficiently transfers the separated components from the LC column into the MS ion source. The interface is necessary because the LC and MS devices are fundamentally incompatible. While
752:
because it allows quick molecular weight confirmation and structure identification. These features speed up the process of generating, testing, and validating a discovery starting from a vast array of products with potential application. LC–MS applications for drug development are highly automated
559:
The development of the APCI interface for LC–MS started with Horning and collaborators in the early 1973. However, its commercial application was introduced at the beginning of the 1990s after Henion and collaborators improved the LC–APCI–MS interface in 1986. The APCI ion source/ interface can be
488:
The mass spectrum can be used to determine the mass of the analytes, their elemental and isotopic composition, or to elucidate the chemical structure of the sample. MS is an experiment that must take place in gas phase and under vacuum (1.33 * 10 to 1.33 * 10 pascal). Therefore, the development of
421:
4.6 mm. For applications involving LC–MS, the length of chromatography columns can be shorter (30–50 mm) with 3–5 μm diameter packing particles. In addition to the conventional model, other LC columns are the narrow bore, microbore, microcapillary, and nano-LC models. These columns have
200:
from the LC column into the MS source. Overall, the interface is a mechanically simple part of the LC–MS system that transfers the maximum amount of analyte, removes a significant portion of the mobile phase used in LC and preserves the chemical identity of the chromatography products (chemically
250:
The key to the success and widespread adoption of LC–MS as a routine analytical tool lies in the interface and ion source between the liquid-based LC and the vacuum-base MS. The following interfaces were stepping-stones on the way to the modern atmospheric-pressure ionization interfaces, and are
416:
steps occurring when the liquid interacts with the stationary bed. The liquid solvent (mobile phase) is delivered under high pressure (up to 400 bar or 5800 psi) into a packed column containing the stationary phase. The high pressure is necessary to achieve a constant flow rate for reproducible
246:
and was limited to rather volatile analytes and non-polar compounds with low molecular mass (below 400 Da). In the capillary inlet interface, the evaporation of the mobile phase inside the capillary was one of the main issues. Within the first years of development of LC–MS, on-line and off-line
612:
studies of pharmaceuticals. Pharmacokinetic studies are needed to determine how quickly a drug will be cleared from the body organs and the hepatic blood flow. MS analyzers are useful in these studies because of their shorter analysis time, and higher sensitivity and specificity compared to UV
284:
The direct liquid-introduction (DLI) interface was developed in 1980. This interface was intended to solve the problem of evaporation of liquid inside the capillary inlet interface. In DLI, a small portion of the LC flow was forced through a small aperture or diaphragm (typically 10 μm in
167:
because of its good coverage of a wide range of chemicals. This tandem technique can be used to analyze biochemical, organic, and inorganic compounds commonly found in complex samples of environmental and biological origin. Therefore, LC–MS may be applied in a wide range of sectors including
681:) is also used in plant metabolomics, but this technique can only detect and quantify the most abundant metabolites. LC–MS has been useful to advance the field of plant metabolomics, which aims to study the plant system at molecular level providing a non-biased characterization of the plant 574:
The APPI interface for LC–MS was developed simultaneously by Bruins and Syage in 2000. APPI is another LC–MS ion source/ interface for the analysis of neutral compounds that cannot be ionized using ESI. This interface is similar to the APCI ion source, but instead of a corona discharge, the
225:(GC)–MS was originally introduced in 1952, when A. T. James and A. J. P. Martin were trying to develop tandem separation – mass analysis techniques. In GC, the analytes are eluted from the separation column as a gas and the connection with electron ionization ( 201:
inert). As a requirement, the interface should not interfere with the ionizing efficiency and vacuum conditions of the MS system. Nowadays, most extensively applied LC–MS interfaces are based on atmospheric pressure ionization (API) strategies like
340:. The introduction of TSP marked a significant improvement for LC–MS systems and was the most widely applied interface until the beginning of the 1990s, when it began to be replaced by interfaces involving atmospheric pressure ionization (API). 379:
Liquid chromatography is a method of physical separation in which the components of a liquid mixture are distributed between two immiscible phases, i.e., stationary and mobile. The practice of LC can be divided into five categories, i.e.,
426:(UHPLC) can be used instead of HPLC. This LC variant uses columns packed with smaller silica particles (~1.7 μm diameter) and requires higher operating pressures in the range of 310000 to 775000 torr (6000 to 15000 psi, 400 to 1034 bar). 452:
of charged particles (ions). Although there are many different kinds of mass spectrometers, all of them make use of electric or magnetic fields to manipulate the motion of ions produced from an analyte of interest and determine their
2093:
Karlsson, Roger; Thorsell, Annika; Gomila, Margarita; Salvà-Serra, Francisco; Jakobsson, Hedvig E.; Gonzales-Siles, Lucia; Jaén-Luchoro, Daniel; Skovbjerg, Susann; Fuchs, Johannes; Karlsson, Anders; Boulund, Fredrik (2020-03-01).
304:, and later by VG and Extrel, it enjoyed moderate success, but has been largely supplanted by the atmospheric pressure interfaces such as electrospray and APCI which provide a broader range of compound coverage and applications. 672:
LC–MS has emerged as one of the most commonly used techniques in global metabolite profiling of biological tissue (e.g., blood plasma, serum, urine). LC–MS is also used for the analysis of natural products and the profiling of
1884:
Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N. (1973-05-01). "New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure".
1310:
Tal'roze, V.L.; Gorodetskii, I.G.; Zolotoy, N.B; Karpov, G.V.; Skurat, V.E.; Maslennikova, V.Ya. (1978). "Capillary system for continuous introducing of volatile liquids into analytical MS and its application".
919:
Chaimbault, Patrick (2014-01-01). "The Modern Art of Identification of Natural Substances in Whole Plants". In Jacob, Claus; Kirsch, Gilbert; Slusarenko, Alan; Winyard, Paul G.; Burkholz, Torsten (eds.).
1677:
Cappiello, Achille; Famiglini, Giorgio; Palma, Pierangela; Pierini, Elisabetta; Termopoli, Veronica; Trufelli, Helga (2008-12-01). "Overcoming Matrix Effects in Liquid Chromatography−Mass Spectrometry".
1370: 2344:
Tolstikov, Vladimir V.; Fiehn, Oliver (2002). "Analysis of Highly Polar Compounds of Plant Origin: Combination of Hydrophilic Interaction Chromatography and Electrospray Ion Trap Mass Spectrometry".
2246:
Stobiecki, M.; Skirycz, A.; Kerhoas, L.; Kachlicki, P.; Muth, D.; Einhorn, J.; Mueller-Roeber, B. (2006). "Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS".
422:
smaller internal diameters, allow for a more efficient separation, and handle liquid flows under 1 ml/min (the conventional flow-rate). In order to improve separation efficiency and peak resolution,
320:(RT-LC). With time, the mechanical complexity of TSP was simplified, and this interface became popular as the first ideal LC–MS interface for pharmaceutical applications comprising the analysis of 276:. This interface is no longer used because of its mechanical complexity and the difficulties associated with belt renewal (or cleaning) as well as its inability to handle very labile biomolecules. 677:
in plants. In this regard, MS-based systems are useful to acquire more detailed information about the wide spectrum of compounds from a complex biological samples. LC–nuclear magnetic resonance (
617:, where the detector may be programmed to select certain ions to fragment. The measured quantity is the sum of molecule fragments chosen by the operator. As long as there are no interferences or 2203:
Gika, Helen G.; Theodoridis, Georgios A.; Plumb, Robert S.; Wilson, Ian D. (January 2014). "Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics".
513:
The interface between a liquid phase technique (HPLC) with a continuously flowing eluate, and a gas phase technique carried out in a vacuum was difficult for a long time. The advent of
242:
was the first and most obvious way of coupling LC with MS, and was known as the capillary inlet interface. This pioneer interface for LC–MS had the same analysis capabilities of
1833:"Where have all the ions gone, long time passing? Tandem quadrupole mass spectrometers with atmospheric pressure ionization sensitivity gains since the mid-1970s. A perspective" 523: 1259:
Tal'roze, V. L; Karpov, G. V.; Gordetskii, I. G.; Skurat, V. E. (1968). "Capillary Systems for the Introduction of Liquid Mixtures into an Analytical Mass Spectrometer".
1388:
de Koster, Chris G.; Schoenmakers, Peter J. (2020). "Chapter 3.1 - History of Liquid Chromatography–Mass Spectrometry". In Tranchida, Peter Q.; Mondello, Luigi (eds.).
297: 2391:(2008). "Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue". 2999: 1963:
Widmer, Leo; Watson, Stuart; Schlatter, Konrad; Crowson, Andrew (2002). "Development of an LC/MS method for the trace analysis of triacetone triperoxide (TATP)".
17: 2726: 1920:
Robb, null; Covey, null; Bruins, null (2000-08-01). "Atmospheric pressure photoionization: an ionization method for liquid chromatography–mass spectrometry".
196:
the mobile phase in a LC system is a pressurized liquid, the MS analyzers commonly operate under high vacuum. Thus, it is not possible to directly pump the
1770:
Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. (1989-10-06). "Electrospray ionization for mass spectrometry of large biomolecules".
465:, the detector, and the data and vacuum systems. The ion source is where the components of a sample introduced in a MS system are ionized by means of 685:
in response to its environment. The first application of LC–MS in plant metabolomics was the detection of a wide range of highly polar metabolites,
2079: 3182: 3177: 2929: 784: 779: 1332:"Liquid chromatography–mass spectrometry interface-I: The direct introduction of liquid solutions into a chemical ionization mass spectrometer" 637:
as a protease, urea to denature the tertiary structure, and iodoacetamide to modify the cysteine residues. After digestion, LC–MS is used for
3034: 2984: 2994: 2845: 519: 3009: 2455: 1531:
Sharp, Thomas R. (2009-01-01). "Mass Spectrometry". In Nassar, Ala F.; Collegiateessor, Paul F. Hollenberg; VP, JoAnn Scatina (eds.).
1204:"Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid" 3200: 3090: 272:
instruments. MBI interfaces for LC–MS allowed MS to be widely applied in the analysis of drugs, pesticides, steroids, alkaloids, and
3167: 2909: 2716: 2584: 1663: 774: 554: 243: 206: 136: 1607:
Arpino, Patrick (1989). "Combined liquid chromatography mass spectrometry. Part I. Coupling by means of a moving belt interface".
1463:
Blakley, C. R.; Carmody, J. J.; Vestal, M. L. (1980). "A New Soft Ionization Technique for Mass Spectrometry of Complex Samples".
3283: 3235: 423: 3225: 2989: 2675: 2670: 2655: 373: 317: 156: 2914: 2552: 2531: 2510: 2491: 1507: 1397: 2919: 569: 210: 3152: 3271: 2949: 2939: 2891: 1294: 2096:"Discovery of Species-unique Peptide Biomarkers of Bacterial Pathogens by Tandem Mass Spectrometry-based Proteotyping" 3230: 3192: 3014: 2503:
Liquid chromatography-Time of Flight Mass Spectrometry: Principles, Tools and Applications for Accurate Mass Analysis
2285:; António, Carla (2016-09-01). "Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress". 2028: 1556: 1447: 1178: 993: 937: 813: 485:
that a human eye can easily recognize, the data system records, processes, stores, and displays data in a computer.
404:) to the external and internal surfaces of irregularly or spherically shaped 5 μm diameter porous silica particles. 3215: 3070: 2979: 2944: 1572:
Arpino, Patrick (1992). "Combined liquid chromatography mass spectrometry. Part III. Applications of thermospray".
494: 221:
The coupling of chromatography with MS is a well developed chemical analysis strategy dating back from the 1950s.
3019: 2838: 2660: 273: 213:(APPI). These interfaces became available in the 1990s after a two decade long research and development process. 761:
drug screening, metabolic stability screening, metabolite identification, impurity identification, quantitative
3220: 3205: 2700: 2156:"Cov-MS: A Community-Based Template Assay for Mass-Spectrometry-Based Protein Detection in SARS-CoV-2 Patients" 3210: 3157: 2690: 2685: 393: 3240: 3131: 2934: 2577: 618: 44: 3116: 2793: 2786: 2640: 638: 389: 1642:
Murray, Kermit K. (1997). "Coupling matrix-assisted laser desorption/ionization to liquid separations".
629:
LC–MS is used in proteomics as a method to detect and identify the components of a complex mixture. The
3310: 3259: 2886: 2831: 2630: 2484:
Liquid chromatography/mass spectrometry, MS/MS and time of flight MS: analysis of emerging contaminants
678: 2779: 2695: 2609: 588:
and pharmaceutical laboratories. Other important applications of LC–MS include the analysis of food,
381: 1792: 3162: 3147: 3075: 3060: 2865: 665: 642: 614: 502: 490: 385: 269: 265: 189: 117: 1431: 1170: 3305: 2959: 2812: 2625: 2604: 2570: 1087:"Principles and Applications of Liquid Chromatography–Mass Spectrometry in Clinical Biochemistry" 831:"Principles and Applications of Liquid Chromatography–Mass Spectrometry in Clinical Biochemistry" 535: 514: 397: 353: 202: 177: 1723:"A simple approach for coupling liquid chromatography and electron ionization mass spectrometry" 434: 293:
interface, which removed the flow rate limitations and the issues with the clogging diaphragms.
3029: 2752: 1787: 1540: 659: 2044:
Wysocki VH, Resing KA, Zhang Q, Cheng G (2005). "Mass spectrometry of peptides and proteins".
408:
chemical affinity with the mobile and stationary phases. The separation occurs after repeated
2964: 2742: 2645: 2635: 2073: 653: 647: 349: 264:(FAB) ion sources. The most common MS systems connected by MBI interfaces to LC columns were 261: 152: 151:) is an analytical chemistry technique that combines the physical separation capabilities of 31: 1532: 1423: 1162: 2762: 2680: 2443: 2400: 2294: 2281:
Jorge, Tiago F.; Rodrigues, João A.; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T.;
1972: 1779: 1651: 1616: 1581: 736: 674: 630: 1721:
Cappiello, Achille; Famiglini, Giorgio; Mangani, Filippo; Palma, Pierangela (2002-03-01).
448:
Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge ratio (
364: 8: 3111: 3080: 2954: 2924: 2747: 1424: 1163: 541: 230: 226: 113: 2447: 2404: 2298: 1976: 1783: 1655: 1620: 1585: 3039: 2757: 2665: 2650: 2369: 2326: 2263: 2180: 2155: 2130: 1866: 1513: 1236: 1203: 1111: 1086: 1048: 896: 871: 847: 830: 222: 121: 1739: 1722: 1027: 1010: 2854: 2548: 2527: 2506: 2487: 2459: 2416: 2388: 2361: 2330: 2318: 2310: 2282: 2228: 2220: 2185: 2135: 2117: 2061: 2024: 1996: 1988: 1945: 1937: 1902: 1870: 1858: 1850: 1813: 1805: 1752: 1744: 1703: 1695: 1552: 1533: 1503: 1443: 1430:. Analytical Techniques in the Sciences (AnTS). John Wiley & Sons, Ltd. pp.  1393: 1351: 1290: 1241: 1223: 1184: 1174: 1116: 1098: 1052: 1040: 1032: 989: 933: 901: 852: 809: 443: 160: 73: 2267: 1517: 526:, couples a nano HPLC system and an electron ionization equipped mass spectrometer. 3024: 3004: 2969: 2451: 2408: 2373: 2353: 2302: 2255: 2212: 2175: 2167: 2125: 2107: 2053: 1980: 1929: 1894: 1840: 1797: 1734: 1687: 1659: 1624: 1589: 1544: 1495: 1472: 1435: 1343: 1231: 1215: 1106: 1022: 981: 925: 891: 883: 842: 749: 703: 478: 83: 2434:
Lee, Mike S.; Kerns, Edward H. (1999). "LC/MS applications in drug development".
686: 609: 333: 301: 173: 2057: 929: 2974: 2593: 2216: 613:
detectors commonly attached to HPLC systems. One major advantage is the use of
466: 234: 69: 2259: 1548: 1499: 985: 3299: 3121: 2881: 2314: 2224: 2121: 2112: 2095: 1992: 1941: 1906: 1854: 1809: 1748: 1699: 1371:"The fascinating history of the development of LC–MS; a personal perspective" 1355: 1227: 1188: 1102: 1036: 593: 482: 462: 169: 2152: 1801: 1331: 1017:. Advancement and Applications of Mass Spectrometry in Laboratory Medicine. 757:
mapping, lipodomics, natural products dereplication, bioaffinity screening,
633:
LC–MS approach generally involves protease digestion and denaturation using
3085: 2463: 2420: 2365: 2357: 2322: 2232: 2189: 2171: 2139: 2065: 2000: 1949: 1862: 1756: 1707: 1628: 1593: 1439: 1347: 1245: 1120: 1044: 905: 856: 754: 731: 711: 181: 164: 2387:
Antonio, Carla; Larson, Tony; Gilday, Alison; Graham, Ian; Bergström, Ed;
1817: 3126: 3065: 3044: 762: 694: 605: 313: 290: 105: 87: 2456:
10.1002/(SICI)1098-2787(1999)18:3/4<187::AID-MAS2>3.0.CO;2-K
1898: 1476: 1285:
Arpino, Patrick (2006). "History of LC–MS Development and Interfacing".
2901: 2043: 1011:"After another decade: LC–MS/MS became routine in clinical diagnostics" 887: 870:
Zhou, Bin; Xiao, Jun Feng; Tuli, Leepika; Ressom, Habtom W (Feb 2012).
698: 690: 682: 585: 458: 413: 325: 2306: 1933: 1691: 1664:
10.1002/(SICI)1098-2787(1997)16:5<283::AID-MAS3>3.0.CO;2-D
1219: 2412: 1984: 1845: 1832: 727: 723: 589: 337: 185: 2823: 2545:
Liquid chromatography/mass spectrometry: techniques and applications
1309: 3095: 498: 470: 409: 1258: 548: 188:
industries. Since the early 2000s, LC–MS (or more specifically LC–
2562: 2092: 719: 715: 634: 329: 197: 97: 2245: 2020:
Phenotyping Crop Plants for Physiological and Biochemical Traits
976:
Dass, Chhabil (2007-01-01). "Hyphenated Separation Techniques".
1390:
Hyphenations of Capillary Chromatography With Mass Spectrometry
707: 238: 101: 1720: 1676: 563: 474: 109: 2280: 1962: 922:
Recent Advances in Redox Active Plant and Microbial Products
1883: 321: 2500: 2481: 2202: 1426:
Liquid Chromatography – Mass Spectrometry: An Introduction
522:
deposition. A new approach still under development called
2870: 2386: 279: 1165:
Liquid Chromatography–Mass Spectrometry, Third Edition
192:) has also begun to be used in clinical applications. 1727:
Journal of the American Society for Mass Spectrometry
1387: 2017:
Sudhakar, P.; Latha, P.; Reddy, P. V. (2016-04-05).
1490:
Roberts, Gordon (2013). Roberts, Gordon C. K (ed.).
1462: 803: 457:
The basic components of a mass spectrometer are the
2521: 2016: 869: 714:is the efficient separation and identification of 2542: 2205:Journal of Pharmaceutical and Biomedical Analysis 1329: 1169:. Boca Raton: CRC Taylor & Francis. pp.  540:ESI interface for LC–MS systems was developed by 3297: 1769: 1422:Ardrey, Robert E. (2003-01-01). "Introduction". 1009:Seger, Christoph; Salzmann, Linda (2020-08-01). 980:. John Wiley & Sons, Inc. pp. 151–194. 804:de Hoffmann, Edmond; Stroobant, Vincent (2002). 529: 1919: 806:Mass Spectrometry (Principles and Applications) 549:Atmospheric pressure chemical ionization (APCI) 2727:Pyrolysis–gas chromatography–mass spectrometry 2343: 978:Fundamentals of Contemporary Mass Spectrometry 289:. However, this interface was replaced by the 2839: 2578: 1202:James, A. T.; Martin, A. J. P. (1952-03-01). 1008: 2078:: CS1 maint: multiple names: authors list ( 30:"LC–MS" redirects here. For other uses, see 2486:. Columbus, OH: American Chemical Society. 1201: 785:Ion-mobility spectrometry–mass spectrometry 780:Capillary electrophoresis–mass spectrometry 710:tissues. Another example of LC–MS in plant 564:Atmospheric pressure photoionization (APPI) 2846: 2832: 2585: 2571: 1330:Baldwin, M. A.; McLafferty, F. W. (1973). 918: 624: 2393:Rapid Communications in Mass Spectrometry 2179: 2129: 2111: 1844: 1837:Rapid Communications in Mass Spectrometry 1791: 1738: 1235: 1110: 1026: 895: 846: 808:(2nd ed.). Wiley. pp. 157–158. 159:) with the mass analysis capabilities of 2433: 924:. Springer Netherlands. pp. 31–94. 621:, the LC separation can be quite quick. 555:Atmospheric pressure chemical ionization 433: 363: 359: 307: 254: 207:atmospheric-pressure chemical ionization 2722:Liquid chromatography–mass spectrometry 1539:. John Wiley & Sons, Inc. pp.  1489: 1160: 424:ultra performance liquid chromatography 343: 145:Liquid chromatography–mass spectrometry 52:Ion trap LCMS system with ESI interface 38:Liquid chromatography–mass spectrometry 18:Liquid chromatography mass spectrometry 14: 3298: 2671:Micellar electrokinetic chromatography 2656:High-performance liquid chromatography 1641: 1606: 1571: 1421: 1368: 1284: 374:High-performance liquid chromatography 2853: 2827: 2566: 2501:Ferrer, Imma; Thurman, E. M. (2009). 2482:Thurman, E. M.; Ferrer, Imma (2003). 2012: 2010: 1830: 1530: 1492:Encyclopedia of Biophysics - Springer 1417: 1415: 1413: 1411: 1409: 1280: 1278: 1276: 1274: 1156: 1154: 1152: 1150: 971: 969: 604:LC–MS is widely used in the field of 3266: 2717:Gas chromatography–mass spectrometry 1148: 1146: 1144: 1142: 1140: 1138: 1136: 1134: 1132: 1130: 1084: 1080: 1078: 1076: 1074: 1072: 1070: 1068: 1066: 1064: 1062: 975: 967: 965: 963: 961: 959: 957: 955: 953: 951: 949: 828: 775:Gas chromatography–mass spectrometry 570:Atmospheric pressure photoionization 438:LC–MS spectrum of each resolved peak 429: 318:reversed phase liquid chromatography 280:Direct liquid-introduction interface 211:atmospheric pressure photoionization 137:Gas chromatography–mass spectrometry 3278: 2100:Molecular & Cellular Proteomics 743: 599: 251:described for historical interest. 24: 2592: 2474: 2007: 1406: 1271: 753:methods used for peptide mapping, 43: 25: 3322: 1287:Encyclopedia of Mass Spectrometry 1127: 1059: 1028:10.1016/j.clinbiochem.2020.03.004 946: 348:The first fast atom bombardment ( 3277: 3265: 3254: 3253: 2808: 2807: 274:polycyclic aromatic hydrocarbons 2661:Capillary electrochromatography 2524:LC/MS: a practical user's guide 2427: 2380: 2337: 2274: 2239: 2196: 2146: 2086: 2037: 1956: 1913: 1877: 1824: 1763: 1714: 1670: 1635: 1600: 1565: 1524: 1483: 1456: 1381: 1362: 1323: 1303: 1252: 1161:Niessen, Wilfried M. A (2006). 1091:The Clinical Biochemist Reviews 829:Pitt, James J (February 2009). 578: 2701:Two-dimensional chromatography 1392:. Elsevier. pp. 279–295. 1195: 1002: 912: 863: 822: 797: 27:Analytical chemistry technique 13: 1: 2691:Size-exclusion chromatography 2686:Reversed-phase chromatography 1740:10.1016/S1044-0305(01)00363-4 790: 608:and is specially involved in 530:Electrospray ionization (ESI) 508: 394:size-exclusion chromatography 2522:McMaster, Marvin C. (2005). 1085:Pitt, James J (2017-03-12). 748:LC–MS is frequently used in 669:) and the SARS-CoV-2 virus. 7: 3117:Microchannel plate detector 2794:Journal of Chromatography B 2787:Journal of Chromatography A 2676:Normal-phase chromatography 2641:Displacement chromatography 2058:10.1016/j.ymeth.2004.08.013 930:10.1007/978-94-017-8953-0_3 768: 639:peptide mass fingerprinting 390:ion-exchange chromatography 324:, metabolites, conjugates, 10: 3327: 2631:Argentation chromatography 2547:. New York: Plenum Press. 2543:Yergey, Alfred L. (1990). 2217:10.1016/j.jpba.2013.06.032 872:"LC–MS–based metabolomics" 567: 552: 533: 441: 371: 368:Diagram of an LC–MS system 356:based interfaces in 1988. 229:) or chemical ionization ( 216: 172:, environment monitoring, 29: 3249: 3191: 3140: 3104: 3053: 2900: 2861: 2803: 2780:Biomedical Chromatography 2771: 2735: 2709: 2696:Thin-layer chromatography 2618: 2600: 2436:Mass Spectrometry Reviews 2287:Mass Spectrometry Reviews 2260:10.1007/s11306-006-0031-5 1831:Covey, Tom (2022-08-30). 1644:Mass Spectrometry Reviews 1609:Mass Spectrometry Reviews 1574:Mass Spectrometry Reviews 1549:10.1002/9780470439265.ch8 1500:10.1007/978-3-642-16712-6 1336:Organic Mass Spectrometry 1289:. Vol. 8. Elsevier. 986:10.1002/9780470118498.ch5 524:direct-EI LC–MS interface 382:adsorption chromatography 296:A related device was the 237:and his collaborators in 132: 127: 93: 79: 65: 57: 42: 3132:Langmuir–Taylor detector 2526:. New York: John Wiley. 2113:10.1074/mcp.RA119.001667 1535:Drug Metabolism Handbook 666:Streptococcus pneumoniae 619:ion suppression in LC–MS 386:partition chromatography 118:Thermo Fisher Scientific 2626:Affinity chromatography 2505:. New York, NJ: Wiley. 2346:Analytical Biochemistry 1802:10.1126/science.2675315 765:, and quality control. 625:Proteomics/metabolomics 536:Electrospray ionization 515:electrospray ionization 398:affinity chromatography 298:particle beam interface 203:electrospray ionization 48:Bruker Amazon Speed ETD 3076:Quadrupole mass filter 2772:Prominent publications 2753:Kovats retention index 2358:10.1006/abio.2001.5513 2172:10.1021/jacsau.1c00048 1629:10.1002/mas.1280080103 1594:10.1002/mas.1280110103 1440:10.1002/0470867299.ch1 1377:(February/March): 4–6. 1369:Pullen, Franl (2010). 1348:10.1002/oms.1210070913 734:from leaf extracts of 660:Haemophilus influenzae 439: 369: 49: 2743:Distribution constant 2646:Electrochromatography 2636:Column chromatography 1015:Clinical Biochemistry 675:secondary metabolites 654:Moraxella catarrhalis 648:Staphylococcus aureus 503:quadrupole-TOF (QTOF) 437: 367: 360:Liquid chromatography 308:Thermospray interface 262:fast-atom bombardment 255:Moving-belt interface 153:liquid chromatography 47: 32:LCMS (disambiguation) 2763:Van Deemter equation 2681:Paper chromatography 1922:Analytical Chemistry 1887:Analytical Chemistry 1680:Analytical Chemistry 1375:Chromatography Today 737:Arabidopsis thaliana 631:bottom-up proteomics 495:time-of-flight (TOF) 344:FAB based interfaces 3112:Electron multiplier 3081:Quadrupole ion trap 2748:Freundlich equation 2448:1999MSRv...18..187L 2405:2008RCMS...22.1399A 2299:2016MSRv...35..620J 1977:2002Ana...127.1627W 1899:10.1021/ac60328a035 1784:1989Sci...246...64F 1656:1997MSRv...16..283M 1621:1989MSRv....8...35A 1586:1992MSRv...11....3A 1477:10.1021/ja00538a050 1261:Russ. J. Phys. Chem 1208:Biochemical Journal 114:Shimadzu Scientific 39: 2710:Hyphenated methods 2666:Ion chromatography 2651:Gas chromatography 2389:Thomas-Oates, Jane 2283:Thomas-Oates, Jane 2023:. Academic Press. 1313:Adv. Mass Spectrom 888:10.1039/c1mb05350g 440: 370: 223:Gas chromatography 122:Waters Corporation 50: 37: 3311:Mass spectrometry 3293: 3292: 2855:Mass spectrometry 2821: 2820: 2554:978-0-306-43186-9 2533:978-0-471-65531-2 2512:978-0-470-13797-0 2493:978-0-8412-3825-1 2307:10.1002/mas.21449 1971:(12): 1627–1632. 1934:10.1021/ac0001636 1928:(15): 3653–3659. 1692:10.1021/ac8018312 1686:(23): 9343–9348. 1509:978-3-642-16711-9 1399:978-0-12-809638-3 1220:10.1042/bj0500679 699:sugar nucleotides 444:Mass spectrometry 430:Mass spectrometry 161:mass spectrometry 142: 141: 84:organic molecules 74:Mass spectrometry 16:(Redirected from 3318: 3281: 3280: 3269: 3268: 3257: 3256: 2848: 2841: 2834: 2825: 2824: 2811: 2810: 2758:Retention factor 2587: 2580: 2573: 2564: 2563: 2558: 2537: 2516: 2497: 2468: 2467: 2442:(3–4): 187–279. 2431: 2425: 2424: 2413:10.1002/rcm.3519 2399:(9): 1399–1407. 2384: 2378: 2377: 2341: 2335: 2334: 2278: 2272: 2271: 2243: 2237: 2236: 2200: 2194: 2193: 2183: 2150: 2144: 2143: 2133: 2115: 2090: 2084: 2083: 2077: 2069: 2041: 2035: 2034: 2014: 2005: 2004: 1985:10.1039/b208350g 1960: 1954: 1953: 1917: 1911: 1910: 1881: 1875: 1874: 1848: 1846:10.1002/rcm.9354 1828: 1822: 1821: 1795: 1767: 1761: 1760: 1742: 1718: 1712: 1711: 1674: 1668: 1667: 1639: 1633: 1632: 1604: 1598: 1597: 1569: 1563: 1562: 1538: 1528: 1522: 1521: 1487: 1481: 1480: 1465:J. Am. Chem. Soc 1460: 1454: 1453: 1429: 1419: 1404: 1403: 1385: 1379: 1378: 1366: 1360: 1359: 1342:(9): 1111–1112. 1327: 1321: 1320: 1307: 1301: 1300: 1282: 1269: 1268: 1256: 1250: 1249: 1239: 1199: 1193: 1192: 1168: 1158: 1125: 1124: 1114: 1082: 1057: 1056: 1030: 1006: 1000: 999: 973: 944: 943: 916: 910: 909: 899: 867: 861: 860: 850: 835:Clin Biochem Rev 826: 820: 819: 801: 750:drug development 744:Drug development 704:Cucurbita maxima 687:oligosaccharides 600:Pharmacokinetics 479:corona discharge 469:, photon beams ( 334:natural products 128:Other techniques 40: 36: 21: 3326: 3325: 3321: 3320: 3319: 3317: 3316: 3315: 3296: 3295: 3294: 3289: 3245: 3187: 3136: 3100: 3049: 2896: 2857: 2852: 2822: 2817: 2799: 2767: 2731: 2705: 2614: 2596: 2591: 2561: 2555: 2534: 2513: 2494: 2477: 2475:Further reading 2472: 2471: 2432: 2428: 2385: 2381: 2342: 2338: 2279: 2275: 2244: 2240: 2201: 2197: 2151: 2147: 2091: 2087: 2071: 2070: 2042: 2038: 2031: 2015: 2008: 1961: 1957: 1918: 1914: 1882: 1878: 1829: 1825: 1793:10.1.1.522.9458 1778:(4926): 64–71. 1768: 1764: 1719: 1715: 1675: 1671: 1640: 1636: 1605: 1601: 1570: 1566: 1559: 1529: 1525: 1510: 1488: 1484: 1461: 1457: 1450: 1420: 1407: 1400: 1386: 1382: 1367: 1363: 1328: 1324: 1308: 1304: 1297: 1283: 1272: 1257: 1253: 1200: 1196: 1181: 1159: 1128: 1083: 1060: 1007: 1003: 996: 974: 947: 940: 917: 913: 868: 864: 827: 823: 816: 802: 798: 793: 771: 746: 641:, or LC–MS/MS ( 627: 610:pharmacokinetic 602: 581: 572: 566: 557: 551: 538: 532: 511: 446: 432: 403: 378: 376: 362: 346: 310: 302:Hewlett Packard 288: 282: 266:magnetic sector 257: 219: 174:food processing 120: 116: 112: 108: 104: 100: 86: 72: 53: 35: 28: 23: 22: 15: 12: 11: 5: 3324: 3314: 3313: 3308: 3306:Chromatography 3291: 3290: 3288: 3287: 3275: 3263: 3250: 3247: 3246: 3244: 3243: 3238: 3233: 3228: 3223: 3218: 3213: 3208: 3203: 3197: 3195: 3189: 3188: 3186: 3185: 3180: 3175: 3170: 3165: 3160: 3155: 3150: 3144: 3142: 3141:MS combination 3138: 3137: 3135: 3134: 3129: 3124: 3119: 3114: 3108: 3106: 3102: 3101: 3099: 3098: 3093: 3088: 3083: 3078: 3073: 3071:Time-of-flight 3068: 3063: 3057: 3055: 3051: 3050: 3048: 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3012: 3007: 3002: 2997: 2992: 2987: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2947: 2942: 2937: 2932: 2927: 2922: 2917: 2912: 2906: 2904: 2898: 2897: 2895: 2894: 2889: 2884: 2879: 2868: 2862: 2859: 2858: 2851: 2850: 2843: 2836: 2828: 2819: 2818: 2816: 2815: 2804: 2801: 2800: 2798: 2797: 2790: 2783: 2775: 2773: 2769: 2768: 2766: 2765: 2760: 2755: 2750: 2745: 2739: 2737: 2733: 2732: 2730: 2729: 2724: 2719: 2713: 2711: 2707: 2706: 2704: 2703: 2698: 2693: 2688: 2683: 2678: 2673: 2668: 2663: 2658: 2653: 2648: 2643: 2638: 2633: 2628: 2622: 2620: 2616: 2615: 2613: 2612: 2607: 2601: 2598: 2597: 2594:Chromatography 2590: 2589: 2582: 2575: 2567: 2560: 2559: 2553: 2540: 2538: 2532: 2519: 2517: 2511: 2498: 2492: 2478: 2476: 2473: 2470: 2469: 2426: 2379: 2352:(2): 298–307. 2336: 2293:(5): 620–649. 2273: 2254:(4): 197–219. 2238: 2195: 2166:(6): 750–765. 2145: 2106:(3): 518–528. 2085: 2036: 2029: 2006: 1955: 1912: 1893:(6): 936–943. 1876: 1823: 1762: 1733:(3): 265–273. 1713: 1669: 1650:(5): 283–299. 1634: 1599: 1564: 1557: 1523: 1508: 1482: 1455: 1448: 1405: 1398: 1380: 1361: 1322: 1302: 1296:978-0080438474 1295: 1270: 1251: 1214:(5): 679–690. 1194: 1179: 1126: 1058: 1001: 994: 945: 938: 911: 882:(2): 470–481. 862: 821: 814: 795: 794: 792: 789: 788: 787: 782: 777: 770: 767: 745: 742: 626: 623: 601: 598: 580: 577: 568:Main article: 565: 562: 553:Main article: 550: 547: 534:Main article: 531: 528: 510: 507: 467:electron beams 442:Main article: 431: 428: 401: 372:Main article: 361: 358: 345: 342: 309: 306: 286: 281: 278: 256: 253: 235:Victor Talrose 218: 215: 178:pharmaceutical 140: 139: 134: 130: 129: 125: 124: 95: 91: 90: 81: 77: 76: 70:Chromatography 67: 66:Classification 63: 62: 59: 55: 54: 51: 26: 9: 6: 4: 3: 2: 3323: 3312: 3309: 3307: 3304: 3303: 3301: 3286: 3285: 3276: 3274: 3273: 3264: 3262: 3261: 3252: 3251: 3248: 3242: 3239: 3237: 3234: 3232: 3229: 3227: 3224: 3222: 3219: 3217: 3214: 3212: 3209: 3207: 3204: 3202: 3199: 3198: 3196: 3194: 3193:Fragmentation 3190: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3145: 3143: 3139: 3133: 3130: 3128: 3125: 3123: 3122:Daly detector 3120: 3118: 3115: 3113: 3110: 3109: 3107: 3103: 3097: 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3058: 3056: 3054:Mass analyzer 3052: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2931: 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2911: 2908: 2907: 2905: 2903: 2899: 2893: 2890: 2888: 2885: 2883: 2882:Mass spectrum 2880: 2878: 2877: 2873: 2869: 2867: 2864: 2863: 2860: 2856: 2849: 2844: 2842: 2837: 2835: 2830: 2829: 2826: 2814: 2806: 2805: 2802: 2796: 2795: 2791: 2789: 2788: 2784: 2782: 2781: 2777: 2776: 2774: 2770: 2764: 2761: 2759: 2756: 2754: 2751: 2749: 2746: 2744: 2741: 2740: 2738: 2734: 2728: 2725: 2723: 2720: 2718: 2715: 2714: 2712: 2708: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2632: 2629: 2627: 2624: 2623: 2621: 2617: 2611: 2608: 2606: 2603: 2602: 2599: 2595: 2588: 2583: 2581: 2576: 2574: 2569: 2568: 2565: 2556: 2550: 2546: 2541: 2539: 2535: 2529: 2525: 2520: 2518: 2514: 2508: 2504: 2499: 2495: 2489: 2485: 2480: 2479: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2430: 2422: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2383: 2375: 2371: 2367: 2363: 2359: 2355: 2351: 2347: 2340: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2277: 2269: 2265: 2261: 2257: 2253: 2249: 2242: 2234: 2230: 2226: 2222: 2218: 2214: 2210: 2206: 2199: 2191: 2187: 2182: 2177: 2173: 2169: 2165: 2161: 2157: 2149: 2141: 2137: 2132: 2127: 2123: 2119: 2114: 2109: 2105: 2101: 2097: 2089: 2081: 2075: 2067: 2063: 2059: 2055: 2052:(3): 211–22. 2051: 2047: 2040: 2032: 2030:9780128041109 2026: 2022: 2021: 2013: 2011: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1959: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1916: 1908: 1904: 1900: 1896: 1892: 1888: 1880: 1872: 1868: 1864: 1860: 1856: 1852: 1847: 1842: 1838: 1834: 1827: 1819: 1815: 1811: 1807: 1803: 1799: 1794: 1789: 1785: 1781: 1777: 1773: 1766: 1758: 1754: 1750: 1746: 1741: 1736: 1732: 1728: 1724: 1717: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1673: 1665: 1661: 1657: 1653: 1649: 1645: 1638: 1630: 1626: 1622: 1618: 1614: 1610: 1603: 1595: 1591: 1587: 1583: 1579: 1575: 1568: 1560: 1558:9780470439265 1554: 1550: 1546: 1542: 1537: 1536: 1527: 1519: 1515: 1511: 1505: 1501: 1497: 1493: 1486: 1478: 1474: 1471:: 5931–5933. 1470: 1466: 1459: 1451: 1449:9780470867297 1445: 1441: 1437: 1433: 1428: 1427: 1418: 1416: 1414: 1412: 1410: 1401: 1395: 1391: 1384: 1376: 1372: 1365: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1326: 1318: 1314: 1306: 1298: 1292: 1288: 1281: 1279: 1277: 1275: 1266: 1262: 1255: 1247: 1243: 1238: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1190: 1186: 1182: 1180:9780824740825 1176: 1172: 1167: 1166: 1157: 1155: 1153: 1151: 1149: 1147: 1145: 1143: 1141: 1139: 1137: 1135: 1133: 1131: 1122: 1118: 1113: 1108: 1104: 1100: 1096: 1092: 1088: 1081: 1079: 1077: 1075: 1073: 1071: 1069: 1067: 1065: 1063: 1054: 1050: 1046: 1042: 1038: 1034: 1029: 1024: 1020: 1016: 1012: 1005: 997: 995:9780470118498 991: 987: 983: 979: 972: 970: 968: 966: 964: 962: 960: 958: 956: 954: 952: 950: 941: 939:9789401789523 935: 931: 927: 923: 915: 907: 903: 898: 893: 889: 885: 881: 877: 873: 866: 858: 854: 849: 844: 840: 836: 832: 825: 817: 815:0-471-48566-7 811: 807: 800: 796: 786: 783: 781: 778: 776: 773: 772: 766: 764: 760: 756: 751: 741: 739: 738: 733: 729: 725: 721: 717: 713: 709: 706: 705: 700: 696: 692: 688: 684: 680: 676: 670: 668: 667: 662: 661: 656: 655: 651: 649: 644: 640: 636: 632: 622: 620: 616: 611: 607: 597: 595: 594:plant phenols 591: 587: 576: 571: 561: 556: 546: 543: 537: 527: 525: 521: 516: 506: 504: 501:, and hybrid 500: 496: 492: 486: 484: 483:mass spectrum 480: 476: 472: 468: 464: 463:mass analyzer 460: 456: 451: 445: 436: 427: 425: 420: 415: 411: 405: 399: 395: 391: 387: 383: 375: 366: 357: 355: 351: 341: 339: 335: 331: 327: 323: 319: 315: 305: 303: 299: 294: 292: 277: 275: 271: 267: 263: 252: 248: 245: 240: 236: 232: 228: 224: 214: 212: 208: 204: 199: 193: 191: 187: 183: 179: 175: 171: 170:biotechnology 166: 162: 158: 154: 150: 146: 138: 135: 131: 126: 123: 119: 115: 111: 107: 103: 99: 96: 94:Manufacturers 92: 89: 85: 82: 78: 75: 71: 68: 64: 60: 56: 46: 41: 33: 19: 3282: 3270: 3258: 3172: 3086:Penning trap 2875: 2871: 2792: 2785: 2778: 2721: 2544: 2523: 2502: 2483: 2439: 2435: 2429: 2396: 2392: 2382: 2349: 2345: 2339: 2290: 2286: 2276: 2251: 2248:Metabolomics 2247: 2241: 2208: 2204: 2198: 2163: 2159: 2148: 2103: 2099: 2088: 2074:cite journal 2049: 2045: 2039: 2019: 1968: 1964: 1958: 1925: 1921: 1915: 1890: 1886: 1879: 1836: 1826: 1775: 1771: 1765: 1730: 1726: 1716: 1683: 1679: 1672: 1647: 1643: 1637: 1615:(1): 35–55. 1612: 1608: 1602: 1577: 1573: 1567: 1534: 1526: 1491: 1485: 1468: 1464: 1458: 1425: 1389: 1383: 1374: 1364: 1339: 1335: 1325: 1316: 1312: 1305: 1286: 1267:: 1658–1664. 1264: 1260: 1254: 1211: 1207: 1197: 1164: 1097:(1): 19–34. 1094: 1090: 1018: 1014: 1004: 977: 921: 914: 879: 876:Mol. Biosyst 875: 865: 841:(1): 19–34. 838: 834: 824: 805: 799: 758: 755:glycoprotein 747: 735: 712:metabolomics 702: 695:amino sugars 671: 664: 658: 652: 646: 628: 615:tandem MS–MS 603: 582: 579:Applications 573: 558: 539: 512: 487: 454: 449: 447: 418: 406: 377: 354:electrospray 347: 311: 295: 283: 258: 249: 220: 209:(APCI), and 194: 182:agrochemical 165:metabolomics 148: 144: 143: 88:biomolecules 3284:WikiProject 3127:Faraday cup 3066:Wien filter 2887:MS software 1965:The Analyst 1580:(1): 3–40. 763:bioanalysis 691:amino acids 606:bioanalysis 505:analyzers. 326:nucleosides 314:thermospray 291:thermospray 106:PerkinElmer 3300:Categories 2902:Ion source 2619:Techniques 791:References 732:verbascose 683:metabolome 590:pesticides 586:proteomics 509:Interfaces 491:quadrupole 459:ion source 414:desorption 338:pesticides 270:quadrupole 3163:Hybrid MS 2331:206232111 2315:1098-2787 2225:0731-7085 2211:: 12–25. 2122:1535-9476 1993:0003-2654 1942:1520-6882 1907:0003-2700 1871:250491726 1855:0951-4198 1839:: e9354. 1810:0036-8075 1788:CiteSeerX 1749:1044-0305 1700:0003-2700 1356:0030-493X 1228:0264-6021 1189:232370223 1103:0159-8090 1053:213186669 1037:0009-9120 728:stachyose 724:raffinose 643:tandem MS 499:ion traps 477:beams or 471:UV lights 3260:Category 3105:Detector 3096:Orbitrap 2892:Acronyms 2813:Category 2605:software 2464:10568041 2421:18384194 2366:11814300 2323:25589422 2268:39140266 2233:23916607 2190:34254058 2140:31941798 2066:15722218 2001:12537371 1950:10952556 1863:35830299 1757:11908806 1708:19551950 1518:44856071 1246:14934673 1121:19224008 1045:32188572 1021:: 2–11. 906:22041788 857:19224008 769:See also 410:sorption 330:peptides 186:cosmetic 80:Analytes 3272:Commons 3000:MALDESI 2610:history 2444:Bibcode 2401:Bibcode 2374:3156968 2295:Bibcode 2181:8230961 2160:JACS Au 2131:7050107 2046:Methods 1973:Bibcode 1818:2675315 1780:Bibcode 1772:Science 1652:Bibcode 1617:Bibcode 1582:Bibcode 1237:1197726 1112:2643089 897:3699692 848:2643089 759:in vivo 720:sucrose 716:glucose 635:trypsin 217:History 205:(ESI), 133:Related 98:Agilent 58:Acronym 3178:IMS/MS 3091:FT-ICR 3061:Sector 2736:Theory 2551:  2530:  2509:  2490:  2462:  2419:  2372:  2364:  2329:  2321:  2313:  2266:  2231:  2223:  2188:  2178:  2138:  2128:  2120:  2064:  2027:  1999:  1991:  1948:  1940:  1905:  1869:  1861:  1853:  1816:  1808:  1790:  1755:  1747:  1706:  1698:  1555:  1543:–227. 1516:  1506:  1446:  1396:  1354:  1319:: 858. 1293:  1244:  1234:  1226:  1187:  1177:  1119:  1109:  1101:  1051:  1043:  1035:  992:  936:  904:  894:  855:  845:  812:  730:, and 708:phloem 697:, and 592:, and 461:, the 396:, and 336:, and 239:Russia 198:eluate 184:, and 176:, and 102:Bruker 3231:IRMPD 3183:CE-MS 3173:LC/MS 3168:GC/MS 3148:MS/MS 3035:SELDI 2995:MALDI 2990:LAESI 2930:DAPPI 2370:S2CID 2327:S2CID 2264:S2CID 1867:S2CID 1514:S2CID 1173:–90. 1049:S2CID 701:from 520:MALDI 475:laser 322:drugs 244:GC-MS 190:MS–MS 149:LC–MS 110:SCIEX 3236:NETD 3201:BIRD 3020:SIMS 3015:SESI 2950:EESI 2945:DIOS 2940:DESI 2935:DART 2920:APPI 2915:APLI 2910:APCI 2866:Mass 2549:ISBN 2528:ISBN 2507:ISBN 2488:ISBN 2460:PMID 2417:PMID 2362:PMID 2319:PMID 2311:ISSN 2229:PMID 2221:ISSN 2186:PMID 2136:PMID 2118:ISSN 2080:link 2062:PMID 2025:ISBN 1997:PMID 1989:ISSN 1946:PMID 1938:ISSN 1903:ISSN 1859:PMID 1851:ISSN 1814:PMID 1806:ISSN 1753:PMID 1745:ISSN 1704:PMID 1696:ISSN 1553:ISBN 1504:ISBN 1444:ISBN 1434:–5. 1394:ISBN 1352:ISSN 1291:ISBN 1242:PMID 1224:ISSN 1185:OCLC 1175:ISBN 1117:PMID 1099:ISSN 1041:PMID 1033:ISSN 990:ISBN 934:ISBN 902:PMID 853:PMID 810:ISBN 663:and 542:Fenn 455:m/z. 450:m/z) 412:and 312:The 268:and 157:HPLC 155:(or 61:LCMS 3241:SID 3226:HCD 3221:ETD 3216:EDD 3211:ECD 3206:CID 3158:AMS 3153:QqQ 3030:SSI 3010:PTR 3005:MIP 2985:ICP 2965:FAB 2960:ESI 2452:doi 2409:doi 2354:doi 2350:301 2303:doi 2256:doi 2213:doi 2176:PMC 2168:doi 2126:PMC 2108:doi 2054:doi 1981:doi 1969:127 1930:doi 1895:doi 1841:doi 1798:doi 1776:246 1735:doi 1688:doi 1660:doi 1625:doi 1590:doi 1545:doi 1541:167 1496:doi 1473:doi 1469:102 1436:doi 1344:doi 1232:PMC 1216:doi 1107:PMC 1023:doi 982:doi 926:doi 892:PMC 884:doi 843:PMC 679:NMR 473:), 350:FAB 3302:: 3045:TS 3040:TI 3025:SS 2980:IA 2975:GD 2970:FD 2955:EI 2925:CI 2458:. 2450:. 2440:18 2438:. 2415:. 2407:. 2397:22 2395:. 2368:. 2360:. 2348:. 2325:. 2317:. 2309:. 2301:. 2291:35 2289:. 2262:. 2250:. 2227:. 2219:. 2209:87 2207:. 2184:. 2174:. 2162:. 2158:. 2134:. 2124:. 2116:. 2104:19 2102:. 2098:. 2076:}} 2072:{{ 2060:. 2050:35 2048:. 2009:^ 1995:. 1987:. 1979:. 1967:. 1944:. 1936:. 1926:72 1924:. 1901:. 1891:45 1889:. 1865:. 1857:. 1849:. 1835:. 1812:. 1804:. 1796:. 1786:. 1774:. 1751:. 1743:. 1731:13 1729:. 1725:. 1702:. 1694:. 1684:80 1682:. 1658:. 1648:16 1646:. 1623:. 1611:. 1588:. 1578:11 1576:. 1551:. 1512:. 1502:. 1494:. 1467:. 1442:. 1408:^ 1373:. 1350:. 1338:. 1334:. 1315:. 1273:^ 1265:42 1263:. 1240:. 1230:. 1222:. 1212:50 1210:. 1206:. 1183:. 1171:50 1129:^ 1115:. 1105:. 1095:30 1093:. 1089:. 1061:^ 1047:. 1039:. 1031:. 1019:82 1013:. 988:. 948:^ 932:. 900:. 890:. 878:. 874:. 851:. 839:30 837:. 833:. 740:. 726:, 722:, 718:, 693:, 689:, 657:; 596:. 497:, 493:, 402:18 392:, 388:, 384:, 332:, 328:, 287:12 231:CI 227:EI 180:, 2876:z 2874:/ 2872:m 2847:e 2840:t 2833:v 2586:e 2579:t 2572:v 2557:. 2536:. 2515:. 2496:. 2466:. 2454:: 2446:: 2423:. 2411:: 2403:: 2376:. 2356:: 2333:. 2305:: 2297:: 2270:. 2258:: 2252:2 2235:. 2215:: 2192:. 2170:: 2164:1 2142:. 2110:: 2082:) 2068:. 2056:: 2033:. 2003:. 1983:: 1975:: 1952:. 1932:: 1909:. 1897:: 1873:. 1843:: 1820:. 1800:: 1782:: 1759:. 1737:: 1710:. 1690:: 1666:. 1662:: 1654:: 1631:. 1627:: 1619:: 1613:8 1596:. 1592:: 1584:: 1561:. 1547:: 1520:. 1498:: 1479:. 1475:: 1452:. 1438:: 1432:1 1402:. 1358:. 1346:: 1340:7 1317:7 1299:. 1248:. 1218:: 1191:. 1123:. 1055:. 1025:: 998:. 984:: 942:. 928:: 908:. 886:: 880:8 859:. 818:. 650:, 419:– 147:( 34:. 20:)

Index

Liquid chromatography mass spectrometry
LCMS (disambiguation)
Bruker Amazon Speed ETD
Chromatography
Mass spectrometry
organic molecules
biomolecules
Agilent
Bruker
PerkinElmer
SCIEX
Shimadzu Scientific
Thermo Fisher Scientific
Waters Corporation
Gas chromatography–mass spectrometry
liquid chromatography
HPLC
mass spectrometry
metabolomics
biotechnology
food processing
pharmaceutical
agrochemical
cosmetic
MS–MS
eluate
electrospray ionization
atmospheric-pressure chemical ionization
atmospheric pressure photoionization
Gas chromatography

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.